
Geophysical Journal International
Geophys. J. Int. (2018) 212, 1389–1397 doi: 10.1093/gji/ggx487

Advance Access publication 2017 November 8

GJI Marine geosciences and applied geophysics

An automatic microseismic or acoustic emission arrival identification
scheme with deep recurrent neural networks

Jing Zheng,1,2 Jiren Lu,2 Suping Peng1 and Tianqi Jiang2

1State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China.

E-mail: zhengjing8628@163.com
2College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

Accepted 2017 November 7. Received 2017 October 30; in original form 2017 January 30

S U M M A R Y

The conventional arrival pick-up algorithms cannot avoid the manual modification of the

parameters for the simultaneous identification of multiple events under different signal-to-

noise ratios (SNRs). Therefore, in order to automatically obtain the arrivals of multiple events

with high precision under different SNRs, in this study an algorithm was proposed which had

the ability to pick up the arrival of microseismic or acoustic emission events based on deep

recurrent neural networks. The arrival identification was performed using two important steps,

which included a training phase and a testing phase. The training process was mathematically

modelled by deep recurrent neural networks using Long Short-Term Memory architecture.

During the testing phase, the learned weights were utilized to identify the arrivals through

the microseismic/acoustic emission data sets. The data sets were obtained by rock physics

experiments of the acoustic emission. In order to obtain the data sets under different SNRs,

this study added random noise to the raw experiments’ data sets. The results showed that the

outcome of the proposed method was able to attain an above 80 per cent hit-rate at SNR

0 dB, and an approximately 70 per cent hit-rate at SNR −5 dB, with an absolute error in 10

sampling points. These results indicated that the proposed method had high selection precision

and robustness.
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1 I N T RO D U C T I O N

Microseismic or acoustic emission (AE) systems have been fre-

quently used for monitoring the rock mechanics of mining pro-

cesses, petroleum extraction, stability of geotechnical engineering,

and so on (Kendall et al. 2011; Vera Rodriguez et al. 2012). The

locating of microseismic and AE events is the major task taken on

by the current monitoring systems (Kiselevitch et al. 1991; Cheb-

otareva et al. 2008; Kushnir et al. 2013; Kushnir et al. 2014). Re-

gardless of which method is selected, uncertainties in the P- and

S-waves arrival time selections will induce location errors. The au-

tomatic detections of the arrival times of these waves are important

in this area of research (Sabbione & Velis 2013). Meanwhile, the

reliability of the tomographic velocity models is dependent on the

accuracy of the arrival time selections (Diehl et al. 2009).

Currently, the most widely used method is based on the short-

long time window average energy ratio (STA/LTA), which was pro-

posed by Stevenson (1976). This method is a detection algorithm

which was developed based on the differences in the signal and

noise energy. Although the STA/LTA method is very effective for

data at high SNR, it tends to usually miss or misjudge the effect

events for data at low SNR. Meanwhile, there have been difficulties

encountered in the selections of the parameters, such as window

size and threshold, which are the main weaknesses of the STA/LTA

method. In order to improve the performances, the STA/LTA meth-

ods are mainly used in conjunction with other methods. For example,

Allen (1978) proposed the notion of the use of feature functions to

calculate STA/LTA, for the purpose of detecting wave arrival times.

Baer & Kradolfer (1987) modified the feature function on the ba-

sis of Allen’s method, and then proposed a new dynamic threshold

method, in which the feature functions could be achieved by using

one or more non-linear transformations.

The feature functions which are designed in time-domains are

usually based on mathematical statistical methods, such as variance

and higher-order statistical characteristics. The kurtosis and skew-

ness are the mainly used in higher-order statistics. When there are

no signals in the arrival waves, the changes of these characteris-

tics are known to be steady. Otherwise, significant changes in the

arrival times have been observed. Saragiotis et al. (2002, 2004),

Küperkoch et al. (2010), Tselentis et al. (2012), Liu et al. (2014),

Baillard et al. (2014) and Li et al. (2016) applied higher-order

statistics to arrival selections. The feature functions can also be de-

signed in frequency domains. Over the past decade, there have been

many time-frequency methods used for the study of seismic and
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microseismic signals. These methods have included the following:

Hilbert-Huang transform (Wang et al. 2012); S transform (Stock-

well, 2007; Zheng et al. 2013); τ − p transform (Forghani-Arani

et al. 2013); apex-shifted parabolic radon transform (Hargreaves

et al. 2003; Sabbione et al. 2015); fractional wavelet transform

(Zheng et al. 2015), and so on. In recent years, Karamzadeh et al.

(2013), Bogiatzis & Ishii (2015) and Mousavi et al. (2016) have

used wavelet transforms to select the arrival times from seismic

records.

In addition, model-oriented algorithms have also been prolifer-

ating. In recent years, autoregressive (AR) models, along with ar-

tificial neural network (ANN) models, have been widely used. The

Akaike information statistics can measure the shortcomings of an

estimation model (Akaike 1971). Sleeman & Eck (1999) calculated

an Akaike information statistic by constructing an AR model (AR-

AIC). In their study, they divided a seismic record into two models:

a noise model, and a signal model. The boundary between the two

models was the minimum AIC point, which was also the point of

arrival. Sedlak et al. (2013) automatically applied an AR-AIC in

the selections of arrival times for AE data sets.

ANN has a strong ‘fault-tolerant’ and nonlinear fitting ability.

Mc Cormack et al. (1993) proposed the detection of seismic events

based on ANN. Gentili & Michelini (2006) used the kurtosis and

skewness characteristics of seismic data as the input to a neural

network model, in order to train the model to perform the arrival

time selections. Kaur et al. (2013) used the neural network to select

P-wave arrival times. Maity et al. (2014) proposed a new neural

network model based on the general neural networks to automati-

cally select microseismic signal arrival times. The main differences

of the aforementioned methods were that the input data types (such

as AIC value, kurtosis, skewness, and so on) of the neural networks,

as well as the dimensions of the input data, were different. In theory,

the higher the complexity of the parameters for a model was, the

greater the ‘capacity’ of the model was. This suggests that such a

model has the ability to learn more complex features in the data.

However, in reality, the training of a model with very high com-

plexity is very inefficient, and can easily result in over-fitting. An

ANN model which is composed of many hidden layers is difficult

to realize. Also, a general ANN model can only learn the simple

features of data sets. With the arrival of the era of large data, and

the continuous improvements in computer hardware, training effi-

ciency has been significantly improved. Large data play important

roles in solving the problems of over-fitting. Therefore, complex

neural network models, such as ‘Deep Learning’, have attracted in-

creasing attention. Deep learning allows computational models to

learn representations of data through multiple levels of abstraction.

These models are composed of multiple processing layers, in which

the input of each layer is the output of the previous layer. In the ma-

jority of cases, a back-propagation algorithm is used to indicate the

way in which the internal parameters are to be changed. Hinton &

Salakhutdinov (2006) used an unsupervised layer-by-layer training

approach to perform nonlinear dimensionality reductions of large-

dimension data based on the Deep Belief Neural Networks, which

allowed the network model to be fully trained. Graves (2012) used

a sequence labelling method to supervise the training data with a

deep recurrent neural network (RNN). Also, Girshick et al. (2014)

obtained good training optimization based on the Hebbian rule and

multi-scale processing, in order to optimize a 22-layer convolution

network model. He et al. (2016) established a 152-layer depth resid-

ual neural network, in which the recognition performance was found

to be much higher than the traditional artificial feature extraction

algorithms.

The automatic selection and recognition of the arrival times of

microseismic and AE events is significant to the realization of the

automatic processing of massive microseismic and acoustic data.

However, due to the variabilities of the stress waveforms, differences

in the trigger source phases of the rupture sources, and the pres-

ence of various noise interferences, the research studies regarding

automatic recognition and selection methods remain challenging.

In the current study, a method of feature extraction was proposed,

which was based on sequence labelling with RNNs. The proposed

method was tested using AE waveform data from the rock mechanic

experiments of coal samples. The results showed that the proposed

method had the ability to clearly show the arrival features under

different SNR data. It was found that, even when the SNR was

−5 dB, the precision did not sharply decrease, and a result of ap-

proximately 70 per cent could be attained, with an absolute error

in 10 sampling points. Therefore, the results confirmed that this

method had good robustness in the selections of arrival times.

2 R E C U R R E N T N E U R A L N E T W O R K S

The traditional arrival selection algorithms are greatly influenced

by the SNR. In order to ensure the accuracy of the selections, it

is required to manually adjust the parameters. In this study, an

arrival selection method was proposed based on a deep learning

neural network model, for the purpose of solving the problems of

parameter adjustments at different SNR using the powerful ‘fault

tolerance’ of the model. In this section, RNNs with Long Short-

Term Memory (LSTM) as the hidden layers were first introduced.

Then, the training of these networks was discussed.

2.1 The theory of recurrent neural networks

As shown in Fig. 1, for the standard RNNs, not only the neurons in

the layers were fully connected, but also the neurons in the layers

were connected to each other. By assuming that the network model

inputs a microseismic record vector x = (x1, x2, ..., xT ), a standard

RNN computes the hidden vector sequence h = (h1, h2, ..., hT ),

and the output vector sequence o = (o1, o2, ..., oT ), by iterating the

following equations from t = 1 to T:

ht = H (Wxh xt + Whhht−1 + bh) (1)

ot = Whoht + bo, (2)

where W denotes the connection weight matrix (for example, Wxh

represents the connection weight matrix of the input neuron and

Figure 1. Recurrent neural networks.
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Figure 2. Long Short-Term Memory cell.

hidden neuron nodes); b denotes the bias vectors (for example, bo

represents the output bias vector); and H is the hidden layer function.

Also, H is usually a logistic function: H (x) = 1/(1 + e−x ).

Deep RNNs can be created by stacking the multiple RNNs’ hid-

den layers on top of each other, with the output sequence of one

layer forming the input sequence for the next. Then, by assuming

that the activation functions H of all the hidden layers are the same,

the output sequence hn of the hidden layer can be obtained from

the iterated n = 1 to N , and t = 1 to t = T using the following

equation:

hn
t = H (Whn−1hn hn−1

t + Whn hn hn
t−1 + bn

h ), (3)

where h0 = x is set. Then, the output sequence of the network model

can be obtained by the following equation:

ot = WhohN
t + bo, (4)

where N is the total number of hidden layers in the network model;

Why represents the connection weight matrix of last hidden neuron

and output neuron nodes; and hN represents the last hidden vector

sequence.

Theoretically, the traditional RNNs can handle any length of the

sequence. However, in practice, the RNNs can only save the first few

moments of the current moment of influence. Therefore, the time

after the impact of the previous will be weaker, due to the vanishing

gradient problem of the RNNs (Bengio et al. 1994). Hochreiter &

Schmidhuber (1997) proposed a long short-term memory model

in which information can be stored through the memory cells. A

complete AE event takes a long period of time in a sequence. Also,

the amplitude of an AE event has a basic feature, in which the

amplitude gradually becomes larger, and finally becomes gradually

smaller, from the beginning of the arrival. In other words, AE events

are linked in time. However, the output of traditional RNNs at a given

time can only affect the several moments which are adjacent to it.

Therefore, a complete sequence of AE events cannot be efficiently

extracted in time. The multiplication gate of an LSTM allows cells

to store and receive longer information prior to an event, which not

only alleviates the problem of gradient dispersion, but also allows

for the more efficient extraction of the characteristics of a time

series. As shown in Fig. 2, considering that an LSTM is the hidden

layers of the RNNs (Graves 2012), and the hidden layer function H

of the RNNs, it can be defined by the following functions:

it = σ (Wxi xt + Whi ht−1 + Wci ct−1 + bi ) (5)

ft = σ (Wx f xt + Wh f ht−1 + W c f ct−1 + b f ) (6)

ct = ft ct−1 + it tanh(Wxcxt + Whcht−1 + bc) (7)

ot = σ (Wxoxt + Whoht−1 + Wcoct + bo) (8)

ht = ot tanh(ct ), (9)

where σ represents the logistic function: σ (x) = 1/(1 + e−x ); and

i, f, o and c are the input gate, forget gate, output gate and cell

activation vectors, respectively, all of which are the same size as the

hidden vector h; and tanh() represents a hyperbolic tangent function.

The weight matrices from the cell to gate vectors (Wci ) are diagonal.

Therefore, element m in each gate vector only receives input from

element m of the cell vector.

2.2 Model learning

This study used the method of sequence labelling to mark the raw

microseismic/AE signals. As shown in Fig. 3, two events occurred

in a record at the same time, and the sequence labelling was used to

mark the arrival point as 1, while the others were labelled as zero.

It should be noted that the sequence labelling was marked as 1,

which included the arrival point and duration of the signal, and the

remainder were marked as 0. It was found that the labelling could

be designed according to the needs. In this study, y was defined as

the target sequence, and the microseismic/AE signal was defined as

the input sequence.

Since the tag sequence in this study only contained ‘zero’ and

‘non-zero’, a logistical regression function, or soft-max function,

could be used in the model. Then, by assuming that a logistical

regression model was used, the hypothesis function for the model

was as follows:

ŷi =
1

1 + exp (−(WoL )T ot )
(10)

where W is the connection weight matrix between the output layer

and the logical regression layer. Then, it was assumed in this study

that the target sequence of the model was y = (y1, y2, ..., yT ) ,yi ∈

{0, 1}, and L was used to measure the distance between ŷ and y. An

RNN can be used to map an input sequence to an output sequence

of the same length. Therefore, the total loss associated with the

sequence will be the sum of the losses of all of the time steps. In

this study, the loss was defined as:

L = −
1

T

[

T
∑

i=1

yi log ŷi + (1 − yi ) log(1 − ŷi )

]

, (11)

where T is the total length of the sequence. It was determined that

the loss function for the soft-max was similar to the logistics. Next,

the gradient of each network model parameter was obtained using

a back-propagation through time (BPTT) algorithm. The derivation

of the BPTT is detailed in Appendix A.

Since the parameters of an RNN are the sharing mechanism, the

network model parameters were updated by a gradient descent as

follows:

θ̂ = θ − ∇θ L (12)

where θ̂ represents the updated parameter; θ represents the param-

eter before updating; and ∇θ L represents the gradient of the loss L

to the parameter θ . The parameters included bo, bh , Who, WoL and

Wxh .
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Figure 3. Sequence labelling.

3 E X P E R I M E N TA L P RO C E S S A N D

A NA LY S I S

In this experiment, an RTR high-temperature and high-pressure

rock comprehensive test system (GCTS, Geotechnical Consulting

and Testing Systems, USA) was used to finish the AE experiment

at room temperature. Due to the fact that further ultrasonic testing

was required in order to have a regular geometrical profile of the

coal sample, the petro physical test standard sample size was used

for the coal sample processing. The diameter of the specimen was

approximately 50 mm (actual size: 50.04 mm), and the height was

approximately 100 mm (actual size: 98.14 mm). The confining

pressure was 2 MPa, and the axial compression was increased until

the coal produced significant rupture.

3.1 Training data

The training iteration time of the RNNs’ network model was pro-

portional to the length of the input data. The longer the data length

was, the longer the iteration time required. The data length was

set as 1024 in order to quickly train the model, and also include a

complete AE event in a data sequence. In this study, through the

experimental process, a total of 163 248 AE records were collected.

Each record included data with lengths of 1024.

In order to obtain the distribution of the total data set, all of

the sequences needed to be manually selected, which proved to be

undoubtedly very inefficient. Then, for the purpose of improving

the experiment’s efficiency, this study randomly extracted 10 000

sequences from the 163 248 sequence for wavelet collection. It was

assumed that 10 000 sequences roughly reflected the distribution

of the overall sequences. For the solution to the problem of data

imbalance, different wavelets generated by the AE events were ran-

domly chosen from the 10 000 sequences, and new data sets were

generated by random translating. After these steps were completed,

one million sequences had been obtained. The corresponding label

for each sequence was a binary vector of the same length as the

sequences. Then, noise was randomly added to each of the one mil-

lion sequences , and the SNR of the data was controlled between

−5 and 5 dB.

The one million sequences were divided into training data sets

and test data sets, and 80 per cent were used as training data sets for

training the RNN models, while 20 per cent were used for testing

the performances of the RNN models. This study also tried different

proportions of the training sets and test set assignments. The results

showed that the larger the training data set was, the better the test

results would be. However, a small percentage of the test set was

found to be not representative. As shown in Fig. 4, the horizontal

axis was the ratio of the training data set to the total data set, and the

Figure 4. The relationship between proportion of training data set and

picking accuracy.

vertical axis was the accuracy rates of the selections. The selection

results were considered to be accurate if the differences between the

arrivals and the artificial selection results were within ten sampling

points.

3.2 Training of the RNNs models

In this study’s experiment, seven LSTM layers were stacked on

top of each other, which formed a model which was capable of

learning high-level temporal representations. The length of the input

sequence, number of hidden layer nodes and length of the output

sequence were all 1024. The optimization was a stochastic gradient

descent (Srivastava et al. 2014), and the dropout rate was 0.5.

The output of the RNN model was obtained after the model train-

ing was completed. Then, in order to verify the performance of the

proposed method, an STA/LTA method was chosen for compari-

son purposes. The basic principle of an STA/LTA is as follows: the

changes in the amplitude of waveform data are reflected by the ratio

between the average of the energy in the short-time window, and

the average of the energy in the long-time window. The value of the

STA is much larger than that of the LTA when an arrival is coming.

When the ratio is greater than a pre-set threshold, it can be assumed

that the point is the arrival. Then, by choosing two sequences, the

output features of the different selection methods were obtained, as

shown in Fig. 5. Fig. 5(a) contains only one event, and Fig. 5(b)

contains multiple events.
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Arrival identification of multiple events 1393

Figure 5. The arrival feature curve of different pick-up methods. (a) The different feature curves of single event; (b) the different feature curves of multiple

events.

In this study, by using an STA/LTA feature function, the ob-

tained feature curves were found to effectively highlight the arrival.

Also, even in the multievent selection, an improved highlight of the

characteristics of the arrival was achieved. However, when multiple

events occurred with large amplitude differences and small inter-

vals in the waveform record, the events with smaller amplitudes

and following occurrences were correspondingly smaller or even

undetectable in the feature curve, as detailed in Fig. 5(b). There-

fore, in order to show the results more clearly, these events are

detailed in Figs 5(b) and 6. The curve on the bottom is the output

of the RNNs. The curve highlights the characteristics of the arrival,

and the characteristics of the arrivals were observed to have better

anti-interference abilities.

3.3 Experimental comparison

In the following section, traditional arrival selection methods

(STA/LTA), along with this study’s proposed method, were used

to obtain the arrivals with different SNR data. Six of the AE

sequences which were not included in the training and test data

set mentioned above were selected from different time periods, in

order to verify the performances of the RNNs models. The six AE

sequences are shown in Fig. 7. The arrivals were both manually

selected, and selected by auto-pickers, as shown in Table 1. The

numbers 1–3 in Table 1 correspond to the three events detailed in

Figs 7(a)–(f), and the selections are given in the samples.

In this study, it was assumed that the six AE sequences were noise-

free signals, and Gaussian white noise was added using Matlab

mathematical processing. After the noise was added, the SNR of

the new sequences was controlled the levels of 10, 5, 0, and −5 dB.

It should be noted that the signals were not noise-free, and the SNR

was lower. The data for each SNR level were obtained by randomly

adding the noise of the corresponding intensity to the original data.

In order to make this stochastic process statistically significant,

the data of each signal-to-noise ratio were obtained by randomly

adding the noise to the original data 100 times using a Monte

Carlo method. The 100 sequences were picked up by the STA/LTA

method (with the short time window, long window, and threshold of

the STA/LTA method set in advance), and RNNs method (with the

RNNs model pre-trained as described in Section 2). Then, the AE

sequences outside the training data set were input into the trained
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Figure 6. The details for Fig. 5(b).

model. The model output the corresponding feature of the sequence,

and finally obtained the arrival from the feature curve by setting the

threshold and minimum intervals between different events. These

100 sequences were selected by the methods, and the results of the

selection and artificial picking were compared.

In this study, in order to evaluate the performance of the proposed

method, the hit-rate and false-rate of the proposed method were

compared with the STA/LTA method. The hit-rate and false-rate

were calculated using the following equations:

Hit − rate = N/M

False − rate = (K − N )
/

M,
(13)

where N represents the number which had been correctly selected

by the auto-pickers, M is the total number of events, and K is the

total number which had been selected by autopickers. It should be

noted that the events recognized by the autopickers were treated as

being correct only if the differences between the picked-arrivals and

manual results were no larger than 10 sample points. The hit-rate

and false-rate are recorded in Tables 2 and 3.

As shown in Table 2, with the decrease of the SNR, the hit-rates

of both methods were decreased. However, the proposed method

was able to achieve an accuracy of approximately 70 per cent, even

when the SNR was −5 dB. The hit-rate was observed to be higher

than the STA/LTA at all of the SNRs, and was more robust.

4 D I S C U S S I O N A N D C O N C LU S I O N S

The results of the experiments detailed in Section 3.2 showed that

the characteristics of the arrivals using the RNNs had better anti-

interference abilities. However, the RNNs’ model training required

a large number of data sequences with labels, which meant that it

required a certain amount of time to select the artificial waves in

order to obtain accurate arrival labels. It was found that the most

important point in identifying a series of waveforms was that, when

there was not an AE event, the RNNs model could easily misjudge

the two points with large amplitude differences. In order to solve

this problem, this study modified the label vector to give duration

to the AEs. In the study, the duration was set as 13. For example,

if the original only marked the arrival point 210 as 1, this was now

extended to the point within the range of 204 to 216, which was

equivalent to the addition of some further priori information.

The results of the experiments detailed in Section 3.3 showed

that the hit-rate of the RNNs was higher than those of the STA/LTA

method. However, the false-rate was also higher than the STA/LTA,

especially at a low SNR. This was determined to be due to the fact

that the data sets were not large enough. Also, the wavelets which

were required to generate the training data were chosen manually,

which resulted in the wavelets being incomplete. All of the afore-

mentioned reasons caused the model to overfit. In order to solve

these problems, this study required more experience, along with

the collection a larger amount of data, and more in-depth training

of the models. However, through this study’s analysis and testing
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Arrival identification of multiple events 1395

Figure 7. Testing sequences. (a) Test sequence 1; (b) test sequence 2; (c) test sequence 3; (d) test sequence 4; (e) test sequence 5; (f) test sequence 6.

Table 1. Arrivals picked by different methods.

Artificial STA/LTA The proposed method

Arrival point Arrival point Arrival point

NO. SNR (dB) 1 2 3 1 2 3 1 2 3

1 raw 260 370 474 257 369 472 260 370 473

2 raw 290 445 766 286 441 763 288 444 767

3 raw 257 808 904 254 804 899 257 808 905

4 raw 254 360 470 255 363 474 258 362 476

5 raw 256 363 470 255 362 474 258 364 469

6 raw 259 367 478 255 363 470 261 369 479

Table 2. Hit-rate and False-rate evaluated by different methods.

Hit-Rate

Method SNR (dB) sequence 1 sequence 2 sequence 3 sequence 4 sequence 5 sequence 6 mean

10 1.00 1.00 0.98 0.94 0.90 0.98 0.97

STA/LTA 5 1.00 0.99 0.99 0.78 0.80 0.80 0.89

0 0.88 0.99 0.93 0.66 0.70 0.67 0.81

−5 0.37 0.56 0.42 0.23 0.41 0.46 0.41

The proposed method 10 1.00 0.99 1.00 0.97 1.00 0.85 0.97

5 1.00 0.93 1.00 0.90 1.00 0.79 0.94

0 0.94 0.84 0.95 0.81 0.90 0.74 0.86

−5 0.81 0.62 0.68 0.69 0.72 0.63 0.69

experiences, it was found that deep learning methods such as RNNs

can be effectively used to recognize the AEs. Therefore, in the fu-

ture, researchers should continue the study of deep learning methods

such as RNNs.

In the current research study, an algorithm to select the arrivals

of microseismic and AE events based on deep RNNs was proposed.

This novel method contained three major steps for arrival selection

as follows: (1) the conversion of the arrival selection tasks into a
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Table 3. False-rate evaluated by different methods.

False-rate

Method SNR (dB) sequence 1 sequence 2 sequence 3 sequence 4 sequence 5 sequence 6 mean

10 0.00 0.00 0.03 0.01 0.01 0.06 0.018

STA/LTA 5 0.00 0.01 0.01 0.00 0.00 0.01 0.005

0 0.01 0.00 0.00 0.02 0.01 0.00 0.007

−5 0.01 0.03 0.01 0.19 0.04 0.02 0.005

The proposed method 10 0.00 0.01 0.00 0.01 0.00 0.00 0.003

5 0.00 0.07 0.00 0.02 0.00 0.00 0.015

0 0.01 0.16 0.00 0.03 0.03 0.00 0.038

−5 0.03 0.28 0.13 0.05 0.10 0.09 0.113

sequence labelling task; (2) the training of the model to update the

weight parameters using an error back-propagation through time

algorithm. The entire network parameter could then be optimized

with a gradient descent, and a serial annotation model could be built

using an RNN; (3) finally, the raw waveform signal was input into a

trained network model, and then the model output a feature vector

with an obvious arrival time.

In this study, experiments regarding AE signals were carried

out using both the traditional and proposed methods based on the

measured AE data. The results revealed the following: (1) in the

conventional method, the STA/LTA had the highest selection ac-

curacy in the raw signal. However, it relied heavily on the manual

adjustment of the parameters; (2) the misjudgments and hit-rates

of the proposed method were larger than those of the STA/LTA

method, which indicated that the precision of the proposed method

was higher; (3) the false-rate of the proposed method was larger

than that of the STA/LTA method, which indicated that the data set

was not complete enough, and that there was a possibility that the

model was overfit.
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A P P E N D I X A

First, recursion begins at the node where the final loss occurs:

∂L

∂L t

= 1. (A1)

The output ot is taken as a parameter of the logistic regression

function, and the gradient ∇ot L on the outputs at time step t is as

follows:

∇ot L =
∂L

∂ot

=
∂L

∂L t

∂L t

∂ot

= ŷt − 1{yt = ŷt }, (A2)

where 1{yt = ŷt } is the indication function, the expression in braces

is true, then the value is 1, otherwise it is 0. Next, we start from the

end of the sequence. At the last time step τ , hτ has only oτ as the

successor node, so its gradient is calculated as follows:

∇hτ
L = (Who)T ∇oτ

L , (A3)

where (Who)T represents the transposed matrix of the connection

weight matrix between the hidden layer node and the output layer

node. Next, iterate from t = τ − 1 to t = 1 and back-propagate the

gradient through the time step. Since ht (t < τ ) has two subsequent

nodes, ot and ht+1, its gradient is calculated as follows:

∇h t L =

(

∂ht+1

∂ht

)T

(∇ht+1
L) +

(

∂ot

∂ht

)T

(∇ot L)

= (WoL )T (∇ht+1
L) diag(1 − (ht+1)2) + (Who)T (∇ot L), (A4)

where diag(1 − (ht+1)2) represents the diagonal matrix containing

the elements 1 − (ht+1)2. By gradient back propagation, the remain-

ing parameters are given by

∇bo L =
∑

t

(

∂ot

∂bo

)T

∇ot L =
∑

t

∇ot L (A5)

∇bh
L =

∑

t

(

∂ht

∂bh

)T

∇ht L =
∑

t

diag(1 − (ht )
2)∇ht L (A6)

∇Who
L =

∑

t

(

∂L

∂ot

)

∇Who
ot =

∑

t

(∇ot L)(ht )
T (A7)

∇WoL
L =

∑

t

(

∂L

∂ht

)

∇WoL
ht

=
∑

t

diag(1 − (ht )
2)(∇ht L)(ht−1)T (A8)

∇Wxh
L =

∑

t

(

∂L

∂ht

)

∇Wxh
ht =

∑

t

diag(1 − (ht )
2)(∇ht L)(xt )

T ,

(A9)

where ∇bo L is the gradient of the loss L to the output layer bias

vector bo; ∇bh
L is the gradient of the loss L to the hidden layer

bias vector bh ; ∇Who
L represents the gradient of the loss L to the

connection weight matrix Who of the hidden layer and the output

layer; ∇WoL
L represents the gradient of the lossL to the connection

weight matrix WoL of the output layer and the logical regression

layer; ∇Wxh
L represents the gradient of the loss L to the connection

weight matrix Wxh of the input layer and the hidden layer.
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