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Abstract

We developed an automatic method ro extract the pa-
rameters of the T x 50m Stroke Efficiency Test for
swimming based on a wrist worn acceleration sensor
device. In the wrist acceleration signal we detect char-
acteristic swim events such as wall push-offs, wall-
strikes and strokes. Based on this information we com-
pute the distance per stroke and the swimming veloc-
ity. The upper error bounds of our automatic method
are 1.67% for the velociry and 1.33% for the time per
stroke. The velocity measurement accuracy is of com-
parable order to the manual accuracy. The automaric
method clearly outperforms the manual measurement
for the time per stroke extracfion.

1. Introduction

The performance of swimming is strongly related to
the swimmer’s technique. Therefore a substantial pro-
portion of the training of competitive swimmer is de-
voted to the improvement of the swimmer’s style. To
evaluate the improvement of the technique, the swim-
mer is interested in determining the efficiency of his
strokes. The parameters to determine the efficiency of
the stroke mechanics are the distance per stroke (stroke
length) and the swimming speed [1].

It is common for professional swimmers to evalu-
ate their swimming technique. The most accurate tech-
nique used today for gaining these parameters for pro-
fessional swimmers is video analysis [2, 3]. The speed
and the stroke length are extracted from a video record-
ing of the swimmer. This is complex, time consuming
and relies on an expensive swimming pool infrastruc-
ture. Recreational swimmers however do not have the
knowledge and the methods to perform such tests.

There are also other methods, where the swimmer or
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a second person counts the number of strokes per lap
and estimates the speed by measuring the time for one
lap. This is either very inaccurate because the swimmer
can not measure the exact time for one lap or time and
labor consuming as each swimmer has to be observed
independently by a second person (usually a trainer).

Pervasive computing has successfully been applied
to different areas in the world of sports like football
games [4, 5], skiing [6], running [7], table termis [8] and
rowing [9]. There have also been approaches in swim-
ming to discriminate the stroke phase and gquantify the
swimmer’s fatigue [10] or extract characteristic events
for crawl swimming [11, 12].

However, an automated performance analysis in a
typical swim technique evaluation test, such as the one
we present in this paper, has not been investigated. In
order to release trainers from time taking tasks and pro-
vide new evaluation techniques to recreational swim-
mers, we evaluate an automatic parameter extraction
methodology. In our study we analyze the usability and
accuracy of an automatic system to evaluate the swim-
mer’s stroke efficiency. We developed a waterproof
recording device based on a 3D acceleration sensor. We
measure the wrist acceleration in freestyle swimming
during the 7 x 50 Stroke Efficiency Test [1, 13].
In the wrist acceleration signal we detect characteris-
tic events such as pool-starts, wall-strikes and strokes.
Based on this information we compute the distance per
stroke and the swimming velocity needed for the swim-
ming technique analysis.

The remaining of the paper is structured as follows:
In section 2 we provide background information on
swim technique evaluation. Section 3 describes the de-
vice used and the experiment done for the evaluation of
our method. In section 4 we describe our algorithms
and evaluation methodology. In section 5 we present
and discuss the results. Finally we conclude our work
in section 6 and give an outlook on future research.
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2. Swim technique evaluation

Swimmers and their coaches want to know their
progress in training, Dedicated swim tests are used to
analyze the progress of the swimmer’s technique and
to ensure the training program has the right effect on
the athlete. With an improved stroke technique. fewer
strokes per lap are needed while swimming at constant
speed. On the other hand, the swimmer's technique has
improved if he can swim faster with the same number of
strokes per lap [1]. This applies to all swimming styles.
With increasing velocity and exhaustion “slippage™ in-
creases, This results in an increasing number of strokes
per lap.

The most accurate technique nowadays for determin-
ing the distance per stroke is video recordings of the
swimmer in a pool with special distance markers [2, 3].

A less accurate method to get a rough measure on
the stroke efficiency without instrumentation is count-
ing the number of strokes needed per lap. The number
of strokes per lap is inaccurate because on the one hand
the duration of traveling under water after the push-off
varies, on the other hand the swimming speed is not
taken into account. However, due to its simplicity this
is still the most common technique, especially for non-
prolessional swimmers.

An improved method to determine stroke rate, dis-
tance per stroke, and velocity without utilizing video
recordings has been suggested by Maw and Volkers
[13]. A second person measures manually three time
intervals ignoring the start and the stop phase at the be-
ginning and at the end of the lane. From the time mea-
surements and the known mid-pool distance it is possi-
ble to calculate the velocity. the distance per stroke and
the stroke rate. This method is described in detail below
and acts as a reference for the further evaluation of our
automated approach:

Hor the 7 > 50w Stroke Efficiency Test a 5 long
course pool is mandatory, Seven laps have to be swum
with different speeds. The slowest lap is done approx-
imately 12 sce slower than the fastest lap. Each of the
following sets is then undertaken approximately 2 see
faster than the preceding one - the seventh and final
one being the fastest with maximum effort. All sets are
started with a push-off start in the peol. Between each
run there is a recovery time of 2 minutes.

For each lap the time hetween the passes of the back-
stroke turn flags (5 and 45 1 marks) is measured with a
stopwatch - taking the swimmers head as the reference.
At approximately the 10 mark (respectively within
the first 25 m segment) and at the 35 mark (respec-
tively within the second 25 m segment) the time needed
for three complete stroke cycles is measured with a sec-

ond stopwatch,

Ideally the swimmer has surfaced from his push-off
start by the 5m mark to ensure an accurate measure-
ment. The velocity (1) is calculated from the time
needed for the 40 mid-pool distance. The average
time per stroke (TFS) is determined out of the time
needed for the six measured strokes (three at the be-
ginning and three at the end). The distance per stroke
{DPS) is finally calculated by
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For explanation, three artificial examples of typical
Stroke Efficiency Test graphs (DFS vis. V) are illus-
trated in figure 1. Swimming technique gets better ei-
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Figure 1. Three artificial examples of Stroke £f-
Sficiency Test graphs (DPS v.s. V)

ther when the DPS increases with constant speed (the
graph moves upwards, compare subject one with sub-
ject two in figure 1) or when speed increases with con-
stant DPS (the graph moves to the right). Tt is de-
sirable to maintain a good swimming stroke mechan-
ics throughout the different swimming speeds. Better
performing swimmers are able to "hold their stroke to-
gether’ at the fastest speeds resulting in a linear graph
shown in data set one and two in figure 1. Less-skilled
performers lose control of their technique, evidenced by
a non-linear change in distance per stroke (see graph of
third data set in figure 1). The inspection of the graph
indicates the speed at which the control of the swim
stroke starts to deteriorate,

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on February 4, 2010 at 06:23 from IEEE Xplore. Restrictions apply.



3. Hardware and experiment

For the usability analysis of the automatic parame-
ter extraction in the Stroke Efficiency Test we accom-
plished a swim experiment according to the protocol de-
scribed in section 2. For the experiment each swimmer
has worn a SwimRecorder as depicted in figure 2.

The SwimRecorder, derived from the device de-
scribed in [14], consists of a 3-axes accelerometer, a
microcontroller, 1 GB of flash memory (MultiMedia
Card) and a rechargeable battery. The acceleration sig-
nals are A/D converted by a 10 Bit A/D converter and
sampled at a frequency of 256 Hz. With the 3.7V,
250 mAh battery pack continuous data recording for up
to 48 hours is possible. The fixation of the device to
the swimmer is wristwatch alike. With a weight of only
34 g for the whole setup and the low profile of 12 mm
the device is unobtrusive and not hindering while swim-
ming.

Figure 2. SwimRecorder attached to the swim-
mers wrist. The arrows indicate the orientation of
the three axes of the acceleration sensor.

Each of the eight participants swam the 7 x 50m
in crawl technique on a 2min cycle with the Swim-
Recorder attached to the right wrist (see figure 2). The
swimmer holds on to the wall with his right hand and
starts swimming on a signal from the experiment leader.
The pool start is defined as the push-off from the pool
wall. The end of the lap is defined as a wall-strike with
the right hand. In addition to the wrist acceleration we
measured manually the time intervals as explained in
section 2. For comparison reasons the time at the 5m
mark, the 45 m mark and the end of the lap, as well as
the times for three strokes at the beginning and at the
end, were measured by an experimenter using a nor-
mal stopwatch. In addition to the stop watch times an-
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Table 1. Label definitions

\ Label | Defined moment

START (OM) | Hands are released from pool wall 0 m

M Head passes the 5 m mark

STROKE Right hand touches the water
45M Head passes the 45 m mark
END (50M) Wall stroke at the end of lap (50 m)

other experimenter labeled the start and the end of the
lap, the 5m and 45 m passes as well as all strokes. For
the labeling we used a hand-held PC running the CRN
Toolbox [15]. The labeling was done by pressing the
corresponding keys on the hand held PC. To ensure ac-
curate and consistent labels the labeling moments were
defined as listed in table 1.

Eight subjects participated in this study, four from
a competitive swimming club and 4 recreational swim-
mers. In total we recorded datasets of 56 laps. For each
lap we have the acceleration data and the time stamps
acquired by the stopwatch and the labeling device.

4. Automatic parameter extraction method

For the Stroke Efficiency Test graph the swimmer’s
distance per stroke is plotted versus the swimming ve-
locity [1, 13]. The parameter that need to be extracted
from the acceleration data are therefore the swimmers
velocity and the DFS.

At first a rough segmentation based on the mean of
the raw y-acceleration signal is applied to localize the
mid-pool area. The mean-value is calculated using a
sliding window of 3.5 sec. Segment begin and end are
detected by a drop in the mean value below 0.8 g.

4.1 Velocity extraction

From the acceleration signal alone it is not possible
to detect the swimmer’s position in the pool without fur-
ther constraints. Therefore the time for the whole 50 m
of the pool is extracted by detecting the wall-push-off
and the wall-strike events. This detection is based on the
gradient of the y-axis. First the raw acceleration signal
is low-pass filtered using a 2nd order Butterworth filter
with a normalized cutoff frequency of 0.01. The gradi-
ent is calculated with a sliding window of 1/5 sec over
the filtered signal.

The wall-push-off event is identified by first mini-
mum in the gradient (first falling slope, see figure 3a).
The wall-strike at the end of the pool is discriminated
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by (he maximum in the gradienl aller the mid-pool area
(increasing slope at the end, see ligure 3¢).

4.2 Distance per stroke extraction

Extracting the DES dircctly from the acceleration
signal is not possible. With the velocity (section 4.1)
and the TP5 the DFS can be calculated according Lo
equation 2.

To determine the TP the umestamps of all stroke
events are extracted [rom the acceleration data The most
significant stroke-phase for the automatic stroke event
detection is the moment when the hand is pulled up-
wards out of the water. This is represented as a negative
peak in the y-axes of the acceleration signal. A min-
imum peak detection is applied to the butterworth fil-
lered signal (see section 4.1) in the pre-segmented mid-
pool area, marking all stroke occurrences (ligure 3b).

With the umestamps ol all stroke events the time
needed for each stroke can be calculated. The 1TFS
value [or a specilic lap is the average over all siroke
time intervals within this lap.

5. Results and discussion

We [irst assess the reliability of the aulomatic pa-
rameler exlraction algorithm. We compare (he posilions
ol the detecled evenls (o the positions we expect [rom
the visual inspeclion of the data. The manual annota-
tion serves as an aid to find the areas of interest in the
datasets.

The start and the stop events are automatically de-
tected in all laps of all subjects in the dataset. ‘The de-
viation from the expected positions is in the range of
£0.3 sec lor the pool-starl and £=0.2 sec (or (he wall-
strike. The strokes are deleeled reliably, Occasionally
the first or the last stroke in one lap is missed. Thisis not
critical as this does not affeet the T£S. The maximum
error of (he delected stroke cvents from the expecled
positions is in the range of £10% of the T7°S. This de-
viation depends mainly on the swimmers style and the
swimming speed as this influences the width of the peak
to detect. Figure 3 shows the acceleration signal of one
example lap with the automatic detected strokes, wall-
push ofT (start) and wall-strike (stop) cvents, Trom (he
errors of the automatic cvent detection we caleulate the
errors infroduced to the velocity and the TFS calcula-
tion, Assuming a high velocity of 100m/min and a
small number of 15 strokes per lap the upper bounds of
the errors are 1.67%: for the velocity and 1.33% for the
Tr8S.

For comparison reason we also evaluare the accuracy
of the manual measurcments using the stopwateh and
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Figure 3. Detected wall-push-off, strokes and
wall-strike events (gray: y-axis acceleration sig-
nal, black: filtered y-axis signal, dashed: detected
cvents)

the labeling device. The comparison of the two manual
measurcments reveals an error with a standard devia-
tion of 0.2 sec per time event (start, stop, stroke). The
manual time measurement errors are duc to the human
reaction time and to the variation in human event identi-
fication. Recalling the procedure from section 2 where
the trainer measures different times to gain the velocity
and the 77’5 of a swimmer, we can calculate the errors
introduced to these parameters. Assuming a high swim-
ming velocity of 100 /min and a low TPS of 1 see,
the upper bounds for these errors are +1.33% for the
velocity and £13, 3% for the THS.

The manual velocity measurement. is slightly more
accurale than (he aulomatic one. With the 7FS extrac-
tion il is conlrary, here the awlomalic method clearly
outperforms the manual measurement. As described
in section 4.1 the velocity calculation in the automatic
method is based on the whole 50 m: lap. This is in con-
trast to the manual method where only the 40 mid-
pool is used. We evaluate the influence of taking the tull
50 instcad of only the mid-pool arca. From the man-
ual measurements we caleulate the speed over the 40 m
and the 50m distance. In our datasct the velocity mea-
sured over 50z is in average 2.5 my/muin faster then the
velocity measured over 40 m. This can be explained by
the wall-push-off which causes a higher velocity in the
first 5 . of the lap. Figure 4 shows two Stroke Efficiency
Test eraphs from the same subject. The first one is gen-
crated from (he manual measurements using the 40m
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mid-pool area for the velocity calculation, The second
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Figure 4. Swim Technique Analysis Graph mea-
sured manually and automatically

one is automatically extracted from the acceleration sig-
nal based on the whole 50 lap. A comparison of both
graphs shows that they have comparable trends. They
differ by an offset caused by the different reference dis-
tances used. The average velocity over the 50 m is faster
than the velocity over the 40 due to the fast part af-
ter the wall push-oft. Therefore the automatic measured
values are at higher values on the abscissa (V') and the
ordinate (DS =V x TPS).

6. Conclusion

We developed an automatic method to extracat the
parameters of the 7 X H0m Stroke Efficiency Test based
on a wrist worn acceleration sensor device. We vali-
dated the approach in a trial with eight subjects, one half
from a competitive swimming club and the second half
recreational swimmers. We have shown the capabilities
of the automatic identification of the push-off phase. the
strokes and the wall-strike by the characteristics of the
swimmers’ wrist acceleration, Therefore we can au-
tomatically extract the parameters for the Stroke Effi-
ciency Test which were so far determined by the swim
trainer,

We have analyzed the maximum errors from the au-
tomatic event detection with respect to the visual in-
spection of the signal. We have shown that the accu-
racy of our system is of comparable order to the manual
measurement by a second person. The largest error in
the automatic parameter extraction, with respect to the
manual measurement, is due to the fact that the veloc-
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ity of the whole 501 is measured instead of the pure
mid-pool area. For improving the velocity measure-
ment one possibility could be to determine the duration
and/or strength of the push-off phase from the acceler-
ation signal. With this information the error induced by
the start phase could be compensated.

By implementing the described methods directly on
the recording device we will be able to obtain the veloc-
ity and stroke length online, This enables a direct user
feedback rather than only a later briefing by the trainer
after the training session. It is further possible to store
the results on the device and transmit them to a PDA or
personal computer for a comparison with other swim-
mers or former tests. An extensive usability study has
to show if such a system is accepted by the swimmers
and trainers.

The automatic extraction of swim parameters saves
time, works independently from a coach and therefore
allows a more frequent analysis. While the traditional
data collection methods are labor and technology inten-
sive (under water cameras), a wrist watch like device
offers the potential to be distributed to all swimmers for
all training sessions, Furthermore, it enables the large
group of recreational swimmers to cvaluate their perfor-
mance using techniques so far only available to compet-
itive swimmers.

Extended research has to show if the recorded ac-
celeration signal can also be used for evaluating further
swim parameters like stroke phases or stroke phase ve-
locity changes. One could also think of placing addi-
tional sensors on the second wrist and/or on the ankles.
This could increase the robustness of the system and
would allow the extraction of additional parameters,
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