
 Open access Journal Article DOI:10.1007/S10257-016-0321-Z

An automatic model-to-model mapping and transformation methodology to serve
model-based systems engineering — Source link

Tiexin Wang, Sébastien Truptil, Frederick Benaben

Published on: 01 May 2017 - Information Systems and E-business Management (Springer Berlin Heidelberg)

Topics: Model transformation, Model-based systems engineering, Model-driven architecture, Process (engineering) and
Transformation (function)

Related papers:

 Applying Generic Model Management to Data Mapping.

 A Models-to-Program Information Systems Engineering Method.

 Context-driven model refinement

 Enterprise Architecture Model Transformation Engine

 How to Modify on the Semantic Web

Share this paper:

View more about this paper here: https://typeset.io/papers/an-automatic-model-to-model-mapping-and-transformation-
detpzr8k2r

https://typeset.io/
https://www.doi.org/10.1007/S10257-016-0321-Z
https://typeset.io/papers/an-automatic-model-to-model-mapping-and-transformation-detpzr8k2r
https://typeset.io/authors/tiexin-wang-2p3bgf06cq
https://typeset.io/authors/sebastien-truptil-2jr0az50ly
https://typeset.io/authors/frederick-benaben-7sm5jhyzb7
https://typeset.io/journals/information-systems-and-e-business-management-2fjex1g3
https://typeset.io/topics/model-transformation-14pedqsf
https://typeset.io/topics/model-based-systems-engineering-1sh6nbfu
https://typeset.io/topics/model-driven-architecture-1bxx1ars
https://typeset.io/topics/process-engineering-3k6ow48x
https://typeset.io/topics/transformation-function-2pm6tvu7
https://typeset.io/papers/applying-generic-model-management-to-data-mapping-28ifv1eaqe
https://typeset.io/papers/a-models-to-program-information-systems-engineering-method-jqz1ua49jj
https://typeset.io/papers/context-driven-model-refinement-2mz9f7vcox
https://typeset.io/papers/enterprise-architecture-model-transformation-engine-49gb6dwslv
https://typeset.io/papers/how-to-modify-on-the-semantic-web-4yybons4fs
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/an-automatic-model-to-model-mapping-and-transformation-detpzr8k2r
https://twitter.com/intent/tweet?text=An%20automatic%20model-to-model%20mapping%20and%20transformation%20methodology%20to%20serve%20model-based%20systems%20engineering&url=https://typeset.io/papers/an-automatic-model-to-model-mapping-and-transformation-detpzr8k2r
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/an-automatic-model-to-model-mapping-and-transformation-detpzr8k2r
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/an-automatic-model-to-model-mapping-and-transformation-detpzr8k2r
https://typeset.io/papers/an-automatic-model-to-model-mapping-and-transformation-detpzr8k2r

HAL Id: hal-01596359
https://hal.archives-ouvertes.fr/hal-01596359

Submitted on 26 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An automatic model-to-model mapping and
transformation methodology to serve model-based

systems engineering
Tiexin Wang, Sébastien Truptil, Frederick Benaben

To cite this version:
Tiexin Wang, Sébastien Truptil, Frederick Benaben. An automatic model-to-model mapping and
transformation methodology to serve model-based systems engineering. Information Systems and E-
Business Management, Springer Verlag, 2017, 15 (2, SI), pp.323-376. ฀10.1007/s10257-016-0321-z฀.
฀hal-01596359฀

https://hal.archives-ouvertes.fr/hal-01596359
https://hal.archives-ouvertes.fr

An automatic model-to-model mapping

and transformation methodology to serve model-based

systems engineering

Tiexin Wang1 · Sebastien Truptil1 ·

Frederick Benaben
1

Abstract With enterprise collaboration becoming increasingly frequent, the ability

of an enterprise to cooperate with others has become one of the core factors in

gaining competitive advantage. This trend has led to an urgent requirement to

improve cooperation ability. To this end, model-based systems engineering is being

adapted so that it can be used to represent and simulate the working processes of

enterprises. Model-to-model mappings and transformations, as important aspects in

model-based systems engineering, have become two of the key factors in improving

the cooperation capabilities of enterprises. However, the foundations for achieving

automatic model-to-model transformation have not yet been built. Normally, model

transformation rules are built on the basis of model mappings, and model mappings

concern semantic or syntactic representations. One of the difficulties in achieving

model-to-model mappings and transformations lies in detecting the semantics and

semantic relations that are conveyed in different models. This paper presents an

automatic model-to-model mapping and transformation methodology, which applies

semantic and syntactic checking measurements to detect the meanings and relations

between different models automatically. Both of the semantic and syntactic

checking measurements are combined into a refined meta-model based model

transformation process. To evaluate the performance of this methodology, we

demonstrate its applicability with a realistic example.

Keywords Enterprise collaboration · Model-driven engineering · Model-to-model

mappings · Automatic model-to-model transformation · Semantic and syntactic

checking

& Tiexin Wang

tiexin.wang@mines-albi.fr

1 Centre Genie Industriel, University de Toulouse - Mines Albi, Campus Jarlard, 81000 Albi,

France

1 Introduction

Because of advances in science and technology, enterprise collaboration projects are

becoming increasingly common. In order to improve their competitiveness,

enterprises prefer to focus on their core business and to cooperate with other

qualified partners where they need to provide a more complex function (or service).

To achieve a common goal (e.g. maximize profits), enterprises also need to find

ways to collaborate with each other (Li 2012). They are thus paying increasing-

attention to improving their ability to work efficiently in collaboration with other

enterprises. This involves understanding the concept of collaboration.

Collaboration may be structured according to four levels (Benaben et al. 2006):

● Communication (data exchange) organizations exchange or share data (such as

invoices, purchase orders, etc.) to improve their individual performance. This is

the lowest level of collaboration.

● Coordination (sharing and synchronization-of tasks) organizations manage their

sequence of tasks to optimize the whole set of individual behaviours. This level

implicitly suggests an embryo of collaborative behaviour (through task sharing

and synchronization). However, this is mainly focused on individual perfor-

mance without collective goal.

● Cooperation (pursuing a common goal) organizations have (at least) one shared

common goal and set up collaborative processes to reach this (these) goal(s).

These common goals legitimize the existence of a network of organizations.

These organizations have to work collectively, harmoniously and with respect

for each other in order to achieve the common purpose. This might require a lot

of effort for each of the organizations involved.

● Integration (seamless involvement in one virtual entity) for this level, there is no

real evolution in the quality of the collaboration (compared to the cooperation

level). However, the way it is achieved is different. It is far more facilitated and

fluid.

Based on this vision, the capability criteria of organizations to collaborate may

also be defined accordingly. For instance, organizations must be able to join

communication networks to perform communication, they must also be able to

manage their resources and manage schedules to perform coordination, etc. One

element that might be seen as a criterion in reaching a high level of collaboration (in

terms of performance and efficiency), is interoperability.

In Ide and Pustejovsky (2010), interoperability is defined as “a measure of the

degree to which diverse systems, organizations, and/or individuals are able to work

together to achieve a common goal. For computer systems, interoperability is

typically defined in terms of syntactic interoperability and semantic interoperabil-

ity”. In Zdravkovic et al. (2015) interoperability is considered as a property of a

single system: “interoperability determines the capacity of a system (in a general

sense) to adapt, respond, act internally or externally, etc. to specific circumstances.

This capability depends on the understanding of the interfaces”. This second vision

is essentially concerns the ability to take part in deep collaboration. Finally, and

historically, the concept of interoperability has been defined, on the one hand in

IEEE (1991) as “the ability of two or more systems or components to exchange

information and to use the information that has been exchanged”, and on the other

hand in Konstantas et al. (2005) by the InterOp Network of Excellence (NoE) as

“the ability of a system or a product to work with other systems or products without

special effort from the customer or user”.

Consequently, the interoperability of organizations appears to be a major

requirement to succeed in deep and seamless high-level collaborations. Therefore,

enterprises need to adopt the required interoperability functions: exchange of

information, coordination of functions and orchestration of processes (Benaben

et al. 2006). Furthermore, inside these organizations, Information Systems (ISs) and

computerized systems are assuming the role of interfaces (external and internal

exchanges), functional engines [driving processes and business activities (Ramirez

et al. 2010)] and data providers (creating a drastically increasing amount of

measurements, data and reports from devices, software and reporting tools). Thus,

ISs must be able to support the above-mentioned interoperability functions. The

issue is to ensure that the partners’ ISs will be able to work together (thanks to these

interoperability functions) to constitute a coherent and homogeneous IS set (the IS

of the collaborative network). Providing organizations with methods, tools and

platforms that are able to ensure these interoperability functions makes good sense.

The Enterprise Interoperability Framework: EIF (Chen et al. 2008), which is

shown in Fig. 1, proposes an idea to analysis enterprise interoperability.

In the EIF, the concerns of interoperability are divided into four layers: data,

service, process and business. All four of these concerns need to overcome three

kinds of barriers: conceptual, technological and organizational. To conquer the three

kinds of barriers on four concern layers, three possible approaches are proposed.

Fig. 1 EIF illustration and concerns studied this paper

They are an “Integrated” approach, a “Unified” approach and a “Federated”

approach.

Each of these three approaches has its range of uses (best situations to be

applied). The “Integrated” approach suits the situation where enterprises use: one

common structure, one set of management rules, the same formats of data, etc. The

enterprises can cooperate with each other directly. The “Unified” approach suits the

situation where enterprises adapt their structures, process methods, etc. to a unified

standard. Enterprises here can cooperate indirectly with each other (one step

transformation to the unified standard). The “Federated” approach suits the situation

where the enterprises use their own rules and formats to manage their daily

business, and more manual effort is required to build cooperating connections

amongst them.

At the same time, EIF also illustrates the way model-based systems engineering

can be use to solve enterprise interoperability problems. An enterprise can be

simulated by a set of models: different models (or a set of models) are created to

describe a specific department or a production process in the enterprise, and the

connections between these models can represent the interactions between different

departments or processes.

In Fig. 2, an enterprise is represented by a set of models that are created based on

different viewpoints. In the 1990s, as stated in Scheer (1992), several standard

viewpoints were proposed to describe an enterprise. More recently, as an important

Fig. 2 An illustration of combining model-based engineering with enterprise engineering

aspect of modern enterprises, “service” viewed as crucial, so it is listed as a specific

viewpoint in Fig. 2. All these different model sets describe a specific viewpoint of

this enterprise. Within a model set, the models involved are connected. Between

different viewpoints, the inevitable and potential relationships can also be

represented by model connections. Normally, these model connections can be built

using model transformations. In this way, model-based engineering and enterprise

engineering are combined.

By considering enterprise collaboration, enterprise interoperability and EIF, this

paper proposes an automatic model transformation methodology that focuses on

breaking down the barriers of the conceptual and technological dimensions for the

concerns of the data layer and part of the service layer. These barriers involve the

communication and coordination levels of enterprise collaboration. In plain terms,

model transformation methodology can be used to share and exchange data (&

information), and given the efficiency issue in enterprise collaboration, automatic

solutions would obviously be the best choice.

This paper is divided into six sections. The second section presents the problem

statement in using model transformation to solve data sharing and exchange issues

in the field of enterprise interoperability. The state-of-the-art of the research

presented in this paper is outlined in the third section. The fourth section gives an

overview of the automatic model-to-model mapping and transformation method-

ology (AMTM), and details the semantic & syntactic checking measurements

involved in AMTM. Before the final conclusion, the design part of the software tool

and a use case (with evaluation) of AMTM are described in the fifth section.

2 Problem statement

Since modern enterprises use information systems to manage their daily business,

enterprise interoperability depends partly on the interoperability of their information

systems. The interoperability of enterprise information systems (EISs) needs to be

improved and the integration process of these kinds of information systems should

be simplified.

When seeking to improve interoperability and simplify the integration process of

EISs, one of the typical problems to be solved is how to share and exchange data (&

information) between EISs. Given the nature of the new kinds of enterprise

collaboration, as summarized in Touzi et al. (2007) and Camarinha-Matos and

Afsarmanesh (2008), e.g. global and dynamic combinations of partners, short

periods of duration, etc., the sharing and exchanging of data (as one of the

fundamental factors in integrating EISs) needs to be done efficiently and effectively.

As illustrated in the introduction section, model-based systems engineering can

be used to improve enterprise interoperability: the data sharing and exchanging

issue could be solved by model transformation methodology. However, there are

several weaknesses in traditional model transformation practices, as defined by Del

Fabro and Valduriez (2009): they have low reusability, contain repetitive tasks,

involve huge manual effort, etc. These weaknesses limit the use of model

transformation to serve various engineering domains (especially in collaborative

situations). Thus, the problem is how to develop an efficient and effective model

transformation methodology to serve EIS interoperability and integration? To solve

this problem, our proposal is to use AMTM.

Here, we give a general analysis of the difficulties in defining AMTM. In

AMTM, the model transformation process contains two steps: building model

transformation mappings and defining model transformation rules. The relationship

between building mappings and defining transformation rules is shown in Fig. 3.

Normally, models are made of elements. Model transformation mappings are

built (between those valid elements) based on some pre-defined detecting

measurements or by domain experts (manual work). After generating these

potential mappings, a mappings selection mechanism must be applied to define the

final transformation rules.

By detecting transformation mappings and defining transformation rules,

connections can be built between elements from different models. The connected

model elements should have some intrinsic links that can be detected. However,

these intrinsic links are difficult to find automatically, for several reasons. Normally,

the main reason is originally due to the models themselves. The difficulties of

defining AMTM can be divided into four aspects.

● The complexity of the models Models are always built to represent complex

systems, thus the models themselves become complex. Analyzing complex

models is a difficult task.

● Various kinds of content are conveyed in the models Models represent systems

and focus on different functional point of views. Significant differences may

exist among these systems, thus detecting the intrinsic links between them is

difficult.

● Heterogeneous modeling techniques Models are built to represent systems, but at

the same time they are built based on particular modeling techniques. Such

techniques may be UML (Uniform Modeling Language), SysML (System

Modeling Language), IDEF (Integrated Definition Modeling), BPMN (Business

Process Model and Notation), etc. Different modeling techniques define their

own standards, modeling rules and semantic representations. Transforming and

merging these modeling techniques is a necessary, but time-consuming task.

● Dynamic collaborative situations Different partners will be involved in and

dropping out of collaboration within a specific period. This requires that the

Fig. 3 The relationship between model-to-model mappings and transformations

integration of EISs should also be dynamic. The collaborative situations might

be highly complex due to the dynamic combinations involved, and thus

modeling and model transformation work for such a collaborative situation

requires huge efforts.

To solve all these problems, a powerful detection methodology and mappings

selection mechanism is needed, which would be used to detect the potential

transformation mappings and define transformation rules. The detection method-

ology should overcome the barriers of cross-domain (also cross modeling)

techniques, and require as little manual effort as possible. Considering this point,

semantic and syntactic checking measurements (S&S) are involved in AMTM as

part of the detection methodology.

As a short conclusion to this section, the social problem that we are trying to

solve is to improve enterprise interoperability and simplify the integration process

of EISs. Within this social problem, a typical problem is to share and exchange data

among EISs efficiently and effectively. To achieve this aim, we propose using

model-based system engineering to address this problem. Specifically, an automatic

model transformation methodology, “AMTM” is proposed. To overcome the

weaknesses in traditional model transformation instances, AMTM includes S&S as

part of the detection methodology.

3 State-of-the-art

This section presents the content in two aspects: (i) the aspect related to the model

transformation domain, and (ii) the aspect related to enterprise integration and

collaboration. For both of these aspects, we compare, contrast and position AMTM

within the existing works.

3.1 Model transformation domain related principles and techniques

This subsection is divided into four parts. The first part describes basic concepts of

model, meta-model and model transformation; these concepts are important because

they give a better understanding of the model transformation domain. The second

part concerns the category of model transformation instances and particularly

focuses on the model-to-model category. In the third part, two prominent model-to-

model mapping and transformation techniques are illustrated and compared. The

fourth part presents and compares several model-to-model transformation practices

and other research works that are relevant to AMTM.

3.1.1 Model, meta-model and model transformation

The terms “model”, “modeling” and “model transformation” have been used in

previous sections. This subsection presents clear definitions of these terms.

Since model transformation takes place between models, it is necessary to have a

clear understanding of what models are and how they are built. As defined in

Bezivin (2006), “model is a simplification of the subject and its purpose is to answer

some particular questions aimed towards the subject. Meta-model is a specific kind

of model; it makes statements about what can be expressed in valid models.” In

simple terms, a model represents a real subject by focusing on some of its

characteristics. A meta-model, which is a special kind of model, defines the rules for

building them. Other definitions about model and meta-model are also given in

Vernadat (1999) and Terrasse et al. (2005). The activity of building models called

modeling. The relationship between real system, model, meta-model and modeling

is shown in Fig. 4.

Meta-models can exist on several abstract layers. The higher the layer, the more

abstract the metamodels tend to be. A model is built to represent real systems and it

may conform to one or several meta-models. With the help of meta-models, the

models can be understood.

Since meta-models affect the process of modeling, they play a key role in

detecting model transformation mappings and defining transformation rules. As

defined in Tratt (2005) “model transformation is a program that mutates one model

into another”. The Object Management Group (OMG) defines model transformation

in the context of model-driven architecture (MDA) as “the process of converting a

model into another model of the same system” (Miller and Mukerji 2003). In

Kleppe et al. (2003), model transformation is defined as the “automatic generation

of a target model from a source model, according to a transformation description”.

Generally speaking, model transformation is a process of generating target models

based on source models.

3.1.2 Model transformation categories

Because model transformation techniques and instances are developed for different

purposes (to serve special situations), the category of model transformation is

presented first.

In general, model transformation can be divided into three groups. A summary of

these three groups is shown in Table 1. Normally, the content presented in models is

described in abstract syntax, while the content presented in text is described in

Fig. 4 The relationship between real system, model, meta-model and modeling

concrete syntax. In some terms, text (code is a special kind of text) could also be

regarded as a kind of model.

As defined in Czarnecki and Helsen (2003), there are two main model

transformation approaches: model-to-code and model-to-model. For the model-to-

code category, there are two kinds of approaches: “visitor-based” approaches and

“template-based” approaches. For model-to-model categories, there are five

approaches: the “direct-manipulation” approach, the “relational” approach, the

“graph-transformation-based” approach, the “structure-driven” approach and the

“hybrid” approach. The applicable situations, working mechanism and instances of

these approaches have been explained in Czarnecki and Helsen (2003). For the

model-to-model transformation category, there are some other approaches, such as:

the marking and pattern approach, the automatic transformation approach, the meta-

model based transformation approach, the model merging approach, etc.

AMTM belongs to the model-to-model transformation category. It is designed

and implemented as a meta-model based approach and intended to be automatic.

Furthermore, the meta-model based model-to-model transformation can also be

divided into two situations, which are shown is Fig. 5.

In situation (a), the target meta-model is an evolved version (e.g. with new

characteristics added) of the source meta-model. Source models that conform to the

source meta-model are updated to target models that conform to the target meta-

model. A large amount of research work focusing on this situation has been carried

out, such as the methodology named “COPE”, which is defined in Herrmannsdo-

erfer et al. (2009). In situation (b), the source meta-model and the target meta-model

are two different models. There is no relationship (e.g. evolutionary relation)

between them. In order to transform source models to target models, mappings

should be built on the meta-model level and used on the model level.

Considering the context of enterprise interoperability and EIS integration,

situation (a), shown in Fig. 5, suits the situation of improving EIS interoperability

Table 1 Categories of model

transformations
Category Content

Text to model Concrete syntax to abstract syntax

Model to model Abstract syntax to abstract syntax

Model to text Abstract syntax to concrete syntax

Fig. 5 Two meta-model based model transformation situations

within a specific enterprise. For collaboration that is cross-enterprise, situation

(b) could simulate the process of integrating the information systems of different

enterprises.

AMTM is able to serve both of these two situations, and furthermore, the

precondition of applying AMTM to solve real problems requires less manual effort.

3.1.3 Model transformation techniques

Focusing on different model transformation situations, different model transforma-

tion categories and approaches have been defined. To support these approaches,

many kinds of model transformation techniques have been developed. This

subsection briefly presents two prominent model-to-model transformation tech-

niques: “ATL” (ATLAS transformation language) described in Jouault et al. (2008),

Jouault et al. (2006), Jouault and Kurtev (2005), etc. and “QVT” (Query/View/

Transformation) defined by Omg (2008).

ATL is a model transformation language and toolkit. Since ATL provides both

declarative and imperative constructs, it is regarded as a hybrid model transfor-

mation language. Its architecture is composed of three layers: ATLAS Model

Weaving (AMW), ATL and ATL Virtual Machine (ATL VM). AMW may

optionally be used as a higher abstraction level transformation specification

language. Transformation programs are mainly written with ATL, and ATL VM is

in charge of compiling ATL programs. ATL has its advantages: it is module

independent and easy to maintain, supported by executable software tools, etc. ATL

provides ways to produce a set of target models from a set of source models.

QVT is a standard set of languages for doing model transformation defined by

“Object Management Group”. It is capable of expressing queries, views, and

transformations over models. The QVT standard defines three model transformation

languages: relations, core, and operational mappings. Moreover, it integrates the

“Object Constraint Language OCL 2.0” standard and also extends it with imperative

features. It is also a hybrid transformation language with declarative and imperative

constructs. Some of the advantages of QVT can be summarized as: strong

theoretical support, self-explained and full-featured.

Table 2 shows comparisons of some characteristics of the two model

transformation techniques.

Table 2 Comparisons between ATL and QVT

Name Hybrid Rule scheduling M-to-N

mappings

Interactive

transformation

Software tool

support

Note

ATL Yes Implicit internal

explicit

Yes No Yes Using AMW

QVT Yes Implicit internal

explicit

Yes No No Based on

MOF 2.0

Both ATL and QVT serve general purpose. They have been used or adapted to

solve real problems from different engineering domains. However, one of the

common weaknesses of the two techniques is that they are complex to learn and use

properly. Since they aim to serve general purposes, they provide huge function sets.

Both of them define some strategies to do automatic or semi-automatic model

transformation. However, a large amount of manual effort is still required to

perform them well.

Thus, model transformation techniques can be divided into two groups: one to

serve general purposes and one to serve specific purposes. Normally, specific-

purpose model transformation techniques focus on particular problems. Therefore,

the use of these techniques is limited to narrow situations, and they are not flexible

for some special cases. On the other hand, these kinds of techniques can be executed

automatically or semi-automatically in some aspects. General-purpose model

transformation techniques, which could serve in a cross-domain context, are always

complex to learn and use. Furthermore, large amount of user’ effort is required to

implement these kinds of techniques.

As indicated in previous sections, AMTM uses S&S as a detecting technique as it

has both the advantages of specific-purpose and general-purpose techniques and is

supported by a specific software tool.

3.1.4 Model transformation instances

To solve real problems, a large amount of model transformation instances have been

developed, based on specific model transformation techniques. Like model

transformation techniques, model transformation instances can also be divided into

two groups: specific-purpose instances and general-purpose instances.

Focusing only on the category of model-to-model transformation, this subsection

presents several model transformation instances from this category. To select these

instances, we consider the following conditions.

● The instances should be developed based on mature model transformation

techniques.

● The instances should be supported by software tools (not just theoretical

solutions).

● The instances should apply to automatic or semi-automatic execution issues.

The main characteristics are summarized here, as well as the weaknesses that

exist in these model transformation instances. As a comparison, we illustrate how

AMTM overcomes these weaknesses.

Table 3 shows ten particular research techniques that are relevant to AMTM and

compares their characteristic with AMTM. The comparison aspects focus on: the

technique used, its applicability, and its main features. More details about these

instances can be found in their references, as shown in the table.

Different model transformation theories and techniques have been used to create

model transformation instances that serve various purposes, such as enterprise

integration, software development, etc.

Models are becoming more and more complex and heterogeneous because of the

numerous and heterogeneous modeling techniques and the complex systems that are

being modeled. Thus, more and more model transformation instances, which focus

on particular problems (or provide solutions to a set of special problems), are being

developed. Normally, these instances are developed based on specific model

transformation techniques and their usage is limited (with strict conditions).

However, with the emergence of new collaborative situations (heterogeneous

partners involved in achieving a common goal) general-purpose model

Table 3 Related works of model transformation related instances

Name Technique Domain

specific

Note

Generic and meta-transformations

for model transformation

engineering (Varró and Pataricza

2004)

VPM

metamodeling

framework

No Model transformations are also

regarded as models; supported by

VIATRA tool

Metamodel matching for automatic

model transformation generation

(Falleri et al. 2008)

Similarity

Flooding

algorithm

No Aims at transforming

automatically; work well only

between similar meta-models

Transformation of decisional

models into UML: application to

GRAI grids (Grangel et al. 2010)

ATL Yes Focusing only on transforming

GRAI Grids to UML model

Applying CIM-to-PIM model

transformations for the service-

oriented development of

information systems (De Castro

et al. 2011)

MDA-based Yes Combining MDA with service-

oriented development of

information system

Engineering model transformations

with transML (Guerra et al. 2013)

MDE

philosophy-

based

No Cohesive support for model

transformations without

providing transformation

languages

Applying MDE to the (semi-)

automatic development of model

transformations (Bollati et al.

2013)

MeTAGeM

(Bollati 2011)

No Applying MDE principles to define

model transformation

Model transformation co-evolution:

a semi-automatic approach

(Garcı́a et al. 2013)

ATL No A meta-model based model

transformation approach;

specially focus on co-evolution

situation (e.g. COPE)

Matching metamodels with

semantic systems-an experience

report (Kappel et al. 2007)

Semantic

checking

measurements

Yes Integration of modeling languages

via metamodels

A survey of schema-based

matching approaches (Shvaiko

and Euzenat 2005)

Semantic

checking

measurements

Yes A new classification of schema-

based matching techniques is

presented

A survey of exploiting WordNet in

ontology matching (Lin and

Sandkuhl 2008)

Semantic

checking

measurements

Yes Using concrete semantic thesaurus

to do ontology matching

transformation practices are needed. Furthermore, these general-purpose model

transformation practices need to be supported by general-purpose model transfor-

mation techniques and software tools. The less manual effort-involved, the better

model transformation practices would be. Semantic (& syntactic) checking

measurements can be used as a general-purpose technique of this kind, and several

domains have already adopted them to achieve automation and replace manual

effort. For the model transformation domain, where models are used as the first-

class citizen, the theories and practices of using S&S are still immature. AMTM is

an attempt to fill this gap.

3.2 Workflow management for enterprise integration and collaboration

The Business Process Management approach (BPM) can be carried out using

several tools applied in the different states of the studied system. Several BPM

lifecycles have been defined in the literature. Some are oriented more towards a

business perspective and others also take into account the technical level i.e. the

level that involves IT engineers to implement and execute the process. Wetzstein

et al. (2007) proposes a decomposition through four phases:

1. Process Modelling is about “drawing” the business process according to

modelling languages and using specific graphical modelling tools.

2. Process Implementation consists in transforming and enriching this business

process model into an executable model. In the context of Service Oriented

Architecture (SOA) the executable model could be a Business Process

Execution Language (BPEL) model that states which web service should be

invoked for each task of the business process.

3. Process Execution deals with the execution of the process with a process

execution engine.

4. Process Analysis, whose goal is to monitor the process as it is running, is an

analysis of the business process through specifically chosen key performance

indicators to evaluate and enhance it.

Van der Aalst (2013), Weske (2012) and Jung et al. (2007) agree on a rather

high-level decomposition of BPM phases that can be summarized through four

steps:

1. Model relates to the previous process modelling step (Wetzstein et al. 2007).

2. Enact includes the previous implementation and execution steps (Wetzstein

et al. 2007).

3. Analyse embedded in previous analysis step (Wetzstein et al. 2007).

4. Manage also included in previous analysis step (Wetzstein et al. 2007).

In order to retain the business/IT level consideration, Benaben et al. (2015)

split the cycle into two overall parts: the design-time (when the process is

modelled) and the run-time (when the process is executed). In addition, Jung et al.

(2007) discusses semantic BPM and proposes an integration of knowledge

management within the BPM lifecycle, which brings an interesting third point of

view on BPM.

The results presented in this article mainly focus on implementation and

execution of workflow [steps 2 and 3 of (Wetzstein et al. 2007)] or enactment of

BPM [from Van der Aalst (2013), Weske (2012), Jung et al. (2007)].

4 Overview of AMTM and S&S comparisons

This section presents an overview of AMTM. AMTM aims to complete the process

of detecting transformation mappings and defining transformation rules automat-

ically (without or with little user effort). This section contains two main parts: the

first part includes three main subsections: (i) objective and precondition of using

AMTM, (ii) basic theories of building AMTM and (iii) AMTM working

mechanism. The second part details the syntactic and semantic checking measure-

ments involved.

To make AMTM understandable to a non-expert audience, a simple case of

transforming date formats (coming from different cultures), called “DFT-UC”, is

used to help explain it. This case is the description of the date “First of June, 2015”.

It is written as: “First of June 2015 or ‘6/1/2015’” in America, “Le premier juin

2015 or ‘01/06/2015’” in France and “二零一五年六月一日 or ‘2015-06-01’” in

China. The same concept is presented in different semantic and syntactic

representations.

Fig. 6 The architecture of MISE and the working part of AMTM

4.1 Objective and precondition of using AMTM

4.1.1 Objective of AMTM

The initial objective of developing AMTM is to serve model-based systems

engineering. The project of building AMTM is a part of a large research project

named “Mediation Information System Engineering (MISE)”. The latest work on

MISE can be seen in Benaben et al. (2012). MISE has a four-layer architecture, and

model transformations are needed within each layer and between adjacent layers.

Figure 6 shows a simple illustration of MISE and the working part of AMTM within

it.

MISE contains four main implementation steps: design of the collaboration

model, deduction of the collaborative behavior model, design of collaborative

workflows and deployment and orchestration of the MIS. In the first, second and

third steps, numerous models will be built; model transformations are needed to

connect the models built within the same layer. Furthermore, between adjacent

layers, model transformations help to automatically generate models for the

following step. AMTM aims to improve the agility of MISE by removing the

manual effort involved.

Fig. 7 The structure and content of MMM

4.1.2 Precondition of using AMTM

Like other model-to-model transformation instances, some preconditions are

required to use AMTM. These preconditions mainly concern the detecting

techniques involved in AMTM. As stated in previous sections, S&S is used to

detect the model-to-model mappings, and in AMTM the mapping and transforma-

tion rules are defined on the meta-model level. However, according to Jouault et al.

(2008), semantic checking measurements can not be applied to two models

conforming to different meta-models. Therefore, one of the preconditions of using

AMTM is that “the source and target meta-models should conform to one meta–

meta-model”. Based on this cognition, a specific meta–meta-model (MMM), which

works on a high abstract level, is defined in AMTM.

The meta–meta-model defines the rules for meta-modeling. There are several

meta-modeling architectures, two of the prominent ones being “MOF: Meta-Object

Facility” (OMG 2008) and “ISO/IEC 24744” defined in Henderson-Sellers and

Gonzalez-Perez (2008). However, such architectures always aim to serve general

purposes and provide solutions to various domains. They define their own semantic

and syntax representations and provide a wide range of functions to build meta-

models. For AMTM, which focuses particularly on model-to-model transformation,

these meta-modeling architectures are huge, complex and unsuitable for this

purpose. Figure 7 shows the MMM defined in AMTM.

This MMM is designed particularly to serve model-to-model transformation in

the context of EIS integration and interoperability. This MMM works on a high

abstract level; it defines nine core items.

● “Model”, stands for all kinds of models: e.g. EIS design models, collaborative

situation simulation models and integration models. Models are made of

elements.

● “Element”, represents all the possible items contained in the models (elements

are self-contained). In other words, “Elment” is made up of properties. It has

two inheritances: “Node” and “Edge”.

● “Node”, stands for a subject or a concept; it is used to stand for subjects that

exist in the world.

● “Edge”, describes the relationship between “Nodes”. Every “Edge” links two

roles (every node belongs to at least one role). An “Edge” is a special kind of

“Node”.

● “Property”, works as an identifier of the “Element”. An “element” has a group of

properties, and all these properties explain the element as a whole. Each

“Property” has a “Data Type”, which identifies the property itself. The “Data

Type” can be either a “Primitive Type” or an “Enumeration type”.

● “Primitive Type”, stands for the formal property types: string, integer, double

and Boolean, etc.).

● “Enumeration type”, stands for the user-defined type.

Two special items in this MMM are “Semantic Relation” and “Syntactic

Relation”. They are built among elements and properties to detect potential

mappings and transformations.

● “Semantic Relation”, exists between “Element” pair, “Property” pair and also

across “Element” and “Property”; it helps to define the transformation mappings

automatically.

● “Syntactic Relation” is similar to “Semantic Relation”; it is used as an adjacent to

“Semantic Relation” to detect model transformationmappings and transformations.

For the example of DFT-UC, the model involved could be the rules for

describing the date (time) defined in different cultures. Each model contains

elements like: year, month, day, hour, minute, second, etc. Each element contains a

group of properties, such as: year-leap year, number of days in each month, etc.

Thus, relations (Edge) can be built between different Nodes within one model.

Between different models, semantic relations and syntactic relations can be built

among their elements.

With the help of this MMM, semantic checking measurements can be used on

meta-models. Users are only required to provide meta-models that conform to this

MMM (since the MMM works on a really high abstract level, it is easy to modify

meta-models to conform to it). Within AMTM, some algorithms are implemented to

deduce from meta-models provided by users the new versions that conform to this

MMM. In other words, the deduction process can be done automatically.

4.2 Basic theories of building AMTM

Unlike many other model transformation methodologies, in AMTM model

transformation is regarded as an iterative. Figure 8 is a simple illustration of this

iterative process.

Fig. 8 The iterative model transformation process

Between source and target models, several intermediate models can exist. In each

iteration phase, model transformation mappings and rules are built among elements

and properties (as illustrated with the MMM). Normally, during the model

transformation process, the source and target models contain shared parts and

specific parts. The items between source model and target model that can be

transformed are shared parts, while the items that cannot be matched are regarded as

specific parts. The mapping and transformation rules are built between the shared

parts (same or similar concepts) of the two adjacent models. In DFT-UC, the

American format for describing dates could be used as an intermediate target model

between the French one and Chinese one.

Within each iteration phase, the specific parts from the source model need to be

stored and the specific parts of the target model need to be enriched. The iterative

process allows the specific parts stored from former transformation phases to be

used to enrich the specific parts of the target models that are generated in the later

transformation phases. In AMTM, a special ontology is created to store and reuse

these specific parts generated during the iterative transformation process. This

ontology is designed with the same structure as the MMM and is called

“AMTM_O”. To detect the shared parts within each transformation iteration phase,

S&S measurements are applied. An illustration of the detecting process is shown in

Fig. 9.

As explained in the third section, AMTM builds model-to-model mappings and

transformation rules on the meta-model level among elements and properties. The

detection process contains four main steps: (i) applying S&S measurements on the

Fig. 9 The process of building model transformation mappings and rules within each iteration

meta-model level to generate potential mappings and transformation rules, (ii) using

the generated mappings on the model level to test transformation results, (iii)

according to the transformation results, validation of the potential mapping and

transformation rules and (iv) examination of the validation results to define new

mappings and transformation rules on the meta-model level.

The idea of regarding model transformation as an iterative process and dividing

models into shared parts and specific parts during the transformation process is

adapted from Bénaben et al. (2010). At this moment, AMTM focuses only on the

first step: using S&S to detect the potential mapping and transformation rules. The

last three steps are more concerned with the model level, and this paper does not

detail the relevant content.

4.3 AMTM working mechanism

The granularity issue, as one of the main stubborn problems in model transforma-

tion domain, concerns about mixing matching among elements and properties. In

order to solve it, AMTM applies S&S in three matching steps: matching within

elements, hybrid matching and auxiliary matching. All of the three matching steps

are detailed in the following subsections.

4.3.1 Matching within elements

According to the MMM, meta-models are made of elements and elements contain a

group of properties. Therefore, model transformation mappings should be built

among the elements and properties.

The first matching step focuses on detecting matching pairs of elements. If two

elements coming from the source model and the target model stand for the same (or

similar) concept(s) (shared parts on the meta-model level), a mapping can be built

between them. In DFT-UC, “June”, “六月” and “juin” stand for the same concept

on the element level; they should thus share several similar properties.

How to detect if two elements stand for the same concept or not? AMTM tests

the semantic and syntactic relations between two elements’ names and their

property groups. Figure 10 shows a simple illustration of the detection process in the

first matching step.

Fig. 10 Building mappings on element level

Meta-model A contains ‘n’ elements and meta-model B contains ‘m’ elements. In

the first matching step, the maximum number of comparisons between the two

meta-models is: “m*n” (as shown by the dash lines in Fig. 10). An element from the

source meta-model should be compared with all the elements from the target meta-

model until a matching one (or no matching element) is found. So, in this example,

every element of meta-model A will be compared at least once and at most ‘m’

times with the elements from meta-model B.

A specific value “Ele_SSV” is calculated for each compared pair of elements.

“Ele_SSV” stands for “element’s semantic and syntactic value”; it is calculated

based on the semantic and syntactic relations between elements’ names, and

between their groups of properties. The calculation rule of “Ele_SSV” is shown in

Eq. (1).

Ele SSV ¼ name weight " S SSV þ property weight "
X

x

i¼1

Max P SSVið Þ

!

=x

ð1Þ

“Ele_SSV” is the sum of two independent parts: elements’ names and elements’

groups of properties; two impact factors “name_weight” and “property_weight” are

used to determine the weight of “elements’ names” and “elements’ properties”,

respectively. The range of their values is between 0 and 1 while the sum of the two

impact factors should always be 1. Users can assign values to the two factors to

determine the mutual importance between the two parts: elements’ names and

elements’ groups of properties.

“S_SSV” stands for “semantic and syntactic value between two words (strings)”;

it is calculated between two words (i.e. elements’ and properties’ names). This value

concerns the semantic and syntactic relations between two words. The detail of how

to calculate this value is presented later in this section.

“P_SSV” stands for “semantic and syntactic value between a pair of properties”.

In Eq. (1), “x” stands for the number of properties of a specific element from the

source meta-model. To match a pair of elements, all of the properties from the

source element should be considered to make a match with the ones from the target

meta-model elements. But how can calculate “P_SSV” be calculated? An example

is shown below.

When comparing element “A1” and element “B1”, their property groups are

taken into consideration. Assuming that “A1” has “x” properties and “B1” has “y”

properties; the maximum number of comparisons on their property level would be

“x*y”. A “P_SSV” exists in each pair of compared properties’. Equation (2) shows

the calculation rule for “P_SSV”.

P SSV ¼ pn weight " S SSV þ pt weight " Id type ð2Þ

The calculation rule for “P_SSV” is similar to the one for “Ele_SSV”. It is also the

sum of two parts: properties’ names and property types; and also two impact factors

“pn_weight” and “pt_weight”, which are used to determine the weight of the two

parts. The rules for assigning values to the two impact factors are the same as the

ones in Eq. (1).

In Eq. (2), “S_SSV” stands for the semantic and syntactic value between two

properties’ names while “Id_type” stands for “identify properties type (e.g. string,

integer, float and double)”. If two properties have the same type, “Id_type” will be

assigned with value “1”; otherwise, this value could be 0.5 (e.g. double and float) or

0 (e.g. integer and string).

With the help of Eqs. (1) and (2), every element from the source meta-model

could get one (or several) potential matching element(s) from the target meta-

model. However, the detected pair is only a potential mapping. To become a real

transformation rule, a mapping selection mechanism, which is presented later in this

section, is needed. Within potential matching pairs of elements, their properties are

also mapped based on the “P_SSV” values calculated by using Eq. (2).

4.3.2 Hybrid matching

Some of the elements from source meta-models are left unmatched after the first

matching step. Even for the matched elements, some of their properties might still

be unmatched. The hybrid-matching step focuses on these unmatched elements and

properties. In DFT-UC, a property of element ‘day’ could be a special festival such

as: Easter: Easter in American is Pâques in French, but this festival does not exist in

Chinese.

The hybrid matching step focuses on properties; all the matching pairs would be

built among properties. The idea of building mappings in this step is simple:

comparing all the unmatched properties from the source meta-model with all the

properties from the target model, in order to find similar pairs. Figure 11 is an

illustration of the hybrid matching step.

Fig. 11 Hybrid matching step illustration

This step aims to break one of the main granularity constraints: property-

matching pairs only exist within matched element pairs. This step implements

many-to-many mappings on the element level (Properties from one element can be

transformed to several target elements while one target element can be generated by

combining properties that come from several source elements). When comparing

two properties, this step also considers the influence of an element’s level. The

matching mechanism of this step is shown in Eq. (3).

HM SSV ¼ en weight " S SSV þ pl weight " P SSV ð3Þ

“HM_SSV” stands for “hybrid matching semantic and syntactic value”; the idea of

calculating this value is similar to those of “Ele_SSV” and “P_SSV”. “en_weight”

and “pl_weight” are two impact factors for “element level influence” and “property

level influence”. They perform the same roles as “name_weight” and “prop-

erty_weight” in Eq. (1). The influence of the element level mainly depends on the

element names. In Eq. (3), “S_SSV” calculates the semantic and syntactic value

between two element’s names.

4.3.3 Auxiliary matching

All the shared parts between source meta-model and target meta-model are

considered to have been found after the first and second matching steps. The specific

parts of source and target meta-models are still left untreated. The auxiliary

matching step focuses on these specific parts.

In DFT-UC, consider again the special festival issue while transforming the date

from American to Chinese (first iteration) and then transforming Chinese date to

French date (second iteration). Some special festivals will be lost during the first

iteration, and the lost part is needed as additional knowledge to enrich the target

model (French date format) generated in the second iteration (French and American

share some festivals while Chinese does not).

The auxiliary matching step defines the mechanism of storing and reusing the

specific parts of source and target meta-models. After the first two matching steps,

all the unmatched items from the source meta-model are stored in AMTM_O. For a

complete model transformation process, the specific parts from former transforma-

tion iterations should be reused to enrich the specific parts of the target model.

Furthermore, the content in AMTM_O could also be enriched by other ontologies

and knowledge from other domains, because the specific parts from the source

meta-models might not be enough to generate all the specific parts needed by the

target meta-models that are in the same iterative process.

4.4 Semantic and syntactic checking measurements involved

AMTM uses semantic and syntactic checking measurements as techniques to detect

model-to-model mappings. In AMTM, the two checking measurements always

work together to define a relationship, which has a value ranging between 0 and 1,

between two words (names of elements’ and properties’). The higher the value, the

more similar the two words are.

Both in Eqs. (1) and (2), the “S_SSV” is used as a parameter to determine the

semantic and syntactic value between two words. Now, the calculating rule for

“S_SSV” is shown in Eq. (4).

S SSV ¼ sem weight " S SeV þ syn weight " S SyV ð4Þ

Equation (4) follows the same design idea as the former three equations. The values

of two impact factors “sem_weight” and “syn_weight” are left to users to be

assigned (to determine the mutual importance between semantic and syntactic

relations between two words). “S_SeV” stands for the semantic value, while

“S_SyV” stands for the syntactic value. Based on different application situations,

the two aspects “semantic” and “syntactic” may have different effects (e.g. in

enterprise engineering, the semantics may be more important but in a medical field,

the syntactic meaning may be more important).

This subsection contains four parts: (i) presents the syntactic checking

measurements, (ii) shows the semantic checking measurements, (iii) illustrates the

matching pair selection mechanism based on the semantic and syntactic checking

results and (iv) is a short conclusion of this subsection.

4.4.1 Syntactic checking measurements

An element has two main identifiers: name and properties; to differentiate two

properties, their names and types need to be taken into consideration. So, the names

(represented by natural words) of both element and property play a key role in

identifying them.

Syntactic checking measurements are used to calculate the syntactic similarity

between two words. In AMTM, syntactic checking measurements are regarded as an

adjunct to semantic checking measurements. If two words have high syntactic

similarity, they might stand for the same thing. Furthermore, the same two words

always convey the same meaning. Since detecting semantic meanings and relations

is a time-consuming process, it is better to do syntactic checking first (to replace

semantic checking in some aspects).

The syntactic checking measurements involved in AMTM contain two steps:

(i) test if two words that are in different forms nevertheless stand for the same word

(with the same meaning), (ii) calculate the syntactic similarity between two different

words.

4.4.1.1 Predefined syntactic checking To test if two words, which are in different

forms, stand for the same word, we adopt the ideas defined in the “Porter stemming

algorithm” (Willett 2006). Table 4 shows several typical pairs of words to be

detected. They have different forms (e.g. tense, morphology) but stand for the same

word.

There are many such situations where two words in different forms stand for the

same meaning. The Porter stemming algorithm tries to detect all of them

automatically since it can remove the more common morphological and inflexional

endings from words in English. The main use of this algorithm is as part of a term

normalization process, which is usually done when setting up information retrieval

systems. The detail of this algorithm can be found in Willett (2006). Another similar

stemming algorithm is illustrated in Porter (2001).

4.4.1.2 “Levenshtein distances” algorithm In AMTM, to detect the syntactic

similarity between two different words, the “Levenshtein distances” (Gilleland

2009) algorithm is applied.

Syntactic checking methods are defined to calculate syntactic similarity between

two words. Among all the syntactic checking methods, classic similarity metrics is

used as one of the prominent methodologies. A conclusion on the existing syntactic

checking measurements is given in Cohen et al. (2003).

Because “syntactic checking measurements are used as an adjunct to semantic

checking measurements in AMTM”, a simple syntactic checking measurement,

“Levenshtein distances”, is chosen to complete this step (this helps to improve the

efficiency of the whole detecting process). The “Levenshtein distances” algorithm

focuses on the occurrences of the letters involved in words and calculates the

number of operations that are needed to transform one word to another. The

“Levenshtein distances” is equal to the number of operations needed to transform

one string (word) to another. There are three kinds of operations: insertions,

deletions and substitutions. The basic theory and exact execution process of this

algorithm is detailed in Heeringa (2004).

A simple example is given below to illustrate the mechanism of using the

“Levenshtein distances” algorithm. This example is to calculate the “Levenshtein

Distance” between two words: “sun” and “son”.

The two words are listed in Table 5, and the letters (ignore cases) involved are

listed and marked with their positions in the words. The “Levenshtein distances”

algorithm defines the rules to calculate the values to fill in the blank. The value in

position “ABS” is calculated based on the value above it: “1”, the value to the left of

it: “1” and the value in the upper left corner: “0”. The exact rule is: the value from

upper and left should add “1”, thus getting “2”; the two corresponding letter (from

upper and left) of “ABS?” are the same “s”, so the value in the upper left corner

Table 4 Several situations that Porter stemming algorithm focuses on

Case Word 1 Word 2 Example

1 word 1 + ‘s’ at end son & sons

2 Ends with ‘s’ “sh”, “ch”, ‘x’ word 1 + “es” at end match & matches

3 word 1 + “ing” at the end do & doing

4 Ends with ‘y’ change ‘y’ to ‘i’ + “es” city & cities

5 … … …

should add “0” (otherwise, add “1”). Then, the minimum value from the three (2, 2

and 0): “0” is chosen to fill in “ABS”.

Based on the calculating rules, Table 5 can be completed. The final result is

shown in Table 6. The final value used is from the lower right corner of the

table “1”; it means only one step is needed to transform the word “sun” to the word

“son”.

Based on “Levenshtein distances”, Eq. (5) is defined to calculate the syntactic

similarity between two words.

S SyV ¼ 1&LD=max word1:length;word2:lengthð Þ ð5Þ

“S_SyV” stands for the syntactic similarity value between two words; “LD” means

“Levenshtein distance” between the two words. The value of “S_SyV” should

always be in the range of 0–1; the higher this value, the higher the syntactic

similarity between the two compared words.

4.4.2 Semantic checking measurements

As the main clue of to detecting potential model-to-model mappings, the meanings

carried by models (elements and properties contained) and semantic relations

between the models need to be detected and defined. This subsection is divided into

two parts: the first part illustrates the basis of semantic checking and the second part

presents the process of carrying out semantic checking. The original idea of doing

semantic checking is inspired by the work described in Boissel-Dallier (2012).

4.4.2.1 Basis of semantic checking As opposed to syntactic checking measure-

ments (which focus only on the occurrences of the letters involved in compared

words), semantic checking measurements focus on the meanings carried by the

words and the relationships between these meanings. A huge semantic thesaurus,

containing large amount of words, their meanings and the semantic relations

between them, is required to do semantic checking. In AMTM, a semantic thesaurus

has been created, called AMTM _ST. AMTM _ST was created on the basis of

Table 5 Initiating calculation

matrix of “Levenshtein

distances”

son s o n

sun 0 1 2 3

s 1 ABS

u 2

n 3

Table 6 The “Levenshtein

distances” calculation result of

this use case

son s o n

sun 0 1 2 3

s 1 0 1 2

u 2 1 0 1

n 3 2 1 1

“WordNet” (Huang 2007) and adapted its to serve the model transformation

domain.

Figure 12 shows the structure of AMTM _ST.

The items stored in AMTM _ST are divided into three categories.

● Word base contains the majority of normal English words (nouns, verbs and

adjectives) that have a high possibility of being used in the model transformation

context.

● Word-sense base contains all the word senses that belong to the words stored in

“Word Base”; a word can have “one to several” senses. Taking “star” as an

example, in total it has six senses; as a noun, it has four senses; as a verb, it has

another two senses.

● Synset base contains many groups of word senses. The word senses, which in a

synset (a group of word senses), have synonymous meanings; semantic relations

are built among the different synsets.

Considering the context of making model-to-model mappings, seven kinds of

semantic relations are defined and maintained between synsets in AMTM _ST. In

order to use these semantic relations to define mappings (used in the equations

presented above), a specific value (between 0 and 1) is assigned to each of the

semantic relations. Table 7 shows these semantic relations and their value pairs.

For each of the semantic relations, an example of word pairs is shown in Table 7.

The corresponding “S_SeV” value [first introduced in Eq. (1)] for a particular

semantic relation stands for the similarity of the word pairs from a semantic

viewpoint. The higher this value, the closer the two words are semantically.

At present, all these “S_SeV” values are assigned directly (based on experience);

in the conclusion section of this paper, another possible method of assigning these

values is illustrated.

Thanks to “WordNet”, huge amount of words, word-senses and synsets have

been collected and defined. AMTM _ST adapts the majority of its word sets and

word sense sets and a small part of the semantic relations that are built between

synsets. Table 8 shows the quantity of content stored in AMTM _ST.

With the huge semantic-related content stored in AMTM_ST, AMTM provides

strong semantic checking measurements to detect model-to-model mappings.

Fig. 12 The structure of AMTM _ST

4.4.2.2 Semantic checking process Semantic checking measurements take place

between elements’ and properties’ names; the semantic relations between a pair of

names are detected. AMTM defines a process of detecting semantic relations

between two words. Figure 13 shows the location step of this process.

A word may have several meanings (word senses in AMTM _ST), and thus

belong to several synsets. When checking two compared words, the first step is to

locate them in AMTM _ST then find all of their word senses. Next these word

senses are traced to all their synsets. Finally, the semantic relations between two

groups of synsets are traced (one for “Word 1” and one for “Word 2”).

After obtaining two synsets groups, the final step is to detect the semantic

relations that exist among all the possible synset pairs (one from the word1 side, the

other from the word2 side). In Fig. 13, the red dash lines show these possible pairs.

The semantic relationships between two words are not limited to 0 and 1. There may

be several semantic relations between a specific pair of words.

As illustrated in Table 7, seven semantic relations are defined and maintained

among all synsets. These semantic relations can be divided into two groups: simple

semantic relations and iterative semantic relations.

Figure 14 shows the mechanism of detecting semantic relations that belong to the

simple semantic relation group. Five kinds of semantic relations are involved in this

group: synonym, similar-to, hypernym, hyponym and antonym.

The detection principle of this semantic relations group is: for one word, search

all the synsets that have the five kinds of semantic relations with the synsets the

word belongs to, then compare to see if one same synset exists in the other word’s

synset group. Figure 14 shows five comparison loops; each loop tries to detect a

specific semantic relation between the two words.

For the other group of semantic relations, the detection process of “iterative

hypernym” and “iterative hyponym” semantic relations is a little complex. The

detection principle of the two, “iterative hypernym” and “iterative hyponym”

Table 7 Semantic relations

built in AMTM _ST and their

value pairs

Semantic relation S_SeV Example

Synonym 0.9 shut & close

Hyponym 0.6 creator-person

Hypernym 0.8 person-creator

Similar-to 0.85 perfect & ideal

Antonym −1 good & bad

Iterative hypernym 0.8n person-creator-maker-author

Iterative hyponym 0.6n author-maker-creator-person

Table 8 Content stored in

AMTM _ST
Items Number

Words 147306

Word senses 206941

Synsets 114038

Fig. 13 The location step of semantic relations detection process

Fig. 14 The detecting process of simple semantic relations

Fig. 15 An illustration of the iterative hypernym semantic relations detection process

semantic relations, is the same. To illustrate this principle, Fig. 15 shows the process

of detecting if “iterative hypernym” semantic relations exist between “Word1” and

“Word 2”.

The iterative semantic relations detection process will be carried out only after

the failure of the simple semantic relations checking. The principle of detecting

semantic relations for this semantic relations group is: locating iteratively the

synsets that have hypernym relations with word1’s synsets and comparing them

with the synsets that word-2 belongs to, in order to find two synsets that are the

same. The iterative loop will be executed no more than four times, given the

efficiency of this algorithm and the strength of semantic relations between two

words. If there is no semantic relation found after four iterative comparisons, the

two words are regarded as having no semantic relations between each other. Then

the “S_SeV” between them is “0”.

4.4.3 Matching pair selection mechanism

As illustrated in Fig. 3, some selection mechanisms are required to transform model-

to-model potential mappings to model-to-model transformation rules. The mech-

anism of detecting potential mappings has been presented above; this subsection

focuses on the matching pair selection mechanism.

The relation between two potential matching elements (coming from source and

target models, respectively) is represented by a value “Ele_SSV” between 0 and 1.

“Ele_SSV” is calculated based on semantic and syntactic comparisons among two

elements’ names and property groups. The mechanism of selecting matching

element pairs depends particularly on the range of this value. Figure 16 shows the

selection mechanism.

As shown in Fig. 16, in situation (a), two threshold values: 0.5 and 0.8 are defined

to choose the element’s matching pairs. If two elements have “Ele_SSV” in region 1

(value between 0.8 and 1), a transformation mapping is built between them; if this

value is in region 2 (value between 0.5 and 0.8), a potential mapping exists between

the two elements (this situation will leave to user to decide whether to make the

transformation or not). Otherwise, if this value is in region 3, no mappings will be

built between the two elements. Situation (b) shows the mechanism of choosing

potential matching word pairs. Considering the context of EIS integration and

Fig. 16 An illustration of matching pair selection mechanism

interoperability, strong semantic relations means a high potential for making

mappings between two words. Region 1 stands for two words that have a close

relationship (strong syntactic relation and high semantic relation). The two words

having such a relation can be transformed to each other. Region 2 stands for two

words that have a high semantic and syntactic relation. Word pairs from here are

potentially transformable pairs. Region 3 means two words have weak relationships,

and thus a low possibility of being transformed to each other. The special part is

Region 4. It stands for word pairs that have strong syntactic relations but very weak

semantic relations. For example, the word pair “common” and “uncommon”. Such a

pair of words is regarded as having an antonymic semantic relation, and thus no

transformation mappings would be built between them.

In AMTM, on both the element level and the property level, the same selection

mechanism is used to define the final transformation rules. In this way, an element

(or a property) may have from “0” to several potential matching items. So, from

source meta-model to target meta-model, “many-to-many” model-to-model trans-

formation rules are built on both element and property levels.

4.4.4 Short conclusion

This section presented the S&S measurements involved in AMTM. Semantic and

syntactic relations are used together to define a relation (represented by a value

“S_SSV”) between a pair of words. Based on this “S_SSV” value, relations between

different elements and properties can be defined. With the help of a matching pair

selection mechanism, potential mappings can be used to define model-to-model

transformation rules.

All the algorithms presented in this subsection (e.g. the “Levenshtein distance”

algorithm, the “semantic relations detecting” algorithms) have been implemented.

Since semantic checking measurements rely on a huge semantic thesaurus “AMTM

_ST”, this is a time-consuming process. So, syntactic checking measurements are

always executed before semantic checking measurements in order to improve

efficiency (to reduce the number of AMTM _ST searches).

By combining S&S measurements with AMTM (used differently in three

matching steps), an automatic model transformation process is generated. AMTM

provides an efficient model-to-model mapping and transformation solution, which it

is possible to use to serve EIS integration and interoperability.

5 Supported software tool and use case

The theoretical solution illustrated in the previous sections requires information

techniques to support it. One of the purposes of AMTM, to remove manual effort

from the model transformation process, also implies a requirement to develop the

artificial intelligence aspect. This chapter aims to give a brief illustration of the

process of developing a software tool to meet this requirement, called “AMTM-SS”.

It also explains the working mechanism and describes how the working

performance of AMTM is tested by a complete use case. Finally, a performance

evaluation is implemented for the use case.

5.1 AMTM-SS design

Software engineering (Pressman 2005) provides solutions to develop complex

software systems. There are several traditional software development life cycles,

such as: the waterfall model, the rapid prototype model, the spiral model and the

agile model.

Normally, software development contains four main steps (organized according

to the previously mentioned development cycles): requirement analysis, system

design, coding and testing. In this subsection, we only present briefly the

requirement analysis step and the design step involved in the development process

of AMTM-SS.

5.1.1 Requirement analysis

AMTM-SS contains six functional modules.

● Model analysis module this module aims to deal with user inputs: different kinds

of model sets. The main task of this module is to analyze the input model sets,

and, based on the results of this analysis, to deduce the two specific meta-models

(between which potential model transformation mappings will be built).

● Semantic relations detection module this module focuses on the semantic

checking part, which is applied on two deduced specific meta-models.

AMTM_ST is implemented and used by this module. Since semantic relations

detection is a time-consuming functional process, the algorithms (e.g. searching

different items in AMTM_ST, adding new items to AMTM_ST) need to have a

high degree of efficiency and performance.

● Syntactic relations detection module this module performs a similar role to the

semantic relations detection module, but focuses on the syntactic representations

carried by the specific meta-models. This module implements the “Levenshtein

distances” (also, a part of the “Porter stemming”) syntactic similarity checking

algorithm.

● Potential mappings selection module this module aims to select potential model

transformation mappings based on the syntactic and semantic relations checking

results. The syntactic relations detection module and the semantic relations

detection module generate an S&S value for each potential matching pair (one

item from the source meta-model, the other from the target meta-model). The

mechanism of choosing potential matching pairs is defined and implemented in

this module. This module defines threshold values to categorize the S&S values.

It works as a bridge that crosses the gap between semantic and syntactic

checking results and the building of model transformation mappings.

● Transformation mappings generation module this module builds potential model

transformation mappings and rules based on the selection results. The mappings

generated in the potential mappings selection module might be in conflict (e.g.

overlap, Mutex). This module tries to simplify the potential matching pairs

(solve the overlap and Mutex problems). This module can reduce the

interactions between AMTM-SS and its users.

● User validation module all the functional modules presented above aim to

generate the potential model transformation mappings automatically. This

module provides a solution to validate these automatically-generated mappings.

The user interfaces provided by this module serve to connect with users:

showing automatically-generated mapping rules, receiving and storing the

modifications from the users.

All of the six functional modules focus on their own core functions, but they are

not independent of each other. Data and information are passed among them as

Fig. 17 A simple illustration of the design of AMTM-SS

parameters. They work together to complete the process of automatically detecting

and generating model transformation mappings.

Besides these functional requirements, non-functional requirements are also

defined in AMTM-SS. The non-functional requirements concern two main aspects:

to remove user effort and to improve system execution efficiency.

As one of the common evaluation standards, execution efficiency for all software

systems is important. The final purpose of AMTM-SS is to serve the data and

information sharing (exchanging) that exists in collaborations. Thus, high efficiency

is also an innate requirement for AMTM-SS. The efficiency of executing AMTM-

SS is mainly determined by the execution of syntactic and semantic checking

measurements.

In detail, the non-functional requirements for AMTM-SS are: (i) shielding the

detection process of model transformation mappings from the users (however, users

have to be involved in the mapping rules validation part), and (ii) developing highly

efficient algorithms for conducing syntactic checking and semantic checking.

5.1.2 System design

This subsection briefly presents the system design part of AMTM-SS. The

information flow in AMTM-SS is divided into three states: information contained in

the input models, information conveyed by the specific meta-models and

information carried by the target model. Figure 17 is based on these information

states and shows the design part of AMTM-SS.

Fig. 18 Package design illustration

In AMTM, models are categorized by different layers (model and meta-model).

Most of the mapping rules need be built on the meta-model layer. In order to obtain

the specific meta-models that conform to the MMM, two approaches can be applied.

● Deduction from models (meta-models are not included in the input model sets).

● Transformation from meta-models (meta-models are provided by users).

Both these approaches can generate the specific meta-models. The specific part,

which is marked with a star in Fig. 17, concerns the core functions in AMTM-SS. It

indicates out that the syntactic and semantic checking methods are applied on the

specific meta-models. The mechanism of incorporating the two checking method-

ologies into the model transformation process has been illustrated in previous

sections.

Based on the requirements analysis, the package design composition is created

and shown in Fig. 18.

As shown in Fig. 18, five main packages are defined in the design step. Within

each package, the important classes are indicated. The name of each class

constitutes its main task. Here, a simple illustration is provided of each package and

its main classes.

● Package 1 this package contains several functional classes to analyze the input

model sets, and extract the information contained in these input models to the

template that conforms to the MMM. The classes in this package also provide an

interface to users to upload their inputs into AMTM-ST. In simple terms, this

package has the following main tasks: (i) receive inputs from system users, (ii)

analyze the inputs and extract the useful information, and (iii) store and adjust

the extracted information in a special format (specific meta-models conforming

to MMM). The outputs of this package are two specific meta-models.

● Package 2 this package works as a bridge which crosses the gap between the

model transformation domain and the syntactic & semantic checking measure-

ments. The inputs of this package are the two specific meta-models generated by

package 1. It provides several templates to store the compared potential pairs

(one item comes from the source meta-model, the other comes from the target

meta-model). These template classes also define a comparing value and

comparing functions. These comparing functions define the mechanism for

calling syntactic and semantic checking measurements, and also define different

mechanisms for using the two checking measurements based on different

compared item pairs (i.e. element to element, property to property). The returned

values of these functions are used to assign the comparing value. Normally, for

each potential matching pair, a comparing value will exist, which can be used to

select the final matching pairs.

● Package 3 this package contains the semantic checking measurements. The

classes (functions) used to gain access to the semantic thesaurus are also

contained in this package. The inputs of this package are two names (coming

from elements and properties). After being called and receiving two names, the

first step is to detect the possible semantic relations between the two names, then

according to the “semantic relation and value” pairs, a comparing value is

assigned to this compared pair of names. The output (return value) of this

package is this semantic comparison value.

● Package 4 this package performs the similar role to package 3. It focuses on the

syntactic checking measurements. The syntactic checking methodologies, the

predefined treatment (part of Porter stemming algorithm) and the “Levenshtein

distances” algorithm, are defined in this package. The inputs of this package are

also a compared pair of two names; the return value (ranging from 0 to 1) is the

syntactic comparison result: the degree of syntactic similarity. As illustrated in

previous sections, syntactic checking results can have an influence on the

semantic checking part. The calling mechanism of the semantic and syntactic

checking measurements is determined by package 2.

● Package 5 this package provides the function of generating the final model

transformation mappings and rules. The inputs of this package come from

package 2, and concern all the potential mapping pairs and their compared

relational values. The main tasks of this package are: (i) to select the useful

potential mapping pairs (remove overlap, Mutex), (ii) to provide connecting

interfaces to system users, and allow them to validate the automatically-

generated mappings and define new mapping rules, (iii) to store the final

mapping rules into ontologies and apply these rules on the source model to

generate the target model. In order to complete these tasks, this package needs

gain access to AMTM_O (the ontology is also needed to provide knowledge to

fulfill the specific parts of the target meta-model). Interactions between system

users and AMTM-SS are important in this package, so a friendly and efficient

user interface is needed here.

All these five packages make up AMTM-SS. In Fig. 18, only the main functional

classes are presented. Two outside resources for AMTM-SS: the semantic thesaurus

“AMTM_ST” and the ontology “AMTM_O” are also shown. AMTM-SS provides

three main interfaces: (1) connecting with system users, (2) obtaining access to

AMTM_ST, and (3) obtaining access to AMTM_O.

The coding part and the testing part of AMTM-SS are given with a use case

shown in the following subsection.

5.2 Use case

AMTM-SS was developed with a personal computer. The basic technical

parameters of this computer are: (i) operating system: Windows 7 Professional N,

(ii) CPU: Inter Core i7-3770, 3.4 GHz, (iii) main memory (RAM): 8.0 GB, etc. The

main programming language is “Java”; the version used is “1.8.0_20”. The relevant

java developing environment: the version of runtime environment is “1.8.0_20-

b26”, and the java virtual machine is a 64-Bit server, 25.20-b23 mixed mode. The

integrated developing environment (IDE) is “Eclipse”; the chosen version is

“eclipse-java-luna-SR1-win32-x86_64”. This was the new and stable version when

AMTM-SS was launched. The other developing environment techniques are:

Maven 2.0 and GitHub, etc.

The semantic thesaurus “AMTM_ST” is stored in MongoDB (a new version of

AMTM_ST is being developed with the graph database “Neo4j”). Several existing

java jar packages are also involved. Two of the main jar packages are: (i) the jar

packages released in order to support the algorithms presented in previous sections,

and (ii) the jar package “JDOM”.

This subsection presents a complete use case to test the functions and

performance of AMTM-SS. This use case aims to cover all the matching theories

defined in AMTM using all the main algorithms implemented in AMTM-SS. This

use case simulates a simple “order-fabrication-delivery” process in the enterprise

engineering domain. For the three phases: order, fabrication and delivery, three

meta-models are created. AMTM tries to build model transformations among the

three meta-models. Figure 19 shows the main idea of this use case.

This use case contains three meta-models: order management system, fabrication

management system and delivery management system. The use case tries to make

model-to-model mappings and transformations in two iterations: between the meta-

models “order management system” & “fabrication management system”, and

between “fabrication management system” & “delivery management system”. The

“fabrication management system” could be regarded as an intermediate target

model to test the “specific parts store and reuse” mechanism. This use case focuses

on showing the mechanism of using AMTM-SS to automatically detect mappings

among the elements (e.g. “Node” defined in MMM) coming from source meta-

model and target meta- model.

5.2.1 First transformation iteration of this use case

In the first model transformation process iteration, the source meta-model contains

three main “nodes”: order (with seven properties), client (with five properties) and

address (with six properties). All of the three nodes (concepts) will be compared

with the two nodes (concepts): product (with four properties) and command (with

five properties) in the target meta-model.

Fig. 19 AMTM testing use case

There are several uncertain impact parameters within the equations that are

defined in AMTM. The first step in executing this use case should therefore be to

assign concrete values to these uncertain parameters. Table 9 shows the impact

parameters and their value pairs defined for this use case. Actually, these are the

default values assigned to these impact parameters; AMTM-SS also provides the

mechanism that allows users to modify them.

With all these assigned values, the comparing mechanism defined in AMTM is

executable in AMTM-SS. In the first model transformation iteration “from source

meta-model ‘order management system’ to target meta-model ‘fabrication man-

agement system’”, in order to show the AMTM-SS working mechanism in detail,

the detection process of comparing two nodes (concepts) “order” and “command” is

shown step by step.

The first comparing step is to calculate the “S_SSV” between two elements’

names (order and command).Eq. (4) is used to do this step.

Figure 20 is the screenshot of executing Eq. (4) in AMTM-SS with “order” and

“command” as two compared words.

According to Fig. 20, the word “order” has twenty-four semantic meanings

(belongs to twenty-four synsets) and the word “command” has twelve semantic

meanings (belongs to twelve synsets). The semantic relation between the two words

is “hypernym”, and the semantic value between them is “0.8”; the syntactic

similarity value between them is: 0.1428. In this use case, the semantic relation is

assumed to be more important than the syntactic relation, so two impact factors:

“SeV_weight” and “SyV_weight” in Eq. (4) are assigned with values as 0.9 and 0.1,

respectively. The final S&S value between the two words is: 0.7343.

Actually, such an intermediate testing result would not be shown to the users in a

real use of AMTM- SS. In this use case, in order to show the test result clearly and

make them understandable to readers, we divided the whole use case into many

small test cases. Within each of the particular small test cases, we show and explain

the testing results.

According to Eq. (1), to compare two elements, both their names and property

groups should be taken into consideration. So, the second calculating step is to

calculate the S&S value on their property level. To carry out this step, the

comparing mechanism is defined both in Eq. (1) and Eq. (2).

When calculating S&S values on the property level, both the properties’ names

and their types are taken into account. In this use case, the property’s name is

Table 9 Assigning values to uncertain impact parameters for this use case

No. group Parameter 1 Assign value 1 Parameter 2 Assign value 2 In equation

1 name_weight 0.5 property_weight 0.5 1

2 pn_weight 0.8 pt_weight 0.2 2

3 en_weight 0.5 pl_weight 0.5 3

4 SeV_weight 0.9 SyV_weight 0.1 4

regarded as more important than its type for the process of making transformation

mappings. So in Eq. (2), which is shown below again, “pn_weight” and

“pt_weight”, are assigned with values 0.8 and 0.2, respectively. The executing

results are shown is Fig. 21.

As shown in Fig. 21, to compare a pair of elements, an S&S relation value

“P_SSV” is generated for each potential matching pair of properties. In this test

Fig. 20 S&S detection between elements’ names “order” and “command”

case, there are in total 7 (source properties) * 5 (target properties): 35 potential

property matching pairs.

To improve efficiency, some strategies are applied during the comparing process.

When the “P_SSV” value between two properties is “1”, the source property will

not be compared with other properties from the target element. To be more readable,

Table 10 was created to store all these “P_SSV” values.

With all these “P_SSV” values and the “S_SSV” value “0.7343” calculated in the

first step (between two elements’ names: order and command), the “Ele_SSV”

between elements “order” and “command” could then be calculated by using

Eq. (1). In this use case, two impact factors: “name_weight” and “property_weight”

Fig. 21 Test results of matching on element level between elements “order” and “command”

were assigned with values 0.5 and 0.5, respectively. The “element’s name” and

“property group” are regarded as having the same importance in making mappings

between elements. In this use case, the final “Ele_SSV” between “order” and

“command” is: 0.632. The test results shown in Fig. 21 are stored and presented in

Table 10.

In this model transformation iteration, six of this kind table were created (on the

element level, there are six potential matching pairs, e.g. order-product, client-

command and address-product) to store the intermediate transformation results.

Following the same calculating rules and steps, all the “Ele_SSV” values of each

potential matching pair of elements (coming from source model and target model,

respectively) could then be generated. Table 11 shows the final result.

Based on the mechanism of choosing potential matching pairs, the potential

matching element pairs could then be made. Furthermore, the property matching

pairs (that exist within the matching element pairs) could also be defined with the

help of contents stored in Table 10 (a set of this kind of table). Figure 22 shows the

comparing and matching results.

In the first matching step of the first model transformation iteration, the elements

“order” and “command” are matched. The matching results of their property group

are: id–id, date-time, deadline-time, good-product and amount-quantity.

Each model transformation iteration phase defined in AMTM contains three

matching steps: matching on element level, hybrid matching, and auxiliary

matching. For the second matching step “hybrid matching”, the matching ideas

and techniques used are the same as the ones used in the first matching step. “Hybrid

matching” focuses on the unmatched properties left from the first matching step.

Table 10 Comparisons on

property level for this use case
Order Command

id product time quantity duration

id 1 – – – –

client 0.013 0.2114 0.013 0.010 0.010

date 0 0.0114 0.6808 0.4808 0.030

deadline 0.010 0.010 0.220 0.4808 0.020

good 0.220 0.4548 0 0 0.01

amount 0 0.0343 0.1555 0.8580 0.3655

purchase_price 0.0058 0.0171 0.0114 0.0171 0.0229

Table 11 Detection results of

potential matching pairs on

element level

Order MS Fabrication MS

Product Command

order 0.1748 0.632

client 0.2499 0.1953

address 0.1574 0.1363

Table 12 was thus created and filled automatically by AMTM-SS to detect potential

mappings in this step.

The two impact factors: “en_weight” and “pl_weight” are assigned with values

0.5 and 0.5, respectively. This means when making hybrid matchings, the influence

of the element level and the property level are regarded as equally important.

All the unmatched properties from the source meta-model are compared with all

the properties of the target meta-model. Parts of the final result of this step have

been shown in Table 12.

Since the comparing process of this step is complex, we have just taken the

comparing pairs (element: property): “Order: client–Product: id”, “Order: client–

Product: name”, “Order: purchase_price–Product: id”, “Order: purchase_price–

Product: name”, etc. as an example. The execution result is shown in Fig. 23.

As shown in Fig. 23, in this use case, the influence of the element level “between

two elements’ names, “order” and “product” is 0.02857; the influence of the

property level (between property “client” with type “class” and property “id” with

type “string”) is: 0.0133. The final hybrid S&S relation value between this pair of

properties is: 0.021. According to the potential matching pair selection mechanism,

this pair of items would not be regarded as a model transformation mapping. Within

the first model transformation iteration of this use case, there are a total of “13

Fig. 22 Matching results on element level in the first transformation iteration of this use case

Table 12 Hybrid matching results in this use case

Element: property Product: id Product: name … Command: duration

Order: client 0.021 0.021 … 0.3721

Order: purchase_price 0.0171 0.02 … 0.3785

Client: id 0.5071 0.1071 … 0.0193

Client: name 0.1071 0.5071 … 0.0193

… … … … …

Address: zip_code 0.11 0.105 0

(unmatched source properties) * 9 (all target properties): 117” compared pairs that

need to be tested in the hybrid matching step. The mechanism of comparing them is

the same. Based on the comparison results and the potential matching pairs selection

mechanism, the potential matching pairs between properties “client: id–product: id”,

Fig. 23 An illustration of hybrid matching testing results

“client: name–product: name”, etc. should be built as potential matching pairs. The

complete matching result is shown in the next subsection: the use case evaluation.

The third matching step included in AMTM is “auxiliary matching”. This step

stores specific parts (unmatched items) of the source model in AMTM_O and tries

to enrich the specific parts (unmatched items) in the target model by extracting

content from AMTM_O. In this transformation phase of the use case, only the

specific parts from the source meta-model are stored in AMTM_O. Since this is the

first model transformation iteration phase, there is no content stored in AMTM_O

that could be used to enrich the specific parts of the target meta-model. AMTM_O is

implemented with the software tool “protégé”; the structure of AMTM_O is shown

in Fig. 24.

The working mechanism of the auxiliary matching step is to “repeat the

‘matching on element level’ and ‘hybrid’ matching steps”. But the two steps work

Fig. 24 The structure of AMTM_O

on specific source meta-models (specific parts of the former source meta-models)

and target meta-models (specific parts of target meta-models).

As a brief conclusion, within the first model transformation iteration phase, all

the mappings are built in the first matching step, “matching on element level”. There

are no mappings being built in the hybrid matching step. The specific parts of the

source meta-model were stored in AMTM_O in the auxiliary matching step.

5.2.2 Second transformation iteration of this use case

In the second model transformation iteration, the source meta-model is the target

meta-model of the first model transformation iteration, “Fabrication Management

System”, and the target meta-model is “Delivery Management System”, which has

two nodes (concepts): receipt (with six properties) and transportation (with five

properties).

Compared to the first model transformation iteration phase, the different part

(also the significance) of this iteration is the possibility to test the mechanism of

enriching the target meta-model. The illustration of this model transformation

iteration is shown in Fig. 25.

The process of detecting potential model transformation matching pairs in this

iteration phase is the same as that of the first iteration. It follows the three matching

steps: matching on element level, hybrid matching, and auxiliary matching. In this

iteration, the test results of the first matching step are shown in Table 13.

The test results show that no matching could be built in the first matching step

(no element-to-element mappings).

The second matching step, “hybrid matching”, compares all the properties of the

source meta-model with all the properties of the target meta-model. Equation (3) is

used here. Between each potential matching pair, a “HM_SSV” is calculated and

assigned.

Fig. 25 An illustration of the second model transformation matching iteration

The third matching step, “auxiliary matching”, tries to enrich the specific parts

(unmatched items) in the target meta-model. In this test case, the property

“location” of element “transportation” could be enriched with the specific part

(property “address” of element “client” in meta-model order management system)

stored in AMTM_O. Also, other specific properties of the meta-model “delivery

management system” could be enriched by the properties stored in AMTM_O.

To conclude, this use case shows a complete example that tests all the main

matching theories defined in AMTM and all the main functions (algorithms)

implemented in AMTM-SS.

5.2.3 Applying the automatically-generated model transformation rules on models

The use case simulates the detection process of model transformation mappings. All

the model transformation mappings and rules are built on the meta-model level

(between source meta-models and target meta-models). Finally, these automati-

cally-generated mappings and rules can be used on specific source models to

generate target models. Here, we provide a source model which conforms to the

order management system meta-model, and then apply the automatically-generated

model transformation mappings and rules on this source model to get the target

models (conforming to the fabrication and delivery meta-models, respectively).

Figure 26 shows the source model and two automatically-generated target models.

As shown in Fig. 26, the “Source Model” has two instances of orders from

clients. The two orders conform to the order management system meta-model

presented above. By applying the potential transformation mappings, automatically-

generated by the first transformation iteration phase, to “target models 1”, four

fabrication notes can be built. Some “form items” in “target models 1” cannot be

filled directly by using the values in the source models, so some predefined rules

need to be applied to help the transformation process. Also, some “form items”” in

“target models 1” could not be filled in (no mappings are built on the meta-model

level).

To generate the final target models, “target models 2”, both “target models 1” and

“source models” have to be taken into consideration. Here, the instances of “target

models 2” shown in Fig. 26 are only ideal ones.

In conclusion, these test results show that some elements and properties in the

target model could not be transformed from the source model (or enriched by

AMTM_O). The remaining unmatched parts need to be dealt with manually.

AMTM could therefore in some respects remove manual effort when defining the

same (or similar) concepts between source and target meta-models.

Table 13 Potential matching

pairs on element level of second

iteration in this use case

Fabrication MS Delivery MS

Receipt Transportation

Product 0.2387 0.1387

Command 0.1387 0.2427

5.3 Methodology evaluation

AMTM is still in the stage of work in progress. It is necessary to study its

performances to verify the viability of this methodology and to guide future

improvements. This subsection presents the evaluation result of AMTM based on

the use case presented above. The evaluation method is inspired by Wieringa and

Daneva (2015).

5.3.1 Evaluation of performance

The use case contains 7 nodes (concepts) and 38 properties. The quantitative

evaluation mostly focuses on the property–property comparison due to the fact that

the different matching approaches are based on this comparison. The performance

evaluation was performed on a personal computer with 2.9 GHZ, i7 CPU and 8 Go

RAM (with Mac OS X and Java 8).

All performance measurements are based on three indicators: precision, recall

and time-consuming. Precision (noted as P), evaluates the quality of results

(percentage of relevant mappings among retrieved ones) whereas Recall (noted as

R), evaluates the sufficiency of the results (percentage of retrieved mappings among

relevant ones). Time-consuming evaluates the required time to compare two

properties.

Fig. 26 Target models generated by using the automatically detected mappings

P ¼
retrived \ relevantj j

retrivedj j
R ¼

retrieved \ relevantj j

relevantj j
ð6Þ

In the use case, the relevant mappings (property pairs) that are supposed to be

made are presented in Table 14.

The retrieved mappings (automatically detected results by AMTM-SS) are

presented in Fig. 27. The figure presents the retrieved mappings on the basis of two-

dimensional (semantic and syntactic) coordinates: the mappings selection mecha-

nism that is illustrated in Sect. 4.4.3.

Based on the mappings selection mechanism, the potential matching pairs

(property–property) can be selected.

The data provided by Table 14 and Fig. 27 work together to be used by Eq. (6) to

evaluate the “precision” and “recall” of AMTM. Figure 28 shows the “precision”

and “recall” issues, respectively.

Figure 28 “Precision” shows three evaluation results: only using syntactic

checking only, using semantic checking only, and using both checking-methods

(hybrid). It shows the retrieved potential mapping pairs in Area 2 (within the

mappings selection mechanism framework with ‘two-dimension coordinate’). It can

be seen that, using semantic checking only can generate a high percentage of

potential mapping pairs.

Figure 28, “Recall”, shows that using syntactic and semantic checking

measurements together could build high quality potential mappings (high percent-

age of relevant mapping pairs). Also, semantic checking has better performance in

detecting potential mapping pairs (pairs appearing in Area 2) than syntactic

checking.

Table 14 Relevant matching

property pairs
No. Element: property Element: property

1 Order: id Command: id

2 Order: deadline Command: time

3 Order: good Command: product

4 Order: purchase_price Product: cost

5 Order: id Receipt: id

6 Order: id Transportation: id

7 Order: deadline Transportation: date

8 Order: amount Command: quantity

9 Order: deadline Transportation: schedule

10 Order: purchase_price Receipt: price

11 Client: name Receipt: price

12 Address: city Receipt: address

13 Address: street Receipt: address

14 Address: number Receipt: address

15 Command: duration Transportation: date

16 Command: duration Transportation: schedule

As a short conclusion, the evaluation results show that both hybrid and semantic

checking measurements provide interesting results (represented by the Precision and

Recall graphs). It seems that it is possible to define more relevant mapping as well

as more non-relevant mapping with the hybrid approach than when only using the

semantic checking measurements. Since AMTM aims to help users to define model

transformation automatically, we suppose that it is better to have as many relevant

mappings as possible. Nevertheless, this assumption is acceptable when the time-

consuming issues are similar for the two approaches. Figure 29 shows the time-

consuming aspect in this use case.

Figure 29 illustrates that both hybrid and semantic approaches require the same

time to deduce the mappings. The syntactic approach is instantaneous, and the

points representing semantic and hybrid approaches are overlaid. It is possible to

identify two groups of points: (i) points around the value of 1 (s) and (ii) points

Fig. 27 Automatically-generated comparison of results for “property–property”

Fig. 28 The evaluation of “precision” and “recall” issues

between 1.5 and 2 (s). These two groups of points are separated because of the

semantic relations that exist between properties’ names with the first group of points

corresponding to direct semantic relations and the second group of points

corresponding to iterative semantic relations (the two kinds of semantic relations

are described in Sect. 4.4.2.2).

The evaluation shows that semantic and syntactic checking measurements should

be used together (hybrid). Finally, in order to improve the “precision” and “recall”

of AMTM, the threshold values defined in the mappings selection mechanism

should be modified.

6 Conclusion

This paper presents an automatic model-to-model mapping and transformation

methodology (AMTM), which could serve model-based EIS integration and

interoperability by solving the data sharing and exchange problem involved.

Compared with the existing model transformation methodologies, the main

feature of AMTM is that it serves cross-domain and defines the mappings and

transformations automatically. To achieve this, AMTM combines semantic and

syntactic checking measurements into a refined meta-model based model transfor-

mation process. A meta–meta-model, which defines the mechanism of applying

S&S measurements on the model transformation process, is created. In order to

solve the granularity and mismatch issues involved in the model transformation

Fig. 29 Evaluation of the “time-consuming” issue

process, AMTM regards model transformation as an iterative process and three

matching steps are created within each iteration phase.

Different algorithms have been developed to carry out the S&S measurements.

For syntactic checking, part of the “Porter stemming” algorithm and the

“Levenshtein distance” algorithm are used to calculate the syntactic similarity

between two words. For semantic checking, a huge semantic thesaurus, AMTM_ST,

has been created on the basis of “WordNet”. In order to combine these algorithms

and semantic relations into model transformation processes, five equations have

been defined. A use case has been presented to show the working mechanism of

AMTM, and based on the test results, a partial evaluation of AMTM has been also

illustrated.

In AMTM, there are several points still need to be improved:

● The validation phase of the automatically-generated model transformation

mappings should be added to the whole transformation process. The possible

validating methods could be “redo the mappings and transformations (from

target meta-model to source meta-model)” or could involve users to carry out

manual validation.

● Some uncertain values (e.g. impact factors in equations and thread values in the

matching pair selection mechanism) need to be reconsidered. A better way to

assign them might be to use mathematical strategy [e.g. the “Choquet” integral;

one of the uses of the “Choquet” integral is explained in Abril et al. (2012)].

● The “S_SeV” values defined in Table 7 need to be modified to come within a

reasonable scope. Furthermore, more semantic relations and their corresponding

semantic values need to be defined and maintained within AMTM_ST.

● The efficiency of semantic checking measurements needs to be improved. As

semantic checking measurements rely on a huge semantic thesaurus, it is a time-

consuming process to detect semantic relations between two words.

● The semantic thesaurus built for AMTM, AMTM_ST, was created on the basis

of WordNet. At the moment, AMTM_ST is stored in MongoDB. Considering

the need for efficiency and visibility when undertaking semantic detecting, other

databases (e.g. Neo4j) might replace “MongoDB” to store AMTM_ST.

● Improving the focus on serving specific domains. Since AMTM_ST was created

on the basis on “WordNet”, only general words (with their general meanings)

are stored. In order to use AMTM to serve specific domains, some specific

content should be included to enrich AMTM_ST and AMTM_O. For example,

to serve EIS integration and interoperability, the knowledge in the MIT process

Handbook (Malone et al. 2003) would be extremely helpful.

There is a broader vision of how AMTM might be used: it could be employed as

a methodology to share and exchange information and knowledge between different

domains (or within the same domain). Figure 30 shows a general idea of this usage.

Today, many data collectors (e.g. sensors, smart equipment and computers) are

used to gather rough data from a particular region or domain. The collected data

serve various purposes and reflect different views of a system. Moreover, different

collectors store data in their own structures, which might be heterogeneous with

regard to each other. So, it is difficult to make use of this kind of data as a whole. In

the context of AMTM, all these collected data are regarded as single models. Thus,

AMTM could use semantic and syntactic checking measurements to detect the

intrinsic links between these models. After comparing and transforming these data,

a final target model (an overview of a specific system) could be generated. Different

domains could use this final target model, and with domain specific rules, the

information contained in the model could be used as knowledge.

Converting rough data into information, then sharing and exchanging informa-

tion and knowledge within the same domain (or between different domains) might

be another use of AMTM. As stated in Panetto and Molina (2008): “recent

advances in information and communication technologies have allowed manufac-

turing enterprise to move from highly data-driven environments to a more

cooperative information/knowledge-driven environment.” Focusing only on one

data level is not enough to solve real engineering domain problems. Thus, AMTM

is an attempt to build connections between data, information and knowledge. The

use of AMTM in the web service composition domain and the information and

knowledge engineering domain have been described in Wang et al. (2015a, b),

respectively.

Fig. 30 A broader vision of the use of AMTM

References

Abril D, Navarro-Arribas G, Torra V (2012) Choquet integral for record linkage. Ann Oper Res 195

(1):97–110

Benaben F, Touzi J, Rajsiri V, Pingaud H (2006) Collaborative information system design. In: AIM

conference, pp 281–296

Benaben F, Lauras M, Truptil S et al (2012) Mise 3.0: an agile support for collaborative situation. In:

Camarinha-Matos LM, Xu L, Afsarmanesh H (eds) Collaborative networks in the internet of

services. Springer, Berlin, pp 645–654

Benaben F, Mu W, Boissel-Dallier N, Barthe-Delanoe A-M, Zribi S, Pingaud H (2015) Supporting

interoperability of collaborative networks through engineering of a service-based mediation

information system (MISE 2.0). Enterp Inf Syst 9(5–6):556–582

Bénaben F, Mu W, Truptil S et al (2010) Information systems design for emerging ecosystems. In: 2010

4th IEEE international conference on digital ecosystems and technologies (DEST). IEEE, pp 310–

315

Bezivin J (2006) Model driven engineering: an emerging technical space. In: Lämmel R, Saraiva J, Visser

J (eds) Generative and transformational techniques in software engineering, International Summer

School, GTTSE 2005, Braga, Portugal, July 4–8, 2005. Revised Papers, Part I. Lecture Notes in

Computer Science, vol 4143. Springer, Berlin, Heidelberg, pp 36–64. doi:10.1007/11877028_2

Boissel-Dallier N (2012) Réconciliation sémantique des données et des services mis en oeuvre au sein

d’une situation collaborative. Ph.D. thesis. Les thèses en ligne de l’INP

Bollati VA (2011) MeTAGeM: a framework for model-driven development of model transformations. Ph.

D. Thesis. University Rey Juan Carlos. http://www.kybele.etsii.urjc.es/members/vbollati/Thesis

Bollati VA, Vara JM, Jiménez Á et al (2013) Applying MDE to the (semi-) automatic development of

model transformations. Inf Softw Technol 55(4):699–718

Camarinha-Matos LM, Afsarmanesh H (2008) Classes of collaborative networks. In: Putnik GD, Cunha

MM (eds) Encyclopedia of networked and virtual organization, vol 1. Information Science

Reference, Hershey, pp 193–198

Chen D, Doumeingts G, Vernadat F (2008) Architectures for enterprise integration and interoperability:

past, present and future. Comput Ind 59(7):647–659

Cohen W, Ravikumar P, Fienberg S (2003) A comparison of string metrics for matching names and

records. In: Kdd workshop on data cleaning and object consolidation, vol 3, pp 73–78

Czarnecki K, Helsen S (2003) Classification of model transformation approaches. In: Proceedings of the

2nd OOPSLA workshop on generative techniques in the context of the model driven architecture,

vol 45, no. 3, pp 1–17

De Castro V, Marcos E, Vara JM (2011) Applying CIM-to-PIM model transformations for the service-

oriented development of information systems. Inf Softw Technol 53(1):87–105

Del Fabro MD, Valduriez P (2009) Towards the efficient development of model transformations using

model weaving and matching transformations. Softw Syst Model 8(3):305–324

Falleri JR, Huchard M, Lafourcade M, Nebut C (2008) Metamodel matching for automatic model

transformation generation. In: Czarnecki K, Ober I, Bruel J-M, Uhl A, Völter M (eds) Model driven

engineering languages and systems. Springer, Berlin, pp 326–340

Garcı́a J, Diaz O, Azanza M (2013) Model transformation co-evolution: a semi-automatic approach.

Softw Lang Eng 7745:144–163

Gilleland M (2009) Levenshtein distance, in three flavors. Merriam Park Software. http://www.

merriampark.com/ld.htm

Grangel R, Bigand M, Bourey JP (2010) Transformation of decisional models into UML: application to

GRAI grids. Int J Comput Integr Manuf 23(7):655–672

Guerra E, de Lara J, Kolovos DS, Paige RF, Dos Santos OM (2013) Engineering model transformations

with transML. Softw Syst Model 12(3):555–577

Heeringa WJ (2004) Measuring dialect pronunciation differences using Levenshtein distance. University

Library Groningen, Host

Henderson-Sellers B, Gonzalez-Perez C (2008) Standardizing methodology metamodelling and notation:

an ISO exemplar. Springer, Berlin

Herrmannsdoerfer M, Benz S, Juergens E (2009) COPE-automating coupled evolution of metamodels and

models. In: ECOOP 2009—object-oriented programming. Springer, Berlin, pp 52–76

Huang X (2007) An OWL-based WordNet lexical ontology. J Zhejiang Univ Sci A 8(6):864–870

IEEE (1991) IEEE standard computer dictionary: a compilation of IEEE standard computer glossaries.

doi:10.1109/IEEESTD.1991.106963

Ide N, Pustejovsky J (2010) What does interoperability mean, anyway? Toward an operational definition

of interoperability for language technology. In: Proceedings of the second international conference

on global interoperability for language resources, Hong Kong, China

Jouault F, Kurtev I (2005) Transforming models with ATL. In: Satellite events at the MoDELS 2005

conference. Springer, Berlin, pp 128–138

Jouault F, Allilaire F, Bézivin J, Kurtev I, Valduriez P (2006) ATL: a QVT-like transformation language.

In: Companion to the 21st ACM SIGPLAN symposium on object-oriented programming systems,

languages, and applications. ACM, pp 719–720

Jouault F, Allilaire F, Bézivin J et al (2008) ATL: a model transformation tool. Sci Comput Program 72

(1):31–39

Jung J, Choi I, Song M (2007) An integration architecture for knowledge management systems and

business process management systems. Comput Ind 58(1):21–34

Kappel G, Kargl H, Kramler G, Schauerhuber A, Seidl M, Strommer M, Wimmer M (2007) Matching

metamodels with semantic systems—an experience report. In: BTW workshops, pp 38–52

Kleppe AG, Warmer JB, Bast W (2003) MDA explained: the model driven architecture: practice and

promise. Addison-Wesley, Reading

Konstantas D, Bourrieres J-P, Léonard M, Boudjlida N (2005) Interoperability of enterprise systems and

applications. In: Proceedings of the international conference on interoperability for enterprise

systems and applications (I-ESA) 2005, Geneva, Switzerland. Springer

Li L (2012) Effects of enterprise technology on supply chain collaboration: analysis of china-linked

supply chain. Enterp Inf Syst 6(1):55–77

Lin F, Sandkuhl K (2008) A survey of exploiting wordnet in ontology matching. In: Bramer M (ed)

Artificial intelligence in theory and practice II. Springer, Berlin, pp 341–350

Malone TW, Crowston K, Herman GA (2003) Organizing business knowledge: the MIT process

handbook. MIT Press, Cambridge

Miller J, Mukerji J (2003) MDA guide version 1.0.1. Object Management Group. http://www.omg.org/

cgi-bin/doc?omg/03-06-01

OMG (2008) Meta object facility (mof) 2.0 query/view/transformation specification. Final Adopted

Specification (November 2005)

Panetto H, Molina A (2008) Enterprise integration and interoperability in manufacturing systems: trends

and issues. Comput Ind 59(7):641–646

Porter MF (2001) Snowball: a language for stemming algorithms. http://snowball.tartarus.org/texts/

introduction.html

Pressman RS (2005) Software engineering: a practitioner’s approach. Palgrave Macmillan, New York

Ramirez R, Melville N, Lawler E (2010) Information technology infrastructure, organizational process

redesign, and business value: an empirical analysis. Decis Support Syst 49(4):417–429

Scheer A-W (1992) Architecture of integrated information systems: foundations of enterprise modelling.

Springer, Berlin. doi:10.1007/978-3-642-97389-5

Shvaiko P, Euzenat J (2005) A survey of schema-based matching approaches. In: Spaccapietra S (ed)

Journal on data semantics IV. Springer, Berlin, pp 146–171

Terrasse MN, Savonnet M, Leclercq E, Grison T, Becker G (2005) Points de vue croisés sur les notions de

modèle et métamodèle. 1ères journées sur l’Ingénierie Dirigée par les Modèles, pp 17–28

Touzi J, Lorré J-P, Bénaben F et al (2007) Interoperability through model-based generation: the case of

the collaborative information system (CIS). Enterprise Interoperability, Part VII. Springer, London,

pp 407–416. doi:10.1007/978-1-84628-714-5_38

Tratt L (2005) Model transformations and tool integration. Softw Syst Model 4(2):112–122

Van der Aalst W (2013) Business process management: a comprehensive survey. ISRN Softw Eng

2013:1–37

Varró D, Pataricza A (2004) Generic and meta-transformations for model transformation engineering. In:

Baar T, Strohmeier A, Moreira A, Mellor SJ (eds) «UML» 2004—the unified modeling language.

Modeling languages and applications. Springer, Berlin, pp 290–304

Vernadat F (1999) Techniques de modélisation en entreprise: applications aux processus opérationnels.

Editions Economica, Paris

Wang T, Truptil S, Benaben F (2015a) An automatic model transformation methodology to serve web

service composition data transforming problem. In: 2015 IEEE world congress on services

(SERVICES). IEEE, pp 135–142

Wang T, Truptil S, Benaben F (2015b) Applying a semantic & syntactic comparisons based automatic

model transformation methodology to serve information sharing. In: Proceedings of the international

conference on information and knowledge engineering (IKE). The steering committee of the world

congress in computer science, computer engineering and applied computing (WorldComp), p 3

Weske M (2012) Business process management: concepts, languages, architectures. Springer, Berlin

Wetzstein B, Ma Z, Filipowska A, Kaczmarek M, Bhiri S, Losada S, Lopez-Cob J-M, Cicurel L (2007)

Semantic business process management: a lifecycle based requirements analysis. In SBPM

Wieringa R, Daneva M (2015) Six strategies for generalizing software engineering theories. Sci Comput

Program 101:136–152

Willett P (2006) The Porter stemming algorithm: then and now. Program 40(3):219–223

Zdravković M, Noran O, Panetto H, Trajanović M (2015) Enabling interoperability as a property of

ubiquitous systems for disaster management. Comput Sci Inf Syst 12(3):1009–1031

