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Abstract—The detection and delineation of QRS-complexes
and T-waves in Electrocardiogram (ECG) is an important task
because these features are associated with the cardiac abnormal-
ities including ventricular arrhythmias that may lead to sudden
cardiac death. In this paper, we propose a novel method for the
R-peak and the T-peak detection using hierarchical clustering
and Discrete Wavelet Transform (DWT) from the ECG signal.
In the first step, a template of the single ECG beat is identified.
Secondly, all R-peaks are detected by using hierarchical clus-
tering. Then, each corresponding T-wave boundary is delineated
based on the template morphology. Finally, the determination of
T wave peaks is achieved based on the Modulus-Maxima Analysis
(MMA) of the DWT coefficients. We evaluated the algorithm
by using all records from the MIT-BIH arrhythmia database
and QT database. The R-peak detector achieved a sensitivity of
99.89%, a positive predictivity of 99.97% and 99.83% accuracy
over the validation MIT-BIH database. In addition, it shows a
sensitivity of 100%, a positive predictivity of 99.83% in manually
annotated QT database. It also shows 99.92% sensitivity and
99.96% positive predictivity over the automatic annotated QT
database. In terms of the T-peak detection, our algorithm is
verified with 99.91% sensitivity and 99.38% positive predictivity
in manually annotated QT database.

Index Terms—ECG; R and T peak detection; Hierarchical
clustering; DWT.
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I. INTRODUCTION

A
CCORDING to the World Health Organization (WHO),

31% of all global deaths are due to the Cardiovascular

Diseases (CVDs) [1]. Diagnosising CVDs and ensuring the

patients can receive appropriate treatment are necessary to

prevent premature deaths. The analysis of the ECG is widely

applied in the diagnosis of these heart disorders [2]. The

most useful information in the ECG is normally derived from

the amplitudes and intervals of these dividual waves that

are defined by the fiducial points (e.g. onset, offset, peak).

In general, these features are used to classify the normal

and abnormal heartbeats in this process of diagnosis of a

specific heart disease, e.g. congestive heart failure (CHF)

[3] and cardiac arrhythmia [4]. Therefore, it is necessary

to extract various features of ECG in order to diagnose the

heart diseases. Among the ECG wave, the QRS complex is
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relatively easy to identify because of its specific morphology

and high amplitude. However, the T-wave delineation is a

more challenging task, due to its low amplitude and possibly

irregular morphology. In addition, noises such as baseline

wandering and power line interference are main factors that

can result in faulty T-wave delineation.

Over the decade, a number of automated algorithms have

been developed for ECG delineation. In general, there are

two main groups of ECG feature extraction algorithms, which

are QRS detection and non-QRS delineation algorithms [5].

The first QRS detection algorithm was introduced by Pan and

Tompkins [6]. There are other attempts for QRS detection

based on shannon energy envelope (SEE) [7], wavelet trans-

form (WT) [8]–[12], phase-space reconstruction (PSR) [13],

Optimized adaptive thresholding [14], iterative state machines

[15], and moving-average filters [16]. Concerning the non-

QRS delineation algorithms, the main objective is to determine

the peaks and boundaries of the individual QRS complexes, P

and T waves. The existing literature on ECG wave delineation

algorithms is extensive and focuses particularly on frequency

aspect, e.g. DWT [17] [18], the combination of wavelet

transform and hybrid hidden Markov models [19]. Among

other popular methods, the phasor transform [20], moving-

average filters [21], [22], morphological mathematical filtering

with Elgendi’s algorithm [23] and the correlation analysis-

based method [24] have also been applied to detect ECG

fiducial points.

However, the major concern associated with these algo-

rithms is their detection accuracy, more importantly low

positive predictivity (+P ) caused by the large number of

false-positives (FPs) of R-peak detection. In addition, current

methods can be error-prone, especially cannot achieve satis-

factory performance for T-wave detection due to the variable

morphology of the T-wave [25]. This is particularly important

in Implantable Cardioverter Defibrillator (ICD) device where

depending upon the detected R-R interval, a patient’s heart

is given high-voltage electrical shock if necessary. In this

context, even more severe problem is the T-wave oversensing

phenomenon, where T-peak is misidentified as an R-peak

resulting into a wrong R-R interval calculation. This leads to a

delivery of an electrical shock even though the patient’s heart

rhythm is normal. Inspired by this fact, a novel automated

ECG feature extraction algorithm based on the hierarchical

clustering and discrete wavelet transform, which is specifically

designed to detect R-peak and T-peak is proposed in this paper.

The hierarchical clustering method is used to identify the
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Fig. 1. The system overview of the proposed algorithm

R-peaks. Then, the T-wave boundaries are determined using

an ECG template. Finally, the discrete wavelet transform is

applied to obtain the DWT coefficients of the T waves, and

the MMA method is employed to detect the T-peaks. The flow

chart of our proposed algorithm is shown in Fig.1

The rest of the paper is organized as follows: in Section II,

we present the theoretical background of the key mathematical

methods used in our work. Then we describe our algorithm

in Section III and provide the results and the discussion of

the validation on MIT-BIH arrhythmia and QT databases in

Section IV. Finally, the conclusions are drawn in Section V.

II. THEORETICAL BACKGROUND

A. Hierarchical clustering

Hierarchical clustering is a common machine learning algo-

rithm that seeks to determine the hierarchy of all clusters by

analyzing similarity or dissimilarity between pairs of points

and has been used for solving a range of physical problems,

such as identification of the environment characteristics [26]

and statistical analysis of gene expression [27]. Normally, the

process of hierarchical clustering is divided into three steps;

(1) choose the hierarchical method, (2) select a measure of

similarity or dissimilarity and (3) select a clustering algorithm

[28].

1) Hierarchical methods: The hierarchical method can be

divided into two types. First is Agglomerative clustering,

where each object represents a single cluster at the beginning.

These individual clusters will be combined based on their

similarity step by step. In this case, the two most similar

clusters are merged into a new cluster. Then, it will combine

with another cluster to generate a new cluster and so on. On

the contrary, in divisive clustering, all objects are combined

into one cluster initially. Then these objects sequentially split

up according to their dissimilarity.

2) Select a measure of similarity or dissimilarity: Selecting

a measure of similarity and dissimilarity is an important step as

this may influence the clustering results. This step is achieved

by calculating the distance between pairs of points. In general,

there are three different measures of distance. If we consider

two objects A and B with their corresponding positions

(Xa, Ya) and (Xb, Yb),the formulas of Euclidean distance,

City-block distance and Chebychev distance measures are (1),

(2) and (3) respectively.

DEuclidean =
√

(Xb −Xa)2 + (Yb − Ya)2 (1)

DCity−block = |(Xb −Xa) + (Yb − Ya)| (2)

DChebychev = max(|Xb −Xa| , |Yb − Ya|) (3)

3) Select a clustering algorithm: After choosing the mea-

sure of similarity or dissimilarity, the next step is to determine

which clustering algorithm will be applied. The most common

agglomerative hierarchical clustering algorithms are single

linkage algorithm, complete linkage algorithm and average

linkage algorithm [29]. Single linkage and complete linkage

determine the distance between two clusters based on the

shortest and longest path between any two points in these

two clusters respectively. However, because the single and

complete linkage algorithms are associated with the shortest

and longest distance, it may cause one cluster containing a

large number of objects and some other small clusters. Average

linkage algorithm is used in order to avoid this situation. It

can produce clusters with similar sizes based on the average

distance between all pairs of points in two clusters. The

descriptions of three linkage algorithms are shown in (4), (5)

and (6) respectively. The cluster r and s are comprised of

the previous clusters, nr and ns are the number of objects in

cluster r and s respectively. xri and xsj are the ith and jth

object in cluster r and s respectively.

Linkagesingle(r, s) = min(D(xri, xsj))

i ∈ (1, · · · , nr), j ∈ (1, · · · , ns)
(4)

Linkagecomplete(r, s) = max(D(xri, xsj))

i ∈ (1, · · · , nr), j ∈ (1, · · · , ns)
(5)

Linkageaverage(r, s) =
1

nrns

nr∑

i=1

ns∑

j=1

D(xri, xsj) (6)

B. Discrete wavelet transform

The DWT decomposition is implemented as high and low

pass filters, which can obtain the detail (Dx) and approx-

imation (Ax) coefficients in the 2x scale respectively. The

low pass filter removes all the frequency components of the

above half of the maximum frequency of the input signal,

on the other hand, the high pass removes the components
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below half the maximum frequency. However, since half of

the frequencies of the input signal have been removed, half

the samples can be discarded according to the Nyquists rule.

Down sampling is performed after filtering in order to remove

half of the samples. The output of the low pass filter will be

considered as the input for next level processing. The process

is repeated until the desired level of decomposition of the

signal is reached. The frequency resolution increases in higher

resolution scales, thus low frequency components are more

easily detectable in high resolution scales and vice versa. As

an example 3-level DWT decomposition is shown in Fig.2. LP

and HP stand for low-pass and high pass filters respectively.

At each decomposition level n, detail DWT coefficient Dn

and approximation coefficient An are produced after filtering

and down sampling, which can be given in (7).

Fig. 2. A level 3 DWT decomposition

Dn[i] =
∞∑

k=−∞

Dn−1[i] ·HP [2i− k]

An[i] =

∞∑

k=−∞

An−1[i] · LP [2i− k]

(7)

As the frequency resolution increases in higher resolution

scales [8], low frequency components of ECG, such as P and T

waves are more easily detectable at higher resolution scales. In

this work, the detail coefficients (D4) in 24 scale and (D5) in

25 scale are used to detect T wave. Once DWT coefficients are

computed, MMA will be applied in order to detect the peaks

of T wave. At 24 and 25 resolution level if the value of the

detailed DWT coefficients are positive followed by negative,

the T-peak is the minimum(convex) point in original ECG data

and the vice versa.

III. METHODOLOGY

In this section, we will present the proposed method based

on the combination of hierarchical clustering and DWT. Our

algorithm aims at detection of QRS complexes and T peaks

from the sequence of successive ECG signals. In this work,

in order to analyse at least one R-peak and at most two R-

peaks each step, we set a sliding time window of 1.2s at

each step, as we experimentally found out that this is the

optimal time window for detecting the R-peaks. Our proposed

technique is structured as a four-stage process. First is ECG

pre-processing. Raw ECG signals were filtered using fourth-

order Butterworth high-pass filter and low-pass filter with the

corresponding cut-off frequency of 1 Hz and 30 Hz to remove

the noise and baseline wandering [30]. After that, the ECG

signal was normalized using (8) so that all the values will

be in the range [0,1]. An example can be seen in Fig.3. The

Fig. 3. An example of ECG pre-processing(annotation:se1891m from QT
database. The sampling frequency is 250Hz hence a time window has 300
ECG samples)

second stage is using hierarchical clustering to determine the

R-clusters and non-R clusters, then, identify the R-peaks from

R-clusters. The third stage pertains to the T-wave boundary

detection based on the R-peak and an ECG period template.

The final stage is to find the T-peaks by using DWT and MMA.

Ẽ (n) = (E (n)− Emin) / (Emax − Emin) (8)

A. Detection of R peak

The strategy of the proposed algorithm is to first iden-

tify the R-peak position by using hierarchical clustering. In

this stage, we use agglomerative cluster method because we

consider every ECG sample as an individual cluster initially

and all R wave samples are merged into a cluster based

on their similarity. We select Euclidean distance to measure

the similarity between each ECG sample. Next, we need to

select a clustering method to determine the R-wave clusters.

In this case, single and complete linkage algorithms are not

applicable because they reduce the assessment of the cluster

quality to a single similarity between a pair of objects and they

cannot fully reflect the distribution of objects in one cluster.

Therefore, they usually produce an undesirable cluster that

may include non-R samples. The average linkage algorithm

can avoid this situation because it determines the clusters

based on the average distance between all pairs of objects.

The process of our R-peak detector can be divided into three

main stages, namely cluster extraction, R-peak estimation and

real R-peak identification. The block diagram of the proposed

R-peak detector is drawn in Fig. 4.

Fig. 4. Flowchart of the proposed R-peak detector
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First, for ECG data E[n], each ECG sample E[i] is consid-

ered as a individual object with its amplitude A[i] and slope

S[i]. The slope of an object is defined as the average absolute

value of the amplitude difference between E[i] and E[i+ 1];
and E[i − 1] respectively. The expression is shown in (9).

Then, these objects are considered as the input data to a two-

dimensional hierarchical clustering system. The ECG samples

are displayed in a two-dimensional coordinate system, with

x axis and y axis are the amplitude and slope of each ECG

sample respectively as seen on the left of the Fig.5. Then,

the hierarchical clustering system will calculate the distance

between each object (ECG sample) using (1). Initially, two

ECG samples with the shortest distance are merged into a

cluster. Then the hierarchical clustering system selects two

clusters with the shortest average distance of the ECG samples

between them by (6), groups them together into a new cluster

and repeats the procedure with the remaining ECG samples.

Until the number of cluster become 2, one is a large cluster

and another is a small cluster. The cluster with small number

of object is R-cluster, since the ECG samples of R-wave is

just a small part of the ECG signal. It is shown on the right

of the Fig.5, the objects (ECG samples) with relatively larger

slope and amplitude are merged into a small cluster, which

can be considered as the R-cluster. Other ECG samples are

non-R cluster. Here, some of the ECG samples with large

amplitude are still considered as non-R cluster, that is because

the slope of these objects are relatively low. This is particularly

important to solve T-wave oversensing. Even the amplitude of

a T-wave is higher than a R-wave, the slope of the T-wave is

relatively low. Then the ECG samples of this T-wave will still

be grouped into the non-R cluster.

S[i] =





|A[i+ 1]−A[i]| i = 1,

(|A[i+ 1]−A[i]|+ |A[i]−A[i− 1]|)/2 1 < i < n,

|A[i]−A[i− 1]| i = n.
(9)

Fig. 5. An example of ECG R-wave cluster extraction based on Fig.3

Once the R-wave clusters are determined in the last stage,

the next step is to identify the R-wave ECG sample sequences

from these R-wave clusters. As shown on the left of the Fig.6.

There are two R-wave sequences (Green points) from the R-

peak cluster which are identified using hierarchical clustering.

Then, this step is to find the ECG sample with highest absolute

value of the amplitude within each R-wave sequences and

consider these ECG samples are R-peaks. The final result is

shown on the right of the Fig.6.

Fig. 6. An example of R-peak Estimation based on Fig.5.

However, there is an abnormal situation that was introduced

in [31] named RsR′ pattern. There is an additional spike of

QRS complexes caused by any abnormality of conduction in

bundle branch block, which is referred to as R′. In addition,

as we mentioned earlier, a sliding 1.2 s time window was

applied for R-peak detection. In this case, if two successive

windows contain half of the same ECG beat, our algorithm

will detect two R-peaks that actually are in the same QRS

complex. Therefore, a post-processing is needed to remove

such R′ peaks from RsR′ pattern or a fake R-peak due to

a half ECG beat in a window. We set a threshold of the

shortest period between each R peak from two successive QRS

complexes, which is from 100 ms [7] to 250 ms [17]. The

experimental results showed that 100 ms window is too small

if there is a RsR′ pattern in a wide QRS complex and 250 ms
is too large to a small QRS complex. From the results, 200 ms
time window is an acceptable time window to identify the R-

peaks. In this case, if two R-peaks are identified in a window

of 200 ms, the one with the lower amplitude is removed and

another one is kept as a real R-peak.

B. Determination of the T wave boundary

In this stage, we have the template of a single PQRST

period with its corresponding QRS onset, offset and R-peak,

which is done by selecting a normal beat with a well-behaved

QRS complex that annotated by cardiologists [32]. Fig.7 is

an example of a template with the determined QRS complex.

The green diamond is marked as R-peak (t0). Moreover, the

PQRST-onset (offset) and QRS-onset (offset) are t1 (t2) and t3
(t4) respectively. In this case, [t4,t2] is considered as T wave

boundary of the template. Then we calculated the distance

between R-peak and QRS offset, PQRST offset as t4− t0 and

t2 − t0 respectively. Once we obtained the R-peak (tR), the

QRS offset(T onset) and PQRST offset (T offset) is initially

estimated as tTon = tR+(t4− t0) and tToff = tR+(t2− t0)
respectively. It can be seen in Fig.8, the red points are QRS

offset (T onset) and yellow points are PQRST offset (T offset).

The next step is to calculate the Mean Square Error (MSE)

between ECG samples (Ei) in the T wave boundary of the

template and ECG samples (Ẽi) in each estimated T wave

boundary using (10), where n is the number of ECG samples

in T wave boundary.

MSE =
1

n

n∑

i=1

(Ei − Ẽi)
2 (10)

Finally each estimated T wave boundary is moved forward

and backward by 20 samples Ẽi±20 and the respective MSE is
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calculated. The final T wave boundaries are extracted based on

the minimum MSE between Ei and Ẽi±20. It also need to be

noted that our obtained T wave boundaries obtained here may

not be the actual T wave boundaries, since once the width of

ECG beat become abnormal, such T wave boundaries can not

be identified accurately using a normal template. Therefore,

the main idea of our algorithm is to determine the approximate

range based on the T boundary to make sure the T-peak is in

this range.

Fig. 7. The template of the single PQRST period (annotation:se1891m from
QT database)

Fig. 8. T wave boundary estimation using template (Fig.7) (annota-
tion:se1891m from QT database)

C. Detection of T peak

Once the approximate T wave boundaries are finalized.

DWT is applied to combine with the MMA method to de-

termine the T-peaks. We developed an algorithm that takes

inspiration from the work of [5] and [8]. Since the T waves

have significant components at higher scale, it is possible

to detect T-peaks at scale 24 or 25 using DWT [5]. In this

case, we selected ’Haar’ as the wavelet function in order to

reduce the computational complexity, because it is the simplest

wavelet function and it is sufficient for T-peak detection [8]. In

this work, the 24 and 25 resolution scale detailed coefficients

are first determined by using DWT. Once DWT coefficients are

computed, the next step is to use MMA to find the positions

of T peaks. Given the positive or negative deflection of the

T wave, compared to the baseline, the pair of extrema that

indicates the waves temporal position can be either a wavelet

coefficient with minimum value followed by a maximum

wavelet coefficient, for positive deflection or the reverse for

a negative deflection. Through MMA, we initially obtain the

temporal position by calculating t1, t2 with the maximum

or minimum values in the D4 coefficients and t3, t4 in the

D5 coefficients. As mentioned before, half of the samples are

discarded at each level after filtering in DWT. Therefore, it

is noted that the temporal resolutions on the 24 and 25 are

diminished (by a factor of 16 and 32 respectively) compared to

the original timescale. Thus, the T peak time point is calculated

as the maximum or minimum of the data within time widows

[t1 × 24, t2 × 24] and [t3 × 25, t4 × 25]. If the deflection

detected in the MMA is characterized as negative, then T wave

is inverted. The final step is to compare the absolute values of

T peak amplitudes, which are obtained from the last step. The

one with the highest absolute value of the amplitude is kept

as the T peak. A detailed example is shown in Fig.9. Once

the T wave boundaries are determined, the DWT is applied

to calculate the D4 and D5 coefficients of the T wave. From

the D4 coefficients, the t1 and t2 are 3 and 5 respectively, the

T peak time point is then calculated as the maximum value

within the time window [3 × 24, 5 × 24]. In this case, the T

peak time point is identified at 58. On the other side, the T

peak time point based on the D5 coefficients within the time

window [2× 25, 3× 25] is calculated at 64. Finally, the real

T peak is determined at 58 with amplitude 46.5 rather than

another T peak with lower amplitude 38.1. Although it is noted

that the T waves have different morphology, such as peaked

T waves, inverted T waves, biphasic T waves, T waves with

two peaks etc. [33]. The main aim of our system is to identify

the T-peak with the largest absolute value of the amplitude

as the real T-peaks in each window. Fig.10 is the final result

of our algorithm as an example record (se1891) with T wave

oversensing problem from QT database. The green diamonds

and the red squares are R-peaks and T-peaks respectively.

Fig. 9. T peak detection based on DWT and MMA

IV. RESULTS AND DISCUSSION

A. Data and Validation

The MIT-BIH and QT databases [32] are used to validate

our proposed algorithm. First we used all 48 30-minutes ECG

records with 360Hz sampling frequency of MIT-BIH databse.

In this work, we calculated sensitivity Se = TP/(TP +FN),
positive predictivity +P = TP/(TP + FP ) and Accuracy

Acc = TP/(TP + FP + FN) of the annotated R wave
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Fig. 10. The result of an example with T wave oversensing for R and T peak
Detection.(annotation:sel891m)

peaks, where TP is the true positives (peak is detected of the

annotated peak), FN denotes the false negatives (annotated

peak is not detected) and FP is the false positives (when peak

is detected outside the range of the annotated peak). In this

work, we calculated sensitivity Se and positive predictivity

+P by considering the range of 150ms (±75ms) of the anno-

tated R-peaks based on the AAMI-ECAR guidelines [34] in

order to compare with the literature under the same condition.

We compared the performance of our algorithm with other

established algorithm for R-peak detection, which is shown

in Table I. Table II shows the effectiveness of our R-peak

detector in terms of false positives. For the QT database, it has

105 2-lead recordings with a sampling frequency of 250Hz.

It includes different T wave morphologies, such as normal,

inverted, only upwards and only downwards deflections [35].

In this work, all ECG records (more than 111200 beats) of the

automatically annotated QT database is used to evaluate our

algorithm. Moreover, the 103 manually annotated records of

Lead I are also used since they are more salient. The results

are finally compared with other methods.

We also evaluated the detection accuracy of our algorithm

based on the time difference (error) between the detected peaks

and the manual annotated peaks. The accuracy in terms of the

average of the errors (m) and the standard deviation (s) of

the errors are obtained for all the records. The results and the

comparison with the literature are given in Table III. Finally,

we built a record-by-record classification as proposed in [5]

and more recently in [17] for T peak detection. We chose the

same threshold in [5] to compare with the previous works.

The thresholds are measured by the 15ms for the absolute

average error (bias) and 30.6ms for the standard deviation

(s). Thus, these records are divided into four groups based on

the following rule: Group I: bias < 15ms and s < 30.6ms;

Group II: bias > 15ms and s < 30.6ms; Group III: bias <
15ms and s > 30.6ms and Group IV: bias > 15ms and

s > 30.6ms. The comparison results with three established

algorithms for the T peak detection are shown in Table IV.

B. Method Evaluation

The proposed algorithm shows the high performance in the

delineation of ECG R and T-peaks. Concerning the R peak

detection, the Table I shows our method achieves 99.89%

Se, 99.94% +P and 99.83% Acc for R-peak detection. The

performance in terms of +P and Acc is higher than other

previously proposed works. From Table II, it can be seen in

our work, false positives of R-peak detection can be effectively

reduced and only exist in the records with baseline drifts.

In the future work, the performance of our algorithm can

be improved with the removal of baseline drifts in such

ECG records. Furthermore, Table III shows that for R peak

detection, this algorithm achieves 100% Se and 99.83% +P
over the manually annotated QT database. It also achieved a

Se of 99.92% and a +P of 99.96% over the automatically

annotated QT database. Although three studies in literature

[18], [7] and [14] achieved slightly higher Se for R-peak

detection, the number of true positive of our algorithm for R-

peak detection is larger than these studies. Overall, the R-peak

detection performance of our algorithm is generally better or

comparable with the previous work.

In terms of the T-peak detection in manually annotated QT

database, our algorithm achieved a Se of 99.91% and a +P
of 99.38%. Although we used a 150 ms window to define the

true positive of T-peak detection, the mean (m) and standard

deviation (s) of errors are lower than most of the previous

work. It is also noted that the study in literature [18] achieved

lower mean (m) and standard deviation (s) of errors for T-

peak detection. However, they did not annotate the number

of the true positives and this may reflect they did not use

all manual annoted QT database. Moreover, the QT database

stratification based on the T peak detection is given in Table

IV. It shows that the T peaks in the 95% of the records were

detected by our method, which is higher than other referenced

methods. The other 5% records in Group III and IV show the

larger mean (m) and standard deviation (s) than other works.

This might be the reason for causing large mean (m) and

standard deviation (s) of errors over the whole QT databse. A

deeper analysis shows the records in these two groups are from

“sudden death” patients which can be checked in [35]. Our

method may have problems in T peak detection for “sudden

death” records because the morphology of T waves in these

records may be erratic. Further study is needed to investigate

this type of condition.

V. CONCLUSION

In this paper, we have proposed a new algorithm based

on the hierarchical clustering and discrete wavelet transform

for the automatic delineation of the ECG fiducial points (R

and T peaks)1. The use of hierarchical clustering allows for

identifying the R clusters and determining the R peaks with

high accuracy. The combination of DWT and MMA analysis

help us to detect the T peaks with high sensitivity. Our

algorithm has been validated on the MIT-BIH arrhythmia

database and QT database. The results show that our algorithm

can solve T-wave oversensing problem and effectively reduce

the number of R-peak false-positive detection. Moreover,

the performance of algorithm is generally better than other

referenced algorithms.

1A detailed detection performance of our proposed algorithm
for each record can be found in https://drive.google.com/file/d/
1wuhDQ7fKUTVQa8PQmFBt3E DSaItfDIr/view?usp=sharing
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TABLE I
THE R-PEAK (QRS) DETECTION PERFORMANCE COMPARISON IN THE MIT-BIH ARRHYTHMIA DATABASE.(THE WINDOW USED FOR DEFINING A TRUE

POSITIVE IS REPORTED AS w, N/R: NOT REPORTED)

Authors Method Used w[ms] TP FP FN Se[%] +P[%] Acc[%]

This work Hierarchical clustering 150 109370 63 124 99.89 99.94 99.83

Martinez et al. [5] Wavelet transform(WT) N/R 109208 153 220 99.80 99.86 99.66
Ghaffari et al. [18] Discrete wavelet transform(DWT) 150 109327 129 101 99.91 99.88 99.79

Manikandan et al. [7] Shannon energy envelope(SEE) N/R 109356 140 79 99.93 99.86 99.79
Elgendi et al. [16] Moving average filters N/R N/R N/R N/R 99.78 99.87 N/R

Merah et al. [9] Stationary wavelet transform(SWT) 100 109316 126 178 99.84 99.88 99.72
Saadi et al. [14] Optimized adaptive thresholding 150 N/R N/R N/R 99.90 99.87 N/R

Thiamchoo et al. [10] Continuous wavelet transform(CWT) N/R 109135 356 185 99.69 99.83 99.52
Thungtong [11] Discrete wavelet transform(DWT) N/R 109096 242 409 99.63 99.78 99.41

Smaoui et al. [12] Continuous wavelet transform(CWT) N/R N/R 168 756 99.37 99.83 N/R
Cesari et al. [17] Wavelet transform (WT) 150 109321 147 173 99.84 99.87 99.71

Friganovic et al. [23] Mathematical morphological filter 150 98659 268 214 99.78 99.72 99.52
Zalabarria et al. [15] Iterative state machines N/R 106096 431 485 99.54 99.60 N/R

TABLE II
COMPARISON OF THE NUMBERS OF FALSE-POSITIVES (FPS) BASED ON R-PEAK DETECTION FOR SPECIFIC RECORDS OF THE MIT-BIH ARRYTHMIA

DATABASE, (WHERE N/A IS NOISE AND ARTEFACT, BD IS BASELINE DRIFTS, IR IS IRREGULAR RHYTHMIC, VA IS VENTRICULAR ARRHYTHMIAS,
SCR IS SUDDEN CHANGES IN R-PEAK, HT AND HP ARE HIGH T-PEAK AND P-PEAK RESPECTIVELY, PVCS IS PREMATURE VENTRICULAR

CONTRACTIONS AND SQRS IS SMALL QRS COMPLEXES.)

No. Characteristics Number of false-positive (FP) detection

Ref. [7] Ref. [9] Ref. [10] Ref. [11] Ref. [12] Ref. [15] This work

104 N/A 14 12 15 7 32 3 0

105 N/A 18 11 22 48 25 9 0

108 N/A, BD, HP 12 10 12 40 19 73 5

113 HT 3 4 8 4 0 0 0

116 BD, sQRS 8 7 2 26 2 1 10

200 N/A, VA 6 0 16 6 7 0 0

203 N/A, BD, IR, VA 5 10 14 53 24 24 10

208 BD, PVCs, sQRS 5 3 4 22 4 4 7

210 N/A, BD 3 3 3 16 4 1 7

222 BD, IR, HP 0 5 1 4 1 0 4

223 SCR 0 0 1 8 0 0 0

228 N/A, BD 7 7 19 5 19 9 7

232 BD 18 10 4 2 2 12 4

233 VA 0 0 0 13 0 0 0

Total 99 82 121 254 139 136 54

TABLE III
R-PEAK (QRS) AND T-PEAK DETECTION PERFORMANCE COMPARISON IN THE QT DATABASE.(THE WINDOW USED FOR DEFINING A TRUE POSITIVE IS

REPORTED AS w, N/R: NOT REPORTED)

Authors Method Used Annotation(File Name) w[ms] TP FP FN Se[%] +P[%] Acc[%]

R-peak
(QRS)

This work Hierarchical clustering Manual(.qlc) 150 3617 6 0 100 99.83 99.83

Martinez et al. [20] Phasor transform Manual(.qlc) N/R N/R N/R N/R 99.85 N/R N/R
Cesari et al. [17] WT Manual(.qlc) 150 N/R N/R N/R 100 N/R N/R

This work Hierarchical clustering Automatic(.pu) 150 111153 47 91 99.92 99.96 99.88

Martinez et al. [5] WT Automatic(.pu) N/R 86824 107 68 99.92 99.88 99.80
Ghaffari et al. [18] DWT Automatic(.pu) 150 86845 79 47 99.94 99.91 99.85
Elgendi et al. [16] Moving average filters Automatic(.pu) N/R 110834 N/R N/R 99.99 99.67 N/R

Merah et al. [9] SWT Automatic(.pu) 100 86837 99 55 99.94 99.89 99.82
Thungtong [11] DWT Automatic(.pu) N/R 83092 80 206 99.75 99.90 99.66

Friganovic et al. [23]
Mathematical

morphological filter
Automatic(.pu) 150 84849 2161 1508 98.25 97.51 95.76

Authors Method Used Annotation(File Name) w[ms] TP FP FN Se[%] +P[%] m±s(ms)

T-peak

This work
Hierarchical clustering

and DWT
Manual(.qlc) 150 3520 22 3 99.91 99.38 1.4±8.2

Martinez et al. [5] WT Manual(.qlc) N/R N/R N/R N/R 99.77 97.79 0.2±13.9
Ghaffari et al. [18] DWT Manual(.qlc) N/R N/R N/R N/R 99.87 99.80 0.3±4.1
Martinez et al. [20] Phasor transform Manual(.qlc) N/R N/R N/R N/R 99.20 N/R 5.3±12.9
Elgendi et al. [21] Moving average filters Manual(.qlc) 60 N/R N/R N/R 98.90 98.77 N/R
Cesari et al. [17] WT Manual(.qlc) 150 N/R N/R N/R 99.50 N/R -2.6±12.2

Friganovic et al. [23] WT+templates Manual(.qlc) 160 3115 464 427 87.94 87.03 N/R
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TABLE IV
QT DATABASE STRATIFICATION ACCORDING TO THE T-PEAK

DETECTION.(N/A: NOT AVAILABLE)

QT databse Group I Group II Group III Group IV

Method % m±s[ms] % m±s[ms] % m±s[ms] % m±s[ms]

This work 95 2.86±5.62 0 N/A 2 12.07±54.53 3 33.13±74.02

Ref. [5] 83 3.9±7.6 5 -2.7±17 5 -0.5±37 7 -42±72

Ref. [17] 89 -5.5±7.7 2 8.7±22.5 3 -3.1±55.3 6 38.1±50.5

Ref. [36] 82 4.2±8.6 8 36±15 4 9.6±38 6 32±40

REFERENCES

[1] W.H.O., “Cardiovascular diseases (cvds),” 2019. [Online]. Available:
https://www.who.int/cardiovascular diseases/en/

[2] C.-T. Lin, K.-C. Chang, C.-L. Lin, C.-C. Chiang, S.-W. Lu, S.-S. Chang,
B.-S. Lin, H.-Y. Liang, R.-J. Chen, Y.-T. Lee et al., “An intelligent
telecardiology system using a wearable and wireless ecg to detect
atrial fibrillation,” IEEE Transactions on Information Technology in

Biomedicine, vol. 14, no. 3, pp. 726–733, 2010.

[3] S.-N. Yu and M.-Y. Lee, “Bispectral analysis and genetic algorithm
for congestive heart failure recognition based on heart rate variability,”
Computers in Biology and Medicine, vol. 42, no. 8, pp. 816–825, 2012.
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