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E C O N O M E T R I C A  

VOLUME28 July, 1960 NUMBER3 

AN AUTOMATIC METHOD OF SOLVING DISCRETE 
PROGRAMMING PROBLEMS 

BYA. H. LAND AND A. G. DOIG 

In the classical linear programming problem the behaviour of continuous, 
nonnegative variables subject to a system of linear inequalities is investigated. 
One possible generalization of this problem is to relax the continuity condi- 
tion on the variables. This paper presents a simple numerical algorithm for 
the solution of programming problems in which some or all of the variables 
can take only discrete values. The algorithm requires no special techniques 
beyond those used in ordinary linear programming, and lends itself to 
automatic computing. I ts  use is illustrated on two ~lumerical examples. 

1 .  INTRODUCTION 

THEREIS A growing literature [ I ,  3, 5, 61 about optimization problems 
which could be formulated as linear programming problems with additional 
constraints that some or all of the variables may take only integral values. 
This form of linear programming arises whenever there are indivisibilities. 
I t  is not meaningful, for instance, to schedule 3 -7110 flights between two 
cities, or to undertake only 114 of the necessary setting up operation for 
running a job through a machine shop. Yet it is basic to linear programming 
that the variables are free to take on any positive value,l and this sort 
of answer is very likely to turn up. 

In some cases, notably those which can be expressed as transport prob- 
lems, the linear programming solution will itself yield discrete values of 
the variables. In other cases the percentage change in the maximand2 from 
common sense rounding of the variables is sufficiently small to be neglected. 
But there remain many problems where the discrete variable constraints 
are significant and costly. 

Until recently there was no general automatic routine for solving such 
problems, as opposed to procedures fo'r proving the optimality of conjec- 
tured solutions, and the work reported here is intended to fill the gap. 
About the time of its completion an alternative method was proposed by 
Gomory [5] and subsequently extended by Beale [I]. Gomory's method 

1 Or more generally, any value within a bounded interval. 
2 We shall speak throughout of maximisation, but of course an exactly analogous 

argument applies to minimisatio~l. 
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is based on the systematic addition of new constraints which are satisfied 
by a discrete variable solution but not by a continuous variable solution. 
At present, the published results apply only to problems in which all the 
variables are discrete, but a generalisation to the mixed case (i.e., in which 
not all the variables are required to be discrete) is known to exist. The 
mixed problem has been solved by Beale using a method in which the dis- 
crete variables appear as the parameters of a subsidiary linear programme 
which is expressed entirely in terms of continuous variables; the parameters 
of this continuous problem are themselves required to satisfy a pure dis- 
crete problem for which Gomory's technique may be employed. The method 
described here applies also to the mixed problem and although we have in 
fact worked only on a desk computer, we have borne in mind throughout 
that the algorithm should be susceptible to programming on an electronic 
computer. I t  is not suggested that this method should supersede successful 
ad hoc methods for particular problems. I t  may, in fact, be chiefly useful for 
testing the validity of proposed ad hoc methods for new problems. 

2. FORMULATION 

The discrete programming problem can be expressed as follows: 
Maximize 

( I )  c'x + E'y = y , 
subject to the constraints 

(2) A x  + Ay < b,  
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(3) x is a column vector with nonnegative integral components 

(4) Y 2 0 ,  

where y, the maximand, is a scalar, b is a column vector of m rows, G and x 

are column vectors of nl rows, E and y are column vectors of (n-nl) rows, 

A is a matrix of order m x n1, and A is a matrix of order m x (n-nl). 

A feasible solution of the problem is one which satisfies (2), (3), and (4). 


A two variable linear programming problem without discrete variable 
constraints is illustrated in Figure 1 where it can be seen that the functional 

0 0(represented by the family of parallel lines) reaches its maximum at (xi, x2). 

The discrete variable constraints limit the set of feasible solutions to points 
within the original set for which both coordinates are integers; in Figure 2 

the complete set of feasible solutions to the discrete programming problem 
consists of the eleven points which have been circled. I t  is easy to see in this 
two dimensional case that the maximum solution is xl = 2, x2 = 3. The 
procedure for arriving at  this conclusion could be described as "pushing 
down the functional line until it  meets an integral point." The algorithm 
to be described here is the generalisation of this procedure to many dimen- 
sions. 

3. DESCRIPTION O F  T H E  METHOD 

As the set of feasible solutions to the discrete variable problem is not 
convex, any method which examines merely the immediate neighbourhood 
of a proposed solution can prove the existence only of a local optimum. 
The method used here makes systematic parallel shifts in the functional 
hyperplane in the direction of a reduction of the maximand, until a point 
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within the ordinary linear programming set is found which has integral 
coordinates in the specified (x variable) dimensions. This is obvious in 
principle but cannot be so readily done in practice as one does not have 
the faculty of "seeing" a hyperplane in n-dimensional space in order to 
determine if it contains a point whose x coordinates are all integers. Numeri- 
cal methods can only examine one point at a time. Rules must therefore 
be devised to switch attention from one region of the falling functional 
hyperplane to another to ensure that no integer point has been passed. 

In other words an upper bound to the functional yo, is first obtained by 
solving the ordinary linear programming problem without the discrete 
variable constraints, and then successively more restrictive upper bounds, 
yl, y2, . . ., yk,  are found. If the upper bound of the functional at any stage 
is yk,  then it has been proved that there is no discrete variable solution 
with a higher value of the maximand than yk. 

Consider the convex set of solutions of an ordinary linear programming 
problem, such as might be represented for a two-dimensional case by Figure 2. 
Any feasible value of the maximand, say yk, is uniquely associated with a 
definite position of the functional hyperplane which in general cuts through 
the n-dimensional convex set, and in the special case of the optimum value 
just touches the convex set. The intersection of the hyperplane with the 

original convex set is itself a convex set of n- 1 dimensions. For example, 

Figure 3 represents such an intersection with a three-dimensional set. 

The points xl, xz, and xs are the intercepts of the hyperplane on the 3 

axes respectively and the shaded area represents the convex set which 
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lies within the constraints of the ordinary linear programming problem. 
In such an (n- 1)-dimensional set there would be a minimum and a 

maximum value for each variable as shown in Figure 4. 

If yk = yo, i.e., if the functional hyperplane is that associated with the 
optimum solution of the ordinary linear programming problem, this convex 
set would normally consist of a single point (unless there were multiple 
optimum solutions). I t  is still true to say, however, that for every value 
of the maximand (position of the functional hyperplane) there is a minimum 
and a maximum value (which may coincide) for each x variable, consistent 
with the ordinary linear programming constraints. 

Knowing for a particular value of y the minimum and maximum value 
for each variable one knows also whether there is a possible integer value 
of each variable for that position of the hyperplane. If there is not a t  least 
one possible integer value for every x-variable, then one can say immediately 
that there is no solution to the problem at  that value of the maximand. 
Unfortunately the converse is not true. The fact that each x variable takes 
an integer value at  some point or points within the set is not a sufficient 
condition for there being an iqztevsectio~z of these integral coordinates 
within the set, and hence a feasible solution. 

Since there is a unique minimum and maximum value for any variable 
xk a t  a particular value of y, it follows that one can define two functional 
relationships, min x k  and max xk, between x k  and the falling functional 
hyperplane (value of y). The connection between these two functions and 
the fundamental problem may be demonstrated by means of the following 
system of inequalities : 

(1') c'x + C'y - y = 0 ,  

(2) A X + A Y < ~ ,  
(3') x 2 0 ,  
(4) Y 2 0 ,>(5) Y < O ,  
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This system defines a convex polyhedral set in (92 + 1)-dimensional 
space and since the plane projection of a convex set is convex, the pro- 
jection of this set onto the (xk, y) plane will yield a convex polygon whose 
upper (lower) boundary is a concave (convex) function of the abscissa. One 
such polygon is shown in Figure 5. 

rnax x k  

The value yo which y takes a t  the highest point of the polygon is the maxi- 
mum value y can take subject to the given inequality system. This is equi- 
valent to saying that yo is the optimal value of the functional y in a linear 
programming problem with constraints (2), (37, and (4). Further, xk takes 
the value x i  in this solution (if xk were not in the optimum basis, the peak 
of the polygon would lie on the y axis). The boundary of the polygon 
consists of the functions3 min xk and max xk. These functions could be 
calculated by solving the two families of linear programming problems 
defined by (l ') ,  (2), (37, (4), and (5) with functionals "minimize xk" and 

In  a minimization problem, we are interested in the lower boundary of the polygon; 
if all coefficients of A ,  A and b are nonnegative, the point (x;,yo)  is a t  infinity and 
the polygon is unbounded; in this case, the functions nlin xa and lnax x k  are mono- 
tonic, 
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I ,  maximize xk," for all possible values of y using straightforward parametric 
linear programming [4, 7, 81. A two-dimensional polygon of this type 
could be determined for every x variable of the original discrete problem. 

In Figure 5, x: lies between the values 2 and 3. If min xk and max xk 
are traced out by reducing y from yo until an integer value of xk is first 
encountered on each, the two values yk(2)and yk(3)on Figure 5 are obtained. 
This is equivalent to examining the path traced out by two specific corners 
of the intersection of the functional hyperplane with the convex set of feasible 
solutions when that hyperplane is systematically pushed back from its 
maximum position, yo. I t  may be said of yk(2) that it is an upper bound on 
the maximand since a t  no higher value of y can xk take an integer value. 

The solution of the discrete programming problem will be developed 
by the systematic use of this argument. For convenience of exposition, we 
define a set of subsidiary problems, P(j) ,as follows: 

P ( j ) :Maximize y subject to constraints (2) ,  (37, and (4)above, and the 
additional constraints that j of the x variables be nonnegative integers 
( j  = 0,1,2,. . ., nl) .  

Let S j  be the set of all feasible solutions to problems of type P(j) and let 
3 be the set of nonfeasible solutions to any problem of type P(j) .  The 
particular problem in which, for example, x2 and x4 are constrained to be 
nonnegative integers, will be written P(2;  2,4). and the set of its feasible 
solutions is written S2(2,4). In this notation, the required solution is the 
element of S,, for which y is maximized. The y value of this solution is 
bounded above by the maximum value of y over the set S,,-, which is 
itself bounded by the maximum value of y over S,,-,, etc. The ultimate 
upper bound reached in this manner is yo ,the maximum value of y over So. 

The solution will be constructed in the form of a tree graph whose 
vertices are elements either of one of the sets S j ,  j = 0,1,2, . . ., nl,  or of 
the set 5.The steps of this construction are: 

Ste$ 0. The first vertex of the tree is the optimum solution of P(O), 
which is now given the label yo. If this solution also satisfies P(nl) ,it is the 
required solution. 

Ste# 1 .  If yo is not the required solution then, according to the rules given 
below, an arc is drawn to each of two points in S1 (or, possibly, in 3).y is 
evaluated at these points if they are in S1, but the y value of a point in 
need never be calculated. 

Step 2. If vertices yo, yl, y2, . . ., yk-1, have already been labelled, the 
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highest (according to the value of y) unlabelled vertex not in 3 is given 
the label yk. 

Ste$ 3. The final solution has been reached when for the first time a 
labelled vertex is an element of S,,; this occurs as soon as all the x variables 
of a solution are nonnegative integers. If yk is not such a solution, suppose 
it to be an element of Sj. A new arc is drawn originating at  the (labelled) 
vertex immediately above yk (this is not necessarily yk-1) and terminating 
at  a point in the same subset of solutions (Sf)as yk or in 3. If this new 
vertex is in Sf, its y value is necessarily less than or equal to yk. 

Ste$ 4. Two arcs are drawn from yk to points in S3+ior in 3. Again, if 
these points are in S,+I,their y values are less than or equal to yk. The 
last two steps add three new arcs and vertices to the tree. Return to Step 2. 

The labelled vertices form a sequence of nonincreasing upper bounds on 
the y value of the final solution. In addition, the y value of an unlabelled 
vertex of a set Sf cannot exceed that of a labelled vertex and therefore, 
at the time that it is labelled, yk is the greatest current upper bound on the 
optimal value of y. Thus, provided the method used to add arcs and ver- 
tices to the graph covers all possibilities, the algorithm must lead to the 
optimum solution of P(nl), provided such a solution exists. 

Rules for adding arcs and vertices. At Step 0, the tree consists of the single 
labelled vertex yo which is an element of So. 

The decision is now made that x,, which is in the basis at  yo, is to be 
constrained to nonnegative integral values, i.e., attention is focused on 
the problem P(1; r). Let x, = x, 0 at  y 0 . The functions min x, and max x, 
are traced as far as the points ([x:], y,,) and ([x:] + 1, yrM) respectively, 
where : 

[x:] is the greatest integer less than or equal to x:, 
yrm is the maximum value of y subject to P(0) and the condition 

0 
X, = [x,], and 
YrM is the maximum value of y subject to P(0) and the condition 
x, = [x:] + 1. 
The vertices yrm and y , ~ ,  if they exist, are elements of S1. I t  is seen, 

however, that both of them may be evaluated by solving a standard 
linear programming problem in (n - 1) variables. If one of these problems, 
say "maximize y, subject to P(0) and to x, = [dl" is not feasible, y,, 
does not exist and a vertex is added to 3 instead. This implies that SI does 
not contain an element for which x, = [x:], which in turn implies that only 
values of x, which satisfy x, 2 [x:] + 1 need be considered in developing 
the tree. If neither y,, nor YrM exist, x, cannot be constrained to an integral 
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value and the problem possesses no feasible solution. We have now added 
the two arcs and vertices of Step 1 .  

From Step 2, yl = max (y,,, y , ~ )In  calculating y,, and y , ~ ,we have 
in effect examined every value of y between yo and y l ,  and have shown 
that yl is the maximum value of y which is compatible with an integral 
value of x,. Suppose x ,  = v at  yl .  This equation is added to the problem as 
a new constraint which applies to any branch of the tree which can be 
traced back to yl.  The variable x ,  is dropped from the calculations, thus 
reducing the dimensions of the set of solutions being explored to (n- I ) ,  
and each boundary value bi is reduced by an amount airv. This new con- 
straint is certainly valid with respect to solutions of P ( 1 ; Y) over the range 
of values of y for which the only permissible integer value of x ,  is v. The 
upper end of this range is yl and, since the upper boundary of the polygon 
of Figure 5 is a concave function of the abscissa, the lower end must be 
one of y,(v - 1 )  and y,(v + 1 ) .  The larger of these two is the second best 
solution of P ( 1 ;  v).*  One of the neighbouring values is already known (it 
is min (y,,, y , ~ ) )and an upper bound to the other can be found by extra- 
polating the appropriate function of xr.5 If this upper bound exceeds the 
other neighbouring value, the corresponding y value should be determined 
exactly. The arc and vertex of Step 3 have now been added to the tree. 

To illustrate the argument, consider the two-dimensional problem shown 
in Figure 2. 

Step 0 .  The solution a t  A provides the first vertex of the tree, yo. 

Step 1 .  The variable xz is selected and the points B ( X Z  = 2,  y = yzm = 

7 4 2 ) )and C ( X Z  = 3 ,  y = Y Z M= 7143))are determined. 

Step 2. yl  = Y Z Mfor which v = 3. 

Step 3 .  yl  is not the final solution. Since xz = 4 lies entirely outside the 
convex set So, yz(4) is in 3. The only possible integral value of xz for all 
values of y satisfying yz(2) < y 5 yz(3) is xz = 3 ;  this constraint is valid 
for the line segment CD which is a one-dimensional subset of the set of 
feasible solutions to P ( 0 ) .  

4 Should it happen that, for example, y,(v - I )  = yl, y,(v - - 2)must be determined, 
and this step down of the integral argument of y, is continued until a value of 
yr(o- w), ( 1  5 w 5 v), is strictly less than yl, or until a minimum integral value of 
x, consistent with the ordinary linear progrannning constraints is reached. A parallel 
calculation will be needed for each integer value of x, for which y,(x,) = yl. 

5 This procedure is used to calculate y for xl = 0 in Appendix I .  
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Ste$ 4, xl is now constrained to integral values. One of the new vertices 
(yl,) is in S2 and the other is in 3. 

Step 2. y2 = y l ,  > y2M. 

Ste9 3. yz is an element of S2;  therefore the point E, corresponding to y2 
is the required solution. At this point , x l  = 2, x2 = 3. 

Clearly at  any stage of the solution, the only x variables which may 
be violating the discrete constraints are those in the current basis. There- 
fore, by successively constraining each such variable in the manner describ- 
ed above, either a feasible solution of P(n1) will be found or else it will be 
shown that no such solution exists. 

In the general case, the first upper bound on the functional, yo, is the 
optimum solution to P ( 0 ) .  The second upper bound is y l  5 yo; y l  is the 
optimum solution to P ( 1 ;  7 ) .  This second upper bound could have been 
sharpened by finding the optimum solution to all problems of type P ( 1 )  
and selecting the least of these as y l .  Just as in the simplex method, however, 
it is not normally useful to determine which basis change yields the greatest 
increase in the functional, in this analysis it is usually more economical of 
computing effort to trace the min and max functions of one variable only 
a t  each stage. The criteria for selecting the appropriate variable are dis- 
cussed in the appendices. 

If y l  is not a solution to P ( n l ) ,  a new x variable is chosen from those 
in the basis at y l .  Step 4 consists of tracing the max and min functions 
of this variable to the nearest integer values respectively above and below 
its value at y l .  This adds two new vertices to the tree, and, from Step 2, 
y2 is the maximum value of y taken over these and the neighbouring values 
y,(v - 1 )  and y,(v + 1) of y l .  The whole argument can now be repeated 
with y2 replacing yl  as the current upper bound on the optimal value of 
y. By continuing this process, a tree is formed each of whose vertices repre- 
sents a known set of integer constraints ( y l , for example, represents x ,  = 2) ) .  

A branch terminates if it reaches a vertex in S.Ultimately, either all branches 
have terminated in .'? and the problem has no feasible solution, or else a ver- 
tex, yf say, is reached for which all x vkriables are nonnegative integers. 
In principle, appropriate constraints are now applied to any x variable 
which has not yet been constrai~teilat an integral value, and a vertex yF 
in S,2,is reached which has the same y value as the labelled vertex yf. 
Since the labelled vertices are upper bounds on the functional, y" must 
be the required optimal solution. 

In practical terms, one would not necessarily stop a block of computa- 
tions in the middle once the upper bound of y with the current set of in- 



507 DISCRETE PROGRAMMING PRORLERIS 

tegral constraints had been proved to be lower than some value of y which 
is still possible with a different set of constraints, since it may later be 
necessary to return to that branch. So long as a discrete solution when 
found is checked to determine that the upper bound of y on every branch 
of the computation is at  least as low as the solution value, the algorithm 
must yield the maximum solution. In automatic computation, where there 
is the problem of storing the bases associated with each branch of the 
tree, the best procedure may be to carry each branch in turn down to some 
predetermined "cut off" value of y .  Since in many discrete programming 
problems, it is easy to find a "good" as opposed to an optimum solution, 
there should be no difficulty in selecting a cut off value sufficiently low 
to ensure that the tree extends as far as a solution, and hence that the 
optimum solution has not been excluded from the tree. The cut off value 
can be raised during the course of the calculation as soon as better discrete 
solutions are found. Alternatively, if a high cut off value were chosen, the 
output of the computer could include sufficienr information 011 each branch 
to enable the calculation to be re3tarted if no discrete solution were reached 
above that value. 

4. NUMERICAL EXAMPLE 

To illustrate the preceding sections, consider the following problem: 6 

Maximize 

(1) y = c'x + E'y 

subject to 

!3) x to be a vector of nonnegative integers, 

(3') ~ 2 0 ,  

(4) ~ 2 0 ,  
where : 

6 Two possible computational routines, one based on the solution of many simple 
linear programmes and the other on parametric linear programming are given in 
Appendix 1. 
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The tree corresponding to the sequence of the calculations is given in Figure 6. 

Stefi 0. The solution to the problem defined by ( I ) ,  (2), (3') and 

zO=1165.5060 

6' =1051.8952 +)Ax - 1  - - ----- - --. ---- - -- -- -

x 3 =  5 not 
feasib l ~  

62 = 990.6302 x 3  =4 

8 --= 981.6023 SOLUTION 
- O x 2 = o  

8 
decreasing 

J 

x3=3  

8 = 840.8229I 

X,S 0, 6 = 822.8457 
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used as a starting point to the solution of the complete problem. In this 
solution 

y = yo = 1165.5060.7 

Ste9 1. The upper bound of y and the current solution a t  the start of this 
step are 

yo = 1165.5060 
XI = 1.4960 
xs = 5.0210 
yl = 6.1697 . 

As xl is furthest from an integer value, find the first integer value on the 
two functions min xl and max xl. 

1.1. Min XI.As y decreases the first integer value of xl which is encounter- 
ed is xl = I a t  y = 105 1.8952. 

1.2. Max XI.The first integer encountered is xl = 2 at  y = 770.6983. 

Ste9 2. The greater of these two is y = 1051.8952 a t  xl = 1 ,  and this is 
given the label y l .  To complete this stage it is necessary to know the values 
of y for the integers on either side of the one which is to be pursued.$ 
Therefore : 

Stefl3. Min xl is continued as far as its second integer value, xl = 0, 
a t  y = 822.8457. 

These three values for y are recorded in a list of values of y which will be 
pursued in their order of magnitude from the highest down. Thus, a t  the 
beginning of each Step 2, one value will be taken from the list and a t  the 
end of Steps 3 and 4, three (lower) values will have been added to it. The 
computation is complete when all y values remaining on the list are lower 
than a y value associated with an integer solution. At this stage, the list is: 

Y obtained in ste$ 
1051.8952 y l  1 
770.6983 I 
822.8457 3 

7 For ease of presentation, the results have been rounded to four decimal places. 
8 In a larger problem, where several branches have to be pursued, i t  may be necessary 

to continue the min or max functions further. E.g., if x l  = 2, y = 770.6983 had to 
be picked up and explored (there being no integer solution for y > 770.6983), it would 
be necessary to compute y for x l  = 3. 
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The highest value is 105 1.8952 which has therefore been labelled yl (Step 2). 
The solution and constraints a t  this point are : 

Constraints : 
Solution : 

The list of y values is now : 

7' 
1051.8952 
770.6983 
822.8457 
990.6382 

yl 

obtained in ste$ 
I 
1 
3 
4 

St@ 4. 4. I. Min xs.At x3 = 4, y = 990.6382. 
4.2. Max x3. The first integer encountered is x3 = 4 a t  y = 803.4034.9 

Stefi 2. The highest unlabelled value is 990.6382, which therefore be- 
comes y2. 

St+ 3. Carry min x3 one step further. At x3 = 3, y 5 840.8229.10 The 
solution and constraints are now: 

Constraints : 
Solution : 

StL?$4. 4. I .  Min x2.At x2 = 0, y = 981.6023. 
4.2. Max x2.This is a falling function. I.e., x2 = 1 is not feasible, 

and another point is added to S. Hence we have a solution a t :  

9 This apparently anomalous result arises because max xs is a falling function of y .  
I t  implies that  the point for which x l  = 1 ,  = 5 lies in since the problem with 
these constraints added is infeasible. I t  also implies that  no feasible solution can be 
found in which xl  = 1, xs = 4 and y is less than 803.4034. 

10 This is an upper bound to the branch value of y which has been obtained by 
ignoring the fact that  yz would be negative a t  this pornt. The true branch value cannot 
exceed 840.8229, but it will be determined exactly only if the branch becomes active. 
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As this value of y is higher than any remaining on the list, this is the op- 
timum solution. 

APPENDIX 1 

COMPUTATIONAL ,METHOD 

The starting point for both methods described in this appendix is the solution of 
the linear programming problem described by (I) ,  (2), (3') and (4) of Section 4, here- 
after referred to as the initial problem. The integer restrictions (3) must now be con- 
sidered. Since the two-dimensional set enclosed by min xk and max x k  in the ( x k ,  y)-
plane is convex i t  follows that the first points for which y must be determined are 
the integers on either side of the (nonintegral) value of one of the x variables. In  
principle, the routine will terminate irrespective of the x variable selected. But the 
limited experience afforded by the solution of two moderate size problems (Appendix 2) 
suggests that  the criterion for selecting x, has a considerable effect on the amount of 
computation needed. At first, x, was chosen so as to maximize the decrease in y a t  
each step, which meant that the max and min functions had to be traced out for every 
x variable which was still nonintegral. As the calculations proceeded, it appeared that  
a more economical criterion (from the computational viewpoint) a t  each step would 
be to select the x variable which was furthest from an integer, and this rule was used in 
the remainder of the work. Another criterion which, however, has not been tested 
chooses the largest x variable with the object of making the sum of the constraints 
as large as possible. In  some sense i t  must be true to say that  the greater the sum 
of the constrained variables a t  any stage the more restricted is the remaining linear 
programming problem, and therefore the easier it is to solve. 

In  the example worked y was determined for the points: 
1. intersection of min xlwith xl = I ;and 
2. intersection of max xl with xl = 2. 

Method 1 .  These two values of y are found by solving the two linear programmes 
obtained by adding each of the above integral constraints in turn to the initial problem. 

Additional constraint Y 
XI  = 1 1051.8952 
XI = 2 770.6983 

The remaining points on the tree of Figure 6 can be found similarly. In  all, the 
nine linear programmes which have to be solved are : 

1. Constraints (2), (3') and (4) Yo 
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2. Constraints (2), (3') and (4) and xl = 1 Y l  
3. Constraints (2), (3') and (4) and xl = 2 
4. Constraints (2),  (3') and (4) and xl = 0 
5. Constraints (2),  (3') and (4) and xl = I ,  x3 = 4 y2 
6. Constraints (2), (3') and (4) and xl = 1, ~3 = 5 (not feasible) 3 
7. Constraints (2), (3') and (4) and xl = 1 ,  x3 = 3 
8. Constraints (2), (3') and (4) and xl = 1 ,  x3 = 4, x2 = 0 SOLUTION 
9. Constraints (2), (3') and (4) and xl = 1 ,  x3 = 4, xz = 1 (not feasible) 3 

The result for programme 6 indicates that  max xs (with xl = 1 )  is a falling function 
of y. The intersection of max x3 with x3 = 4 lies on the lower boundary of the (12-2)- 
dimensional set of feasible solutions for which xl = I ,  xs = 4. I t  is represented by the 
point (4, y,) in Figure 7. Since y cannot be lowered below this unknown value y,, 

whilst still keeping x3 fixed a t  4, the point xl = 1 ,  xs = 4, y = y, cannot be used as a 
starting point for exploration. Thus the fact that this method does not evaluate yu is 
irrelevantll. 

This method has the advantage that  i t  uses only existing standard linear program- 
mingroutines. If the time required to reach a solution is of paramount importance, e.g., 
for regular computer work or in desk computations, this method is slower than that 
based on parametric linear programming which is described in Method 2, below. 

Method 2. The functional hyperplane is introduced as an additional (variable) 
constraint. This adds an extra row and column to the inverse basis, the entries in 
which can be easily deduced from the corresponding inverse basis in the initial problem. 
In  the latter, let the first tableau be written in the form: 

11 If this value were desired, it could be obtained by minimizing y subject to the 
the restrictions (2), (3') and (4) and the imposed constraints xl = 1 ,  x3 = 4. 
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( * . I )  

functional row 

where I ,  is the m x m unit matrix, A is a possible basis, and, allowing for the appro- 
priate reordering of the columns : 

If the entire matrix (A.1 ) is premultiplied by 

the result is: inverse 
basis 

functional row 

When y is added as a constraint, the basis corresponding to A for the enlarged pro- 
blem is : 

with inverse 

A unit column, with unit entry in the functional row is inserted in (A.1)between the 
inverse basis and the b column. The functional row now will have the form of the 
new constraint if the entry c~ is put equal to the current value of y ,  i.e., if A is the 
current basis for the initial problem, cb = c>A-lb. 

The convex set of feasible solutions to the initial problem is governed by the struc- 
ture of the first m rows of (A.I ) .  In  the enlarged problem, the augmented matrix (A.I )  
plays the same role, and the result of multiplying this by (A.3)is: 
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inverse basis 

Provided that  A yielded a feasible solution to the initial problem, (A.4) represents 
a feasible solution to the enlarged problem for which as yet no functional has been 
specified. In  particular, if A is an optimal basis for the initial problem, the entries 
in the bottom row of (A.4) which, with the exception of the elements in the last 
column of the inverse basis and in the b column, are obtained by multiplying the 
functional row of (A.2)by -1, are all nonpositive. 

Throughout the calculation it is necessary to compute only the inverse basis and 
those rows of the rest of the tableau associated with the variable going out of the 
basis and with the x variable for which the functions min x and max x are currently 
being computed. In the larger problems summarised in Appendix 2, this represents a 
great economy over working with the whole tableau. 

In the numerical example, the inverse basis and b column of (A.4)a t  the end of the 
solution of the initial problem are: 

Columns II and Izof the inverse basis correspond to the real variables ys and y4, 
respectively, and a t  a later stage may enter the basis a t  a positive level. The remaining 
two columns correspond to disposal variables on equality constraints and therefore 
may appear in the basis only a t  zero level. 

The next steps in the calculations consist of tracing the functions min x and max x 
by means of parametric programming. 

M i n  xl. In the enlarged problem, let the functional be xl and let the aim be to 
minimize this functional. The xl row becomes the functional row and the condition for a 
minimum will be satisfied if all the relevant elements in this row are negative. I t  can 
be seen that this requirement does not apply to columns 1 3  and 1 4  neither of which is 
a possible candidate for coming into the basis. The entire xl row12 is calculated by 
premultiplying the matrix 

1 2  Note that elements outside the inverse basis are not required to a very high 
degree of accuracy-only sufficient to enable a clear choice of a new basic variable 
to be made by the ratio rule given below. The only exception is the column correspond- 
ing to the new vector to be brought in when a change of basis has to be made, all the 
elements of which must be calculated to the same degree of accuracy as the inverse. 
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by the xl row vector of the inverse 

[0.0125 -0.0038 0.0088 01 
to give 

XI XZ x3 Y1  Y2 ~ 3 ( = I l )  y4(=12) 
[I 0.524 0 0 0.334 0.0125 -0.0038] 

Not all the entries are negative, so a basis change is required. The variable which is 
to go out of the basis is 14, the elements of which are13 

The variable chosen to come in is y~ since this ensures that  all elements in the new 
xl row except the 1 4  column are negative.14 When this change has been made, the I4 
column and the b column are: 

If now y is decreased by d units, the elements bz of the b column will alter according 
to the rule, 

and, in particular 

xT = 1.4960 - d(O.0044) . 

Therefore the value yl(1) of y for which the line xl = I intersects the function min xl, 
cannot exceed 

If any of the other variables should become negative for some value of d smaller 
than d,i,, a change of basis will be required. The variable which is brought in as the 
result of a change of this type is chosen so as to maintain the optimal character of 
the functional row by a rule of the same nature as that described in the footnote. From 
the convexity of the set in Figure 5, such a change reduces the gradient of min xl as a 
function of y and yl(l) would then be less than 1051.8952. 

The remaining elements of the inverse basis and the b column need be calculated 
only if i t  becomes necessary actually to carry out the change of basis concerned. 

If the entry in the 1 4  column and xl row had been negative, this would have demon- 
strated the impossibility of reducing xl as a function of falling y and would mean that 
the constraint xl = I was not feasible. 

13 From the solution to  the initial problem. 
l4The variable chosen is the one for which - x ~ ~ / I ~ ~reaches its maximum value. 

Similarly, if max xl were under consideration, the choice would be governed by the 
maximum value of X ~ ~ I I ~ ~ .  
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A similar method is used to determine the value of y for the max xl function. The 
value of y corresponding to xl = 0 has also to be determined. An upper bound to it 
can be obtained from the min xl calculation: 

Since neither yl nor xz has decreased to zero for this value of y ,  this is exactly the 
value of y for which xl = 0. 

yl is selected as the starting point for Step 4 and the complete inverse basis and b 
column for y = y1 = 1051.8952 are worked out. An extra constraint, xl - F = 1 ,  
where F is a disposal variable which must always be zero, is now added to the pro- 
gramme. Theoretically this adds a row ( F )and a column ( I s )to the inverse basis. The 
variable F (which is a t  present in the basis) plays the same role a t  this stage of the 
calculations as 14 did in the previous stage. I t  can easily be shown that apart from 
the column 15 the elements in the F row of the inverse basis are exactly the same as 
the elements of the xl row and therefore as soon as any basis change is made, the 
elements of the xl row in ~olumns I1 to 14 vanish. I t  is now impossible for any basis 
change to affect the xlrow and hence both it and the column 15 may be dropped from 
the basis. The xl column in the main part of the tableau may also be deleted, since 
xl is now constrained to be equal to one. 

In  the succeeding steps of the calculation, the same method is employed to trace 
out the functions min x and max x, care being taken always to work down from the 
greatest value of y which is still compatible with the constraints so far imposed. 
In  the small numerical example, the solution was found without having to examine 
more than one branch of the tree, but in general this will not occur nor, of course, is 
there any guarantee that  a solution exists. 

Towards the end of a calculation following the second method, it may be helpful 
to use the first method to investigate some of the branches.The value of the first 
method is most apparent when the integral constraints have reduced the entries in 
the b column so much that  a solution can almost be found by inspection. 

Although the dual method for adding constraints used by Markowitz and Manne [6] 
can be adapted to the requirements of this algorithm, it appears to involve more work 
than the parametric method described above. 

APPENDIX 2 

The methods described in this paper have been tried out on the data published by 
Markowitz and Manne [6] as a hypothetical production problem. The problem they 
solved is : 

Maximize c'x = y , 
subject to Ax 5 b , 

x , = O o r l ,  

where A is a 6 x 2 1 matrix of technical coefficients, all of which are positive integers 
ranging from 3 to 99. 

An alternative problem restricts the variables only to being nonnegative integers: 

xj = any nonnegative integer. 
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We have solved both problems, but have chosen to present only the second in any 
detail since it is the more general problem. The main description of the calculations is 
the "tree" figure (Figure 8, p. 5181, the text being in the nature of an annotation to 
the tree. 

The solution of the primary problem is: 

Maximize c'x = y , 
subject to Ax 5 b , 

x 2 0 ,  
yo = 643.99,15 
xg 1.77, 
~ 1 1= 2.54, 
X ~ Z= 1.04, 
~ 1 3= 2.06, 

= 0.97. 

I t  will be seen that  xll is the value furthest from an integer. In fact the min and max 
functions were computed for all 5 variables and xll provided the least upper bound. 
Thus in this case the a priori selection of xll as the variable to be considered would 
have given the same result as considering all variables. This is not always the case, 
however, and on the figure some y's will be found marked with an asterisk showing 
that  in the following step the x variable is not the one which would have been chosen 
following the "furthest from an integer" rule. During the later calculations this rule 
was followed, and the min and max functions were not obtained for every x variable. 
The calculations followed the procedure described as Method 2 in Appendix 1 except 
that  where the b values had been reduced so much that  only a few integer solutions 
were possible (i.e., when the sum of the constraints reached 5, 6 or 7) Method 1 was 
tried. Since, in general, Method 1 discovers an interior point of the convex set enclosed 
by the min and max functions, successively higher integer values of the x variable 
being examined must be explored until an integer is reached for which the constraints 
are no longer feasible. These nonfeasible branches are omitted from Figure 8. The 
other branches for which Method 1 was used are marked M.1. and for these the high- 
est integer solution compatible with the constraints has been determined and is 
shown. The y values on the other branches are upper bounds on the value of the 
functional, obtained by Method 2.16 

Two optimum solutions were discovered a t  y = 594. These are: 

I st s u l ~ t i o v ~  2nd solution 

15 Results have been rounded to two decimal places. 
16 There may be other nonfeasible constraints for which an upper bound is shown. 

This merely means that  the Method 2 calculation has not been taken far enough to 
show up the infeasibility. 
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I t  will be seen from the tree that  the solution of the problem involved 37 steps 
(apart from the primary solution). This involved exploring 74 7 x 7 inverse bases, in 

> x z 0 = 1
~ 1 5 - 0  	 X2& xz2=1 

X " W > x,, = 1
x2o=o 

x,, = L x , , = o  
> x , s - 2  

r- > x z 0 = 2  
d X , Z 3  

Solution x.=2 (xli=2,xl,-1) 
x t 5 = 1  X'2 X,, =1 xI6 > x , - 1  

x = o  x33 x,,=1 


, x,,-1 *x3  

T X h  

-Xlr-O 	 > x . - o  
> X 2 0 = 0  
>XI , -3  

. X,5 = 0 

>x , , -o  
,xl5=1 

A x , a 4  
A X , ,  3 4  

5 8 6 . M l . x 1 2 = 3  
x,$=O 8"d51 558.M.1.xI2=2 

x , = 3  .........' x i a e x x  3 . 
x,z -1 .................:'I 592 M.1. xip=2 
,Xpp= 1 

x , ,  2 3 
x,,=o ........... 564.M.1. x, ,=2  

616 XI3 = 1 

I I , x e = 2  
615 605 595 
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25 of which only the y column was needed, and using Method 1 39 times, including 19 
times in which the constraints were not feasible. 

''0 OR 1 "  PROBLEM 

The primary problem in this case was : 

Max c'x = y , 
subject to Ax 5 b , 

O < X < l .  
Dantzig's method for bounded variables [2] was used so that here again the inverse 
bases were of order 7 x 7. The primary solution is 

I t  will be noted that even in the primary solution there are 5 variables already a t  
the level one, and it remains true throughout the calculation that a t  each y value there 
are not only variables which are constrained to be equal to zero or one, but also 
others which are a t  the value one because of the constraints xl 5 I .  This has the un- 
fortunate result that  Method 1 cannot be used even when there are seven variables 
a t  the unit level, since they are not constrained to be equal to one, and therefore 
cannot be subtracted from the b column. Indeed a t  one point when approaching an 
integer solution a t  y = 538 (the optimum being y = 540) every unused x variable 
had to be successively constrained to be equal to zero before the upper bound of y 
on that  branch could be pushed below 540. This is not quite so disastrous as i t  sounds 
since in this situation one simply explored a series of bases with only two variables 
other than slack variables. 

In summary there were 53 steps in this calculation. The total number of different 
bases was 165 in which 2 had 6 slack variables, 42 had 5, 63 had 4, 41 had 3, 15 had 2, 
and 2 had only I .  In 42 of the bases only the y column was computed. 
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It appears to us almost certain that a different criterion for selecting the x variable 
a t  each step would have considerably reduced this work. In particular it appears 
that  one should select not merely the greatest noninteger variable but the greatest 
unconstrained variable. In the problem starting with bounded variables, in other 
words, one would start by selecting (arbitrarily) xa, xs,xll,xlz, or xis and investigate 
the effect of reducing i t  to zero. The other side of the fork ~vould be constraining i t  to 
be equal to unity, and hence would not reduce y a t  all. The start of the tree, therefore, 
would appear as: 
The testing of this hypothesis, however, will be postponed until it is programmed for 
an electronic computer. 
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