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ABSTRACT

We present an unsupervised machine learning technique that automatically segments and

labels galaxies in astronomical imaging surveys using only pixel data. Distinct from previ-

ous unsupervised machine learning approaches used in astronomy we use no pre-selection

or pre-filtering of target galaxy type to identify galaxies that are similar. We demonstrate

the technique on the Hubble Space Telescope (HST) Frontier Fields. By training the al-

gorithm using galaxies from one field (Abell 2744) and applying the result to another

(MACS 0416.1−2403), we show how the algorithm can cleanly separate early and late

type galaxies without any form of pre-directed training for what an ‘early’ or ‘late’ type

galaxy is. We then apply the technique to the HST Cosmic Assembly Near-infrared Deep

Extragalactic Legacy Survey (CANDELS) fields, creating a catalogue of approximately 60 000

classifications. We show how the automatic classification groups galaxies of similar morpho-

logical (and photometric) type and make the classifications public via a catalogue, a visual

catalogue and galaxy similarity search. We compare the CANDELS machine-based classifi-

cations to human-classifications from the Galaxy Zoo: CANDELS project. Although there is

not a direct mapping between Galaxy Zoo and our hierarchical labelling, we demonstrate a

good level of concordance between human and machine classifications. Finally, we show how

the technique can be used to identify rarer objects and present lensed galaxy candidates from

the CANDELS imaging.

Key words: methods: data analysis – methods: observational – methods: statistical.

1 IN T RO D U C T I O N

Machine learning is a data analysis approach that will be vital for

the efficient analysis of future astronomical surveys. Even current

surveys are generating more data than is practical for humans to ex-

haustively examine, and the next generation of survey facilities will

compound the issue as we usher-in the ‘petabyte’ regime of astro-

nomical research, with data acquired at a rate of many terabytes per

day. For experiments such as the Large Synoptic Survey Telescope

(LSST; Ivezic et al. 2008), it will be important to rapidly and au-

tomatically analyse streams of imaging data to identify interesting

transient phenomena and to mine the imaging data for rare sources

will yield new discoveries.

The automatic analysis of galaxies has been a focus of research

for some time. Existing, non-machine learning approaches to cat-

egorize morphology and structure include tools to identify struc-

tural parameters such using GALFIT and GIM2D (Simard 1998; Peng

et al. 2002) and measures such as the Gini coefficient, M20 and CAS

parameters (Abraham, van den Bergh & Nair 2003; Conselice 2003;

⋆ E-mail: a.hocking3@herts.ac.uk

Lotz, Primack & Madau 2004). In addition, tools to automate the

processing of large data sets to calculate these structural param-

eters such as Galapagos (Barden et al. 2012) and it’s multi-band

variant produced by the MegaMorph project (Häußler et al. 2013).

Other tools use image processing techniques such as Ganalyzer and

SpArcFiRe (Shamir 2011; Davis & Hayes 2014). In recent years,

machine learning has once again become a prominent area of re-

search following high-profile advances in object recognition, image

classification and generative models (Goodfellow et al. 2014; He

et al. 2016; Redmon et al. 2016).

Machine learning has been successfully applied to mundane

and complex analysis tasks in astronomy. For example, there has

been a good deal of effort on developing neural networks and

other techniques to improve the estimation of photometric red-

shifts (Firth, Lahav & Somerville 2003; Collister & Lahav 2004;

Bonfield et al. 2010; Cavuoti et al. 2012; Brescia et al. 2013).

Even the mundane task of automatically classifying objects such

as stars and galaxies of different types is well-suited to ma-

chine learning as has been recognized for some time, for exam-

ple, by using neural networks (Lahav et al. 1995) and support

vector machines (SVM) galSVM (Huertas-Company et al. 2008;

Huertas-Company et al. 2009, 2011). More recent research uses

C© 2017 The Authors
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ConvNet models based on work by Krizhevsky, Sutskever & Hin-

ton (2012) that won the computer science ImageNet competition

in 2012. This has been used to classify SDSS images (Diele-

man, Willett & Dambre 2015, Galaxy Zoo) and Huertas-Company

et al. (2015) followed Dieleman’s work to classify Cosmic As-

sembly Near-infrared Deep Extragalactic Legacy Survey (CAN-

DELS) galaxies into five morphological types. Convolutional net-

works have been used more recently to classify radio galaxies

(Aniyan & Thorat 2017). Other machine learning algorithms such

as deep recurrent networks have be used to classify supernovae

(Charnock & Moss 2017). Random forests have been used to iden-

tify transient features in Pan-STARRS imaging (Wright et al. 2015),

for the identification and classification of Galactic filamentary struc-

tures (Riccio et al. 2016) and the inference of stellar parameters

(Miller et al. 2015). Kuminski & Shamir (2016) created a cata-

logue using a tool called Wndcharm to classify ∼3000 000 SDSS

galaxies as spiral or elliptical. More recently Generative Adversarial

Networks (GANs; Goodfellow et al. 2014) have been employed by

Schawinski et al. (2017) to de-noise images of galaxies with much

greater performance than simple deconvolution.

These techniques predominantly employ supervised learning. Su-

pervised learning has the disadvantage that it requires labelled input

data, and so is limited in its potential for completely automated data

analysis and exploration of large data sets. For example, Huertas-

Company et al. (2015) created a CANDELS catalogue that relied

on 8000 expert classifications of galaxies in GOODS-South to train

the ConvNet to classify the remainder of the CANDELS into five

visual-like morphologies: disc, spheroid, peculiar/irregular, point

source/compact and unclassifiable. These upfront classifications

drive the process and a ConvNet cannot classify objects outside

of these pre-defined labels used in the training process. Unsuper-

vised machine learning offers an alternative approach. It enables

exploratory data analysis eliminating the need for human inter-

vention (e.g. pre-labelling). The potential for this has been recog-

nized for over two decades (Klusch & Napiwotzki 1993; Nielsen &

Odewahn 1994; Odewahn 1995).

Unsupervised learning has already found application in as-

tronomy, particularly in the estimation of photometric redshifts

(Geach 2012; Way & Klose 2012; Carrasco Kind & Brunner 2014),

object classification from photometry or spectroscopy (D’Abrusco

et al. 2012; in der Au et al. 2012; Fustes et al. 2013), finding galaxy

clusters using catalogue data (Ascaso, Wittman & Benı́tez 2012)

and searching for outliers in SDSS galaxy spectra (Baron &

Poznanski 2016). Work by Schutter & Shamir (2015) presents com-

puter vision techniques to identify galaxy types (see also Banerji

et al. 2010). This approach required an existing catalogue of galaxy

images that are sorted by class at the input stage, which is pre-

labelling and therefore a supervised process. Other work by Shamir

(2012) developed an outlier detection technique to detect pecu-

liar galaxies amongst a training set consisting of a single clean

morphological type. The technique trains unsupervised algorithms

on a pre-labelled and collated training set. Shamir, Holincheck

& Wallin (2013) used a pre-defined training set with supervised

and unsupervised algorithms to classify galaxy mergers. Shamir

& Wallin (2014) combined supervised and unsupervised tech-

niques in an outlier technique to identify peculiar galaxy pairs

in 400 000 SDSS images. Existing works incorporating unsuper-

vised algorithms to classify images of galaxies all use the colla-

tion of a training data set by pre-labelling galaxies. A completely

unsupervised machine learning technique that can be applied to

survey images without this upfront effort is arguably yet to be

proven.

In this paper, we employ a patch based unsupervised machine

learning model to explore surveys by classifying, labelling and

identifying similar galaxies. The technique reads multi-band FITS

survey images and outputs groups of similar galaxies. The technique

combines small patches around each pixel where each small patch

is typically much smaller than the size of a galaxy. To the best of our

knowledge no other unsupervised, or supervised machine learning

technique has used a patch-based model. Unlike previous unsu-

pervised machine learning approaches, our technique is an explo-

ration and classification approach to produce catalogues consisting

of fine-grained classifications of whole surveys. The technique is

completely unsupervised requiring no up-front collation of training

data and no galaxy pre-labelling.

We demonstrate the technique by applying the algorithm to Hub-

ble Space Telescope (HST) Frontier Fields (FF)1 observations of

two massive clusters of galaxies. These are fields that contain a

mixture of early- and late-type galaxies that offer an ideal test

case and we use these data to demonstrate the principles of the

method. We then apply the technique to the five HST CANDELS

fields, producing a hierarchical classification catalogue for approx-

imately 60 000 sources. We note that he HST CANDELS fields

have been automatically classified before. Van der Wel et al. (2012)

provided structural parameters for galaxies in CANDELS using

the GALAPAGOS software (Barden et al. 2012) and the aforemen-

tioned CANDELS catalogue produced by Huertas-Company et al.

(2015) using supervised machine learning that consists of five clas-

sification types. Our catalogue is distinct from the catalogue of

Huertas-Company et al. (2015) because it provides a finer classifi-

cation of galaxies grouped by morphology and photometric char-

acteristics. The unsupervised machine learning technique also en-

ables a galaxy similarity search that to our knowledge has not been

demonstrated before using unsupervised machine learning tech-

niques. The resulting catalogue, visual catalogue and galaxy simi-

larity search is provided at www.galaxyml.uk and the source code

at https://github.com/alexhock/galaxymorphology.

Finally, we prove how the technique is not only useful for cat-

aloguing survey images but also for identifying rarer objects by

revealing two lensed galaxy candidates (see Section 4.1). To our

knowledge, these galaxies have not been previously identified as

lenses.

The paper is organized as follows. In Section 2, we describe

the algorithms in more detail. In Section 3, we describe the pro-

cess of applying the algorithms to automatically identify early- and

late-type galaxies in the FF. In Section 4, we present the analysis

of applying the technique to the CANDELS fields, the catalogue

and a comparison with the Galaxy Zoo (GZ): CANDELS project

classifications. We conclude in Section 5 with a comment on the

limitations of our method and avenues for future development.

2 T H E A L G O R I T H M S

In this section, we introduce the three algorithms that comprise the

overall method. There are two unsupervised machine learning algo-

rithms and one image processing algorithm. The input and output

of the machine learning algorithms are compatible and therefore

the algorithms can be chained together in multiple configurations

where, for example, the output of one algorithm can be used as the

input to another. We describe an application of the method that does

this in Section 3.

1 https://archive.stsci.edu/prepds/frontier/
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Figure 1. These four images show how the GNG algorithm works to map and approximate data. The image (a) shows the sample data. The images (b), (c)

and (d) show the progress of the GNG algorithm, as it discovers and learns the structure of the data.

2.1 Growing neural gas

The growing neural gas (GNG) algorithm (Fritzke et al. 1995) cre-

ates a graph that represents the latent structure within data. The

algorithm is used for the purposes of clustering and analysis of

many types of data. GNG is applied to an m × n data matrix repre-

senting the input data that contains m, n-dimensional vectors called

sample vectors. GNG identifies structure by iteratively growing a

graph to map the data in the sample vector space. The graph consists

of nodes connected by lines called edges. Each node has a position

in the data space called a code vector. This is illustrated in Fig. 1.

The code vectors have the same dimensionality as the sample vec-

tors in the data matrix. The algorithm starts by creating a graph of

two nodes. Each node is initialized using a random sample from the

data matrix. The graph grows and shrinks as the input data are pro-

cessed (i.e. more samples are introduced). During this process, the

positions of the nodes evolve: the code vectors are updated to map

the topology of the data and the graph splits to form disconnected

sub-graphs, each of which represents a cluster in the data space. The

process continues until a stopping criterion has been met, such as a

saturation value for the number of nodes within the graphs, or the

processing time. In order to create a graph that accurately maps the

input data, it is common to process the input data multiple times.

The learning steps of the algorithm are as follows:

(i) Initialization: Create a graph with two nodes. Initialize the

position of each node with the vector of values from a random

sample vector p from the data matrix. This initialization step is run

once at the start of the process. Subsequently, samples are drawn at

random from the data matrix and the following set of rules applied.

(ii) Identify the two nodes nearest to the sample vector: For

each node in the graph, the distance d between the sample vec-

tor p and the node’s code vector q is calculated using the

squared Euclidean distance. The two nodes (s0, s1) most simi-

lar to the sample vector (i.e. the two smallest values of d) are

identified.

(iii) Create and update edges: If an edge connecting s0 and s1

does not exist, create it. Set the ‘age’ of the edge connecting s0 and

s1 to zero. Increment the age of all other edges connected to the

nearest node s0.

(iv) Increase the ‘error’ of the nearest node s0: The ‘error’ is

simply the squared Euclidean distance between a sample vector and

nodes in the GNG: if the error is high then the GNG has not yet

properly mapped the data space containing the sample vector. In

this step, the squared Euclidean distance between the input sample

vector and s0 is added to the local error of s0.

(v) Move the nearest node s0: Update the code vector of s0 using

equation (1). This step moves the nearest node s0 ‘towards’ the
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input sample vector p. The ǫb parameter controls the size of the

movement towards the input sample:

�qs0
= ǫb( p − qs0

). (1)

(vi) Move connecting nodes’ neighbours: Using the same process

as in the previous step but using the ǫn parameter to control the

magnitude of the adjustment for nodes directly connected by an

edge to s0.

(vii) Remove old edges and nodes: Remove all edges with an

age greater than the maximum age A parameter. All nodes without

edges are removed.

(viii) Add a new node to the GNG graph: A new node is added

to the graph after a fixed number (λ) of sample vectors have been

processed. The new node is added at the mid-point between the node

with the highest error and its connecting node. If multiple nodes are

connected then the new node is positioned at the midpoint of the

connecting nodes with the highest error. When a new node is added,

the error of each node is reduced by α.

(ix) Reduce all node error values: Reduce the error of each node

in the GNG graph by a factor of β.

Fritzke et al. (1995) describes the parameters mentioned above

in detail. The majority of the compute time is in step (ii); various

attempts have been made to reduce the time taken (Fiser, Faigl &

Kulich 2013; Mendes, Gattass & Lopes 2014). For a data matrix

with few dimensions using various tree-based methods to store GNG

nodes works well and provides a significant performance increase

over a brute force method to identify the nearest neighbours in the

first step of the algorithm. However, as the dimensionality of the data

increases the performance of the graph-based methods decreases to

become similar to that of the brute force method. We implemented

a version of GNG that parallelizes the brute force method of finding

nearest neighbours, as this provides the most flexibility.

2.2 Hierarchical clustering

Hierarchical clustering (HC; Hastie & Tibshirani 2009) involves a

recursive process to form a hierarchical representation of a data set

(e.g. the code vectors of the nodes output by GNG) as a tree of

clusters. One of the key benefits of HC is that it can produce uneven

clusters, both in terms of their disparate sizes and separation in the

parameter volume. Many unsupervised learning algorithms produce

even cluster sizes that imply an assumption about the structure of the

data; HC makes no such assumption. The identified clusters form a

hierarchical representation of the input data, as illustrated in Fig. 2.

This hierarchical representation can be thought of as a tree structure

where the leaves represent the individual input sample vectors from

the data set. The process starts by merging pairs of leaves, using a

measure of similarity to identify the most similar pair of leaves. The

pair with the closest proximity are merged into a new cluster (twig)

that is added to the tree as a new parent node to the pair. The process

continues by merging pairs of nodes at each level until a single node

remains at the root of the tree. The final tree representation contains

multiple ‘levels’ of nodes, with each node in a level representing a

cluster. Each level can be considered a level of detail in a clustered

representation of the data. Our approach is to apply HC to the output

of the GNG, further refining this representation of the input data

into a cluster hierarchy that can be used to segment and classify

image components.

There are a number of methods used to measure similarity be-

tween vectors, including Euclidean distance, Pearson correlation

and cosine distance. After experimenting with these three types, we

Figure 2. A dendogram visualization of the hierarchy identified by the

HC process. The x-axis gives the node identifiers from GNG. The y-axis

represents the degree of similarity. The root node is shown at the top.

found the best results were obtained using the Pearson correlation

coefficient (see equation 2) and cosine similarity (see equation 3)

measures,

r( p, q) = cov( p, q)var( p)−0.5var(q)−0.5, (2)

where r is the Pearson correlation between p and q(the code vectors

from two GNG graph nodes) and

cos(θ ) =
p • q

‖ p‖‖q‖
(3)

the cosine similarity is the cosine of the angle between the two

vectors. The process of using a similarity measure to merge clusters

is called linkage. We apply ‘centroid’ linkage that uses the chosen

similarity measure to compare the centroids of the clusters at each

level of the tree; a centroid is calculated by finding the average

sample value within a cluster. After assessing the pairwise distance

between all clusters in a level, clusters with the minimum linkage are

merged, and the centroid of the merged cluster recalculated, ready

for the next merging step as one moves up the hierarchy towards

the single root.

Each node in the tree can be given a unique label and so the

input data can be classified according to which node in the tree best

describes it, at some desired ‘level of detail’ (the trivial example

is that the ‘root’ by definition would label all of the data). In this

work, we are concerned with imaging data, and the algorithm de-

scribed above can be used to label individual (or groups) of pixels

in an image, therefore automatically segmenting and classifying

them. Consider an image containing two different types of object:

provided the data matrix captures the difference between these ob-

jects (be it morphology, colour, intensity, etc.), then the algorithm

described above should automatically identify and label these two

objects differently.

2.3 Connected-component labelling

Connected-component labelling is a general term used to describe

a process that can identify and label sub-structures within a data

set. Each sub-structure is called a component and consists of a set

of connected data elements that are considered to be connected if

they are joined in some way (e.g. vertices that are connected by an

edge in an undirected graph). A typical result of the process is a list

of uniquely labelled components each consisting of a subset of the
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data elements, where no data element is shared by more than one

component. The algorithm is commonly used in image processing

to identify and label connected groups of pixels, for example, to

identify and extract blobs in binary images. It’s not clear when the

connected-component labelling concept originated but it has been

in use since the 1970s, for example in Hoshen & Kopelman (1976).

Although the general concept is fairly straightforward, there are

a surprising number of implementation options. Much work has

been carried out such as (a) the efficient tracing of component out-

lines or contours (Chang, Chen & Lu 2004) and (b) investigations

into algorithm efficiency, considering the relative merits of using a

single pass, two pass, or even multiple passes through the data ele-

ments (He, Chao & Suzuki 2008; Wu, Otoo & Suzuki 2009). One

would expect a single-pass algorithm to be the most efficient; how-

ever, due to the non-sequential memory accesses required by the

single-pass algorithm, the two-pass algorithms remain very com-

petitive and execution-time scales linearly with the number of data

elements (Wu et al. 2009). Other areas of research into algorithm

efficiency include identifying efficient data structures to store and

attach labels to data elements such as the ‘union-find’ data structure

(Fiorio & Gustedt 1996) and research into the parallelization of var-

ious connected-component algorithms including the use of Graph-

ics Processing Units (GPUs) using NVIDIA’s CUDA (Kalentev

et al. 2011).

We implement an efficient, sequential version of the algorithm

inspired by parts of Wu et al. (2009) and Fiorio & Gustedt (1996).

However, we deviate from the standard implementations used in im-

age processing by using the algorithm on sub-images (thumbnails)

instead of pixel data. Therefore, the term ‘data element’ in the pre-

vious and following sections refers to an individual sub-image. The

algorithm proceeds by iterating through the data elements and as-

signing a label, consisting of an integer value, to each data element.

The following steps are performed for each element (the first pass):

(i) Retrieve the labels of the neighbouring data elements. Any

overlapping or adjacent data elements are neighbours. Overlapping

and adjacent data elements can be identified using their positions

and size.

(ii) If there are no neighbours or none of the neighbouring data

elements have labels then create a new label with a unique identifier

(an integer that starts with a value zero, incremented for each new

label) and apply it to the data element. Continue to the next data

element.

(iii) If any neighbouring data elements have labels then identify

the neighbouring label with the smallest unique identifier and assign

the label to the data element.

(iv) Add the unique labels of the neighbouring elements to a list

called an equivalence list. This list is used at the end of the process

to identify all the labels that belong to the same component.

At this point, every data element has a label (which may also be

shared amongst many other data elements), each label belongs to

an equivalence list and each equivalence list contains all the labels

for a unique component. The second pass is purely a re-labelling

process to ensure that every data element in a component has the

same label. It proceeds by identifying the equivalent list that the

label of each data element belongs to, finds the label in the list

with the smallest identifier (the find function of the union-find data

structure) and then applies that label to the data element. The output

of the algorithm is a list of components and their data elements. The

location and size of all the data elements are known and therefore

these lists can be used to identify the properties of a component, for

example, the width, height and an approximation of its centre.

3 A PPLI CATI ON: THE H UBBLE FFS

3.1 The data

We use deep HST images (F435W, F606W and F814W bands) of the

strong lensing galaxy clusters Abell 2744 and MACS 0416.1−2403

to demonstrate a proof-of-concept and practical application of the

algorithm. Since images of clusters contain two distinct galaxy pop-

ulations (namely bright, red early types and numerous blue late types

comprised of cluster members and background galaxies, including

gravitationally lensed features), these data provide an excellent op-

portunity to test whether the algorithm can automatically identify

and distinguish these classes of object that a human could trivially

do ‘by eye’.

3.2 An overview of the process

As described in Section 2 unsupervised learning algorithms such as

GNG and HC can be used to identify latent structure within data.

The output of a successful unsupervised learning process is merely a

condensed version of the original data set that retains the majority of

the original data’s structure. Therefore, we can use these algorithms

to take a large data set and effectively reduce it to a size that can be

processed more efficiently. Additionally, these learning algorithms

can find areas of high density within the data space, and since GNG

is graph based, they can also determine whether these dense areas

are spatially separated. Regions of high density are called clusters

and represent a subset or grouping of the original data set. They can

also be considered to be a subset of latent structure within the data.

For simple data analysis, the identification of clusters may be all

that is required, but we can go further and also consider whether the

clusters can be used to identify similar structure in new unseen data.

For example, when analysing astronomical images such as the FFs,

we can identify features that exists in one image (encoded into the

output of the GNG+HC), and then use that information to identify

similar galaxies in a new unseen image.

3.2.1 The learning phase

The goal of the learning phase is to automatically discover the

different groups of galaxies that exist in a survey image containing

hundreds of galaxies by using pixel data alone. The discovered

groups can then be used to analyse new survey images to identify

the same types of galaxies.

An important aspect of the design of the learning phase is how

to represent the data from the training survey images at each step.

We can use the source data directly or use more complex feature

extraction processes that emphasize the characteristics of the data

we need the system to learn. Our goal is that the algorithm au-

tomatically learns the types of galaxies that exist in the training

image. Therefore, we construct the learning phase to exclude infor-

mation about the angular size and orientation of galaxies so that the

system groups galaxies into types using other general characteris-

tics such as colour and morphology. The learning phase proceeds

as follows:

(i) Convert the entire survey image into a data matrix: From

a survey image containing possibly hundreds of galaxies create an

m × n data matrix (DM1) where each row, an n-dimensional sample

vector, is a rotationally invariant representation of a small sub-image

patch, typically much smaller than a galaxy. A sample vector is

created for a patch around each pixel of a galaxy. Therefore, there
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is a dense, oversampling of sub-image patches. Each column in the

data matrix is known as a feature. Features that have a much larger

range of values than others will dominate the distance calculations

used in GNG and HC. Therefore, the features of the data matrix are

normalized to have zero mean and unit standard deviation.

(ii) Apply GNG to the data matrix: GNG creates an accurate

topological map of data in matrix 1 (DM1). The output consists of

another k × n data matrix (DM2), where k is the number of GNG

nodes and k < m. Each sample vector in DM2 represents a cluster

(group) of similar small sub-image patches used to create DM1.

(iii) Apply HC to the output of GNG: Further reduce the number

of groups by using HC to identify the groups within DM2. Each

identified group represents a subset of the samples vectors of DM2.

Therefore, each grouping can be thought of as a ‘type’ of sub-image

patch.

(iv) Apply connected-component labelling to identify galaxies:

Identify the numbers and types of the small sub-image patches

that form each galaxy in the survey image. Many small sub-image

patches form each galaxy. This step can be performed after DM1

has been created.

(v) Create a galaxy data matrix: Create a new data matrix (DM3)

by creating a sample vector for each galaxy. Each element in a

galaxy’s sample vector corresponds to one ‘type’ of sub-image

patch. The value of each element is the number of small sub-

images in the galaxy of that ‘type’. Many sub-images patches form

each galaxy (one for each pixel of the galaxy) and each sample

vector is a histogram of the types of sub-images contained in a

galaxy. Each of the sample vectors is normalized to improve scale

invariance by dividing each element by sum of the sample vec-

tor. The result is a data matrix where each sample vector is a

scale and rotation invariant representation of a galaxy. The rota-

tion invariance occurs because the relative positions of each patch

that forms the galaxy is not included in the galaxy’s histogram

representation.

(vi) Identify the groups of galaxies: HC is then used a second

time to identify the main groups (or types) of galaxies that exist in

DM3. The position of each group in data space is recorded and used

in step (iv) of Section 3.2.2 to identify the type of galaxies in new

images.

3.2.2 Identifying galaxies in new ‘unseen’ images

At this point, the input training images have been processed and the

types of galaxies automatically identified using pixel data alone.

We can now locate and classify large numbers of galaxies in new

‘unseen’ survey images by using the new survey image pixel data

and the information obtained in the learning phase. This process is

summarized as follows:

(i) Convert the unseen image into a data matrix: Convert the new

image into a new data matrix (DM4) using the same process used

to create DM1 in step (i) above.

(ii) Classify the sub-image patches: Compare the DM4 sample

vectors with the DM2 sample vectors by using an efficient nearest

neighbour search. Each DM4 sample vector will assume the HC

‘type’ of the most similar sample vector in DM2.

(iii) Apply connected-component labelling to identify galaxies:

Use the connected-component labelling and data matrix generation

process described in step (iv) of the learning phase to create a data

matrix (DM5) that contains a sample vector for every galaxy in the

image. In addition, output a catalogue of the galaxies that includes

their approximate dimensions in pixel space.

Figure 3. Training data for our demonstration example. This is an RGB

composite image of the HST FF Abell 2744 (90 arcsec × 130 arcsec). The

red, green and blue channels correspond to the F814W, F606W and F435W

bands. We chose this data set, as it represents a classic example of object

segregation that is well understood: the cluster dominated by red elliptical

galaxies, surrounded by blue late types and gravitationally lensed features.

In our proof-of-concept the goal is to demonstrate that the algorithm can

cleanly classify these two basic classes automatically in much the same way

a human inspector would. Importantly, since the FFs target several clusters,

we can test the algorithm on a different, ‘unseen’ cluster.

(iv) Classify each galaxy: Each galaxy sample vector in DM5

assumes the type of the most similar galaxy type identified in step

(vi) of the learning phase.

The following section describes the complete process applied to

the FF.

3.3 The learning phase applied to FF Abell 2744

3.3.1 Pre-processing

The input data matrix (DM1) consists of sample vectors that com-

prise a sequence of 8 × 8 pixel thumbnails sampled from each of the

training images (the aligned F435W, F606W and F814W images

of Abell 2744, Fig. 3). Tests on various sizes of thumbnails found

that eight pixel square thumbnails produced the best results in terms

of processing speed and galaxy detection; using larger patches re-

sulted in a reduction in the identification of very small galaxies

(effectively, this is a resolution issue). For each thumbnail, we eval-

uate the radially averaged power spectrum of pixel values in five

bins, allowing us to encode information about the pixel intensity in
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Figure 4. An RGB (F814W, F606W, F435W) composite image of the

FF MACS 0416.1−2403 (160 arcsec × 130 arcsec). We have applied the

algorithm to this new ‘unseen’ data after training on Abell 2744 (Fig. 3)

to automatically classify two groups of sources that correspond to classical

early and late types (Figs 5 and 6).

a manner that is rotationally invariant. The power spectrum for each

filter is concatenated into a single 15-element sample vector, which

naturally encodes colour information to the data matrix. Thus, the

data matrix consists of rows of sample vectors and 15 columns

called feature vectors.

To improve speed, during training we only consider regions of the

image with pixel values in excess of five times the root-mean-square

value of blank sky in the image.2 This reduced the number of image

thumbnails to 851 000. Note that these thumbnails consist of small

sections of galaxies and not whole galaxy images. Histograms of

the feature vectors displayed log normal distributions. In order to

convert each feature to a normal distribution, thus creating a better

clustering outcome, we simply took the natural log of values in the

data matrix. Each of the feature vectors were then normalized by

subtracting the mean and dividing by the unit of standard deviation.

3.3.2 GNG and HC

We configured the maximum nodes parameter of the GNG algo-

rithm (Section 2.2) to 20 000 and processed each of the 851 000

sample vectors 100 times. The output of this step is data ma-

trix (DM2) of 20 000 × 15, representing the code vectors of the

GNG nodes. DM2 is then used as input into the HC algorithm

(Section 2.2). The HC was run with three types of similarity mea-

sure including Euclidean distance metric, cosine similarity measure

and the Pearson correlation coefficient, with the Pearson correlation

coefficient (see equation 2) achieving the best results. We searched

down the resulting hierarchical tree from the root node to identify

the relevant child groupings (clusters) of GNG nodes. Each cluster

contained a corresponding error value which indicated the ‘quality’

of the cluster. We selected all the clusters that had an error of 0.15

or less, which identified 536 independent clusters of GNG nodes.

Using a higher error value would identify fewer clusters that con-

tained larger numbers of GNG nodes. However, the next steps in the

2 Although note that in principle these data could be used during training.

process are not sensitive to larger numbers of clusters, and therefore,

we chose a smaller error value that represented higher quality clus-

ters that are more accurate (i.e. the GNG nodes are more similar).

Using GNG and HC, we have identified 536 groups that contain the

original population of 851 000 sub-images.

3.3.3 Connected-component labelling

We used the connected-component labelling algorithm described

in Section 2.3 to identify spatially connected sub-images (compo-

nents) in DM1. These connected sub-images represent the individ-

ual galaxies. The FF images contain crowded central fields with

bright, extended stellar haloes around elliptical galaxies. In order to

separate the galaxies in the central elliptical cluster, we identified

two thresholded lists of the 851 000 sub-images. One list identified

the sub-images at locations with pixel intensity of at least 5σ over

the background level and a second list identified the image patches

at least 10σ over the background level (where 1σ is the root mean

square value of the source-free background). The locations of the

851 000 sub-images were identified and the mean pixel intensities

from each of the three bands were compared to the threshold level.

If any of the pixels were over the threshold level in any of the three

bands the sub-image patch was added to the list.

The connected-component labelling process used the following

inputs: (i) the co-ordinates of each of the 851 000 sub-image patches,

(ii) the size of the sub-image patches (8 × 8 pixels), (iii) a minimum

component size of five, so that only components with five or more

sub-images were considered and (iv) the 5σ and 10σ threshold lists.

Any component overlaps were identified and the 10σ component

was selected in preference to any overlapping 5σ component. This

enabled the galaxies in the brightest areas of the extended stellar halo

to be distinguished. A catalogue of the components was created by

calculating the approximate position of the component (calculated

using the average position of its sub-images) and the width and

height of the component was calculated by identifying the minimum

and maximum co-ordinates of the sub-images.

3.3.4 Identifying galaxies

The next step combined the 536 clusters of sub-images from the HC

process and the components identified by the connected component

labelling process to create a new data matrix (DM3). Each sample

vector in the data matrix represented a component (galaxy) consist-

ing of 536 elements. The value of each element was a count of the

number of sub-images in the component that was in the representa-

tive hierarchical cluster. The resulting sample vectors were sparse

in that the majority of the elements were zero. The final preparation

step used to create DM3 was a normalization: divide each element

in the sample vector by the sum of all its elements. A large galaxy

and small galaxy of the same type will consist of the same types of

sub-images (identified by HC). However, there will be a large dif-

ference in sub-image counts in each element. Therefore, we divided

each element in a sample vector by the sum of the vectors elements

that rescaled the vector elements to de-emphasize galaxy size.

The final step was to use HC again on DM3 to identify ‘clusters’

of galaxies that are similar to each other, using the cosine similar-

ity measure. Cosine similarity is a measure of the angle and not

magnitude between two vectors and therefore improves the scale

invariance of the process. We ran the algorithm with a pre-set pa-

rameter to output the two best clusters or groups of galaxies.
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Figure 5. Examples of a sample of galaxies in MACS0416.1−2403 that the algorithm automatically identifies as being members of group ‘one’. Each image

is 4.5 arcsec × 4.5 arcsec. The algorithm automatically identified this group and classified these galaxies using no data other than the image pixel intensity

values from the F435W, F606W and F814W bands, and based classifications on the information in the Abell 2744 image.
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Figure 6. Examples of a sample of galaxies in MACS0416.1−2403 that the algorithm identifies as being members of group ‘two’. Each image measures

4.5 arcsec × 4.5 arcsec. Lensed galaxies are included in this group. Again, the algorithm automatically identified this group and classified these galaxies using

no data other than the image pixel intensity values from the F435W, F606W and F814W bands, and based classifications on the information in the Abell 2744

image. Note that in some cases the algorithm has correctly classified faint galaxies that are clearly in the stellar halo of an elliptical.
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Figure 7. A colour–magnitude diagram of the galaxies in

MACS0416.1−2403. The galaxies that the process identifies as be-

ing members of group ‘one’ are labelled with the red triangles. The galaxies

that the process identifies as members of group ‘two’ are labelled with blue

circles. The process cleanly separates the early types in the red sequence

and the late types in the blue cloud.

3.4 Verifying the method

The learning phase identifies two groups of galaxies in the

Abell 2744 images, broadly representing late-type (blue spiral, ir-

regular, lensed) and early-type (red, smooth, elliptical) galaxies. We

then used the trained network to analyse a new, unseen image of the

same type (MACS 0416.1−2403, Fig. 4) by performing the steps in

Section 3.2.2. This analysis identified the same two groups of galax-

ies and produced a catalogue of the galaxies and their type. Exam-

ple galaxies from these two groups are shown in Figs 5 and 6. No

pre-existing labels are available; therefore, typical measures used

in supervised machine learning to analyse accuracy such as preci-

sion/recall are not available. Instead, in order to verify the results,

we investigate how the method compares to two traditional tech-

niques for classifying early-/late-type galaxies. First, the two classes

of galaxy should be cleanly separated in a colour–magnitude dia-

gram, and indeed we find this is the case (Fig. 7). Photometry was

measured using SEXTRACTOR on cut-outs of each galaxy in the clas-

sified sample. The figure shows the algorithm correctly identifies

the red sequence and blue cloud, although clearly with some scatter

between the point clouds; generally these are due to close blends

and projections. We also calculated the M20 morphological param-

eter Lotz et al. (2004) for galaxies larger than 15 × 15 pixels in

the F814W band. M20 is the normalized second-order moment of

the brightest 20 per cent of the source flux, with less negative values

corresponding to clumpier sources. Fig. 8 shows the results, which

show a systematically lower M20 value for our early types compared

to our late types. We argue that Figs 5–8 demonstrate the proof-

of-concept success of the algorithm in automatically classifying

sources into astrophysically meaningful groups. In the following,

we apply this method to a broader input set – the HST CANDELS

fields.

4 C LA SSIFYIN G THE CANDELS FIELDS

The CANDELS (Grogin et al. 2011; Koekemoer et al. 2011) is an

HST survey designed to document the evolution of galaxies out

to z ≈ 8. The survey consists of Wide Field Camera 3 optical

and infrared (WFC3/UVIS/IR) and Advanced Camera for Surveys

(ACS) optical imaging of five extragalactic survey fields. There are

two tiers: a ‘deep’ survey to at least four orbit effective depth in

F160W over ∼125 arcmin2 in GOODS-South and GOODS-North,

and a wider shallower survey to two orbit effective depth covering

Figure 8. Histograms showing the M20 morphological measure calculated

for the galaxies that the process identifies as being members of group one

in red, and the galaxies that the process identifies as being in group two in

blue. This appears to identify two populations of galaxies as found in Lotz

et al. (2004).

∼800 arcmin2 of COSMOS, EGS and UKIDSS/UDS and flanking

areas of GOODS-South. For all five fields we used version 1.0

release of the data,3 selecting the filters F160W and F814W, as

they provide the most complete coverage across all five fields. The

F814W images were projected on to the same grid as the F160W

(0.06 arcsec per pixel).

The process to analyse the FF images (Section 3) used general-

ization by training on one field and then then applying the model to

classify objects in a second field. We took this approach as it was

important to prove that it is possible to do this using an unsuper-

vised approach in order to significantly reduce processing time as

the computational time for applying GNG and HC on very large

data would be prohibitive. However, when considering the size of

the CANDELS data set (F160W and F814W imaging), we see that

it is fairly small at ∼60 Gb and therefore we apply the learning

algorithms to all five fields of the CANDELS data in its entirety.

Before describing the CANDELS classification process, we point

out that combining the data from the deep and wide fields is not ideal

for machine learning processes. The initial assumption is that data

are prepared in a consistent manner. In this case, the depth of the

images varies across the fields and in some cases the classification

process identifies groups that contain galaxies predominantly from

GOODS-North and GOODS-South and other groups predominantly

from UDS, EGS and COSMOS. In Section 4.1, we compare our

catalogue to the GZ: CANDELS classifications and we note that

the GZ team has provided alternative weighted classifications for

the galaxies in the deep sections of the survey, illustrating that the

combination of depths appears to affect human classifiers too.

The first step is to select the pre-set parameters. It was unclear

whether the pixel scale and reduced depth compared to the FF

images would affect the parameter choices; therefore, we ran the

process multiple times with different options such as two patch

sizes (8 and 12 pixels) and two threshold levels (4σ and 5σ ). On

inspection of the results, we chose a patch size of 12 pixels and

3 https://archive.stsci.edu/prepds/candels/
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Table 1. The format and columns of the catalogue produced by the machine

learning technique.

Column

position Column name Description

1 Field Id The identifier of the field where the

object resides. 0 GOODS-N, 1 UDS,

2 EGS, 3 COSMOS, 4 GOODS-S

2 Object Id The ID of the object from the

3D-HST catalogue by Skelton (based

on a cross-match)

3 RA (degrees) Right ascension (J2000)

4 Dec. (degrees) Declination (J2000)

5–10 Classifications Hierarchical classifications, 6 levels

of classifications

11–16 Classification

distances

A number between 0 and 1. The

nearer to 0 the more relevant the

galaxy is to the classification. These

fields are important for sorting

objects within classifications.

a threshold level of 4σ above the background level. This pro-

duces 9.5 million patches, each of which were then normalized

and topologically mapped by GNG to 10 000 GNG nodes. We

applied the HC algorithm using the Pearson correlation which

resulted in 1174 groups (using a threshold of 0.045). We se-

lect the threshold level based on the quantisation error of the

patch groups.

For each of the five fields, the connected component step

was run to identify galaxies and create the galaxy vector

representations that are then grouped together by another HC step

using the Pearson correlation. The output is a hierarchy of galaxy

classifications. At the top level, we choose a minimum number of

clusters of 100 and then for each level increment by 20 until the

lowest level contains 200 distinct classifications. In addition, we

calculate an ‘average’ galaxy vector representation in each group

by averaging the vector representations of all the galaxies in a group.

A similarity value between each galaxy and the ‘average’ galaxy

for its group is calculated by computing the Pearson correlation

between the vector representations and subtracting it from one. The

most similar galaxies will have similarity value of 0. Note that any

negative correlations are heavily penalized. This value is important

to identify the purest examples in each classification. We provide

the similarity scores in the catalogue as ‘classification distance’

and it is important to use these values to sort the galaxies in each

classification.

Choosing the number of clusters is one of the main difficulties

of the technique. We have selected a range from 100 to 200 clus-

ters using visual inspection of the classifications to identify which

levels create the purest classifications. On inspection of the re-

sults the higher granularity of 200 clusters appear to provide the

purest classifications. Fortunately, the use of HC algorithm makes

it straightforward to retrieve different numbers of clusters without

requiring significant re-processing.

The catalogue provides classifications for ∼60 000 galaxies.

Table 1 contains the description of the classification catalogue file.

The catalogue file is available in CSV format and we provide a

visual version of the catalogue at www.galaxyml.uk. In addition, as

each galaxy has a vector representation we can also use the Pearson

similarity measure to identify the most similar other galaxies within

Figure 9. These colour–colour diagrams show some of the classification groups in our classified CANDELS catalogue. The background grey points are a

random sample of the entire population. In blue, red and black are galaxies from individual classifications. Many of the classifications appear as distinct clusters

in colour–colour space. The top right shows galaxies from classification number 57 and one of its ‘child’ classifications number 86 which is an example of the

hierarchy within the catalogue. The bottom left figure also shows the effect of the hierarchy of classifications, level six being the most detailed classification

level, and level one at the highest (coarsest) level. The bottom panels show different classifications for point sources that track the stellar locus; note that in

the bottom right-hand panel we find different classifications for sources lying in the same colour space, indicating that, while colour information clearly enters

into the classification, the algorithm can offer a more finely controlled object classification and selection.
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Figure 10. These histograms show F606W total magnitudes obtained from the 3D-HST photometric catalogues of Skelton et al. (2014). They compare the

magnitude distributions of galaxies given a specific classification (blue) with a random sample of galaxies from the full entire population (grey). The vertical

lines are the 5σ limiting magnitudes for the wide and deep CANDELS surveys. This figure illustrates that the classification process groups galaxies into

categories that can be easily described in terms of traditional descriptors such as magnitude, with distinct and ‘well-behaved’ distributions.

CANDELS for each galaxy. We have used this capability to provide

a web based galaxy similarity search function at www.galaxyml.uk.

To use the catalogue, it is important to employ the classification

distance column to sort all the galaxies in ascending order. The clas-

sification distance columns are shown in Table 1. These distances

identify how close each galaxy is to its particular classification. The

higher the classification distance, the less similar a galaxy is to the

classification it is member of.

In order to analyse the classifications and to produce the final

catalogue, we matched our classification catalogue to the 3D-HST

catalogues from Skelton et al. (2014), which contain photometry

and photometric redshifts for CANDELS. Skelton et al. (2014)

determined the photometric redshifts by using EAZY (Brammer

et al. 2008).

Fig. 9 shows colour–colour plots for some example galaxy clas-

sifications and illustrates the effect of hierarchy: each top level

group is split into further levels, which are subsets of higher lev-

els. They can be considered increasing levels of detail. Different

classifications tend to occupy distinct regions of colour space, and

it is clear that the stellar locus is clearly delineated. This is not

surprising, since colour information is encoded in the classifica-

tion process (albeit a single colour in this case). Fig. 10 shows

the F606W total magnitude distributions for selected classifica-

tions where again we can see that automatically classified groups

tend to have well-defined magnitude distributions distinct from the

overall population. Finally, photometric redshift distributions are

shown in Fig. 11; again, showing well-defined distributions for

different automatic classifications. This demonstrates that the algo-

rithm is actually grouping sources together that can be linked to (or

labelled with) well-defined and well-understood observed parame-

ters, and therefore, can be put into a practical astrophysical context.

Figs 12–15 are examples of galaxies within different groups and lev-

els within the hierarchical catalogue, illustrating how the algorithm

is grouping together similar types of object over a wide dynamic

range. While the majority of the classification groups appear well

defined, we note, however, that not all the classification groups are

clean. Three examples are shown in Fig. 16. They contain inconsis-

tent galaxies, galaxies near the edge of coverage and also galaxies

that appear to be outliers.

The catalogue was used to create Figs 12–15 in the following way.

For each field, the FITS files for F160W, F814W and F606W were

combined into a single PNG image file using STIFF (Bertin 2012).

The catalogue file was then used to identify galaxies in each clas-

sification. The galaxies were sorted by their classification distance

in ascending order. For example, Fig. 15 includes three rows from

classification 169. The fields RA and Dec. for each galaxy were
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Figure 11. We show the photometric redshifts of the galaxies for four different classifications identified by the machine learning technique. The photometric

redshifts were obtained from Skelton et al. (2014) who determined them by using EAZY (Brammer, van Dokkum & Coppi 2008). The histogram in grey shows

the distribution for a random sample of the full population. As in Fig. 10, each classification (based solely on pixel data) falls into well-behaved distributions;

for example, class 119 (bottom left) clearly contains galaxies at z ≈ 1. Adding these ‘post-processed’ labels to automatically classified sources is useful in

assigning astrophysical context to the groups the algorithm has identified.

extracted from the catalogue file. The galaxies were sorted using

the classification distance in ascending order. The pixel co-ordinates

were identified using the FITS file header, and an image thumbnail

was cut from the field PNG file around the galaxy. The visual ver-

sion of the catalogue on the website www.galaxyml.uk showing all

200 classifications for the most detailed classification level was also

created using this method.

Fig. 13 was produced by manually selecting and ordering 10 clas-

sifications (23, 174, 6, 86, 45, 8, 11, 140, 30, 146) from the website

visual catalogue. These classifications were selected to demonstrate

the granularity of classification that is possible using the technique.

The catalogue was then used to create the images by repeating the

process used for Figs 12, 14 and 15.

4.1 Identifying unusual objects

This technique can be used to identify rarer types of object. An

advantage of the technique is that we can use different algorithms

in place of HC to achieve a different view of the survey images. One

such algorithm is KMeans (Sculley 2010) that can be used in place

of HC. We have explored variations of parameters and algorithms

in Hocking et al. (2017). We analysed CANDELS with a variant of

the machine learning system using KMeans. We scanned the clas-

sification groups to identify which groups contained galaxies with

large elliptical central bulges but with localized higher emission in

the shorter wavelengths – this could be the result of mergers or con-

junctions with background galaxies. We identified a strong lensing

galaxy that is currently known in the NASA Extragalactic Database

(NED) and we found two candidates as seen in Fig. 17 that are not

classed as lenses in NED.

4.2 Comparison to the galaxy zoo CANDELS project

GZ has been providing crowd-sourced statistically robust vi-

sual morphological classifications for some years now (Lintott

et al. 2008, 2011; Willett et al. 2013). They have turned their atten-

tion to CANDELS and have recently published detailed morpho-

logical classifications for three of the CANDELS fields: GOODS-

South, UDS and COSMOS. The classifications were provided by

95 000 volunteers with each galaxy receiving an average of 43

classifications (Simmons et al. 2017). GZ leads a volunteer agent

through a decision tree of questions about an individual galaxy. De-

pending on the answer to a question, the agent will follow different

paths down the decision tree. Between two and nine questions are

asked to the volunteer; for example, if the galaxy image is a star or

artefact then only two questions are required, if it is a spiral galaxy

then up to nine questions are required. These classifications have

been consolidated and robustly analysed by the GZ team to provide

a catalogue of weighted fractions for each answer in the tree for

48 000 galaxies. Simmons et al. (2017) describe the catalogue, the

methodology and provide a detailed analysis.

How do the machine learnt (ML) classifications and the human

classifications compare? Clearly we cannot expect a direct map-

ping between GZ classifications and our hierarchical grouping, but

we can use the GZ catalogue to ask the question of whether our

groupings would have had a ‘concordance’ classification (based on

the questioning tree) from a cohort of human classifiers. GZ pro-

vides two catalogue files. One is the full catalogue for COSMOS,

UDS and GOODS-South and a second that contains adjustments

to the classifications made to the deep survey for GOODS-South.

We choose to compare our data with the original catalogue, as no

adjustment has been made to the machine learning technique for

the different depths. The catalogue files provided by GZ include

MNRAS 473, 1108–1129 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/473/1/1108/4159372
by University of Hertfordshire user
on 11 April 2018

http://www.galaxyml.uk


An automatic taxonomy of galaxy morphology 1121

Figure 12. Example images from the top level of three different CANDELS classification groups (classification groups 7, 18 and 98). Each image is

6 arcsec × 6 arcsec. The galaxies in each group are ordered row-wise in order of their similarity to the ‘average’ classification in the parameter space of the

group. The top left image is the most similar galaxy to the ‘average’ and the bottom right is most dissimilar. The classification catalogue provides these as

classification distances that can proxy as a quality flag. The distances are normalized between 0 and 1, with 0 being an identical match to the average. Here,

the RGB channels are the F160W, F814W and F606W bands, but note that the latter was not included in the learning.
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Figure 13. Each row of 6 arcsec × 6 arcsec images shows galaxies in an individual classification group, and are selected from the lowest hierarchy level in

that group. The galaxies are ordered left to right by their similarity to the average galaxy with the first panel most similar to the average. Again, the similarity

of sources in each group is clear. The RGB channels are the F160W, F814W and F606W bands.
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Figure 14. Examples of galaxies in three classification groups (30, 36, 48) from level one (the coarsest classification) in the hierarchy. As before, each image

is 6 arcsec × 6 arcsec and ordered left to right in order of similarity to the ‘average’ galaxy in the group. The RGB channels are the F160W, F814W and F606W

bands.

the number of classifications and the weighted and unweighted

fractions for each answer in the decision tree. We consider three

top-level questions: T00 A0 ‘is the target smooth and rounded?’,

T00 A1 ‘does it contain features or a disc?’ and T00 A2 ‘is it a star

or artefact?’ The weighted fractions run from 0 to 1 corresponding

to a negative or affirmative result. We ask whether the algorithm has

assembled groups for which ≥50 per cent of the members (that have

GZ classifications) have answers to any of these questions above a
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Figure 15. Examples of galaxies in two classification groups: 8 at level one (low level of refinement) and 169 at level six (higher level of refinement). The

images are 6 arcsec × 6 arcsec and the RGB channels are the F160W, F814W and F606W bands.

Figure 16. The majority of the classifications groups are very clean. However, there are some that are less so such as these three classifications: 24, 41 and 56.

Each row is an individual classification. The third row appears to include objects that are outliers distinct from other galaxy classifications.
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Figure 17. Two potential strong lensing candidates (top) and a known lens

(bottom). All three appear in the same classification group. The galaxy to

the top left is in UDS at location 02h17m06.s2 (RA) and −05◦13′17.′′6 (Dec.).

The galaxy to the top right is in EGS at 14h19m00.s12 (RA) and +52◦42′48.′′9

(Dec.).

weighted fraction of 0.5. We call this a ‘concordance’ classification.

We can find several examples of concordance classifications, and

we show two examples of each in Figs 18–20, presenting the top

seven galaxies from each classification as a guide, and the distribu-

tions of the weighted fractions of the answers to each of T00 A0–2

for galaxies in each group.

GZ also includes several ‘clean’ classifications, where a

Boolean flag is assigned to a subset of GZ classifications for

which the weighted classification indicated a high conviction for

‘clean_feature’ (229), ‘clean_spiral’ (278), ‘clean_smooth’ (4662),

‘clean_edge_on’ (162) and ‘clean_clumpy’ (215). The numbers

in parentheses indicate the number of clean classifications in the

matched catalogue. Note that the majority are ‘clean_smooth’. The

top level of our hierarchical classification contains 100 groups, and

can be considered the coarsest level of classification refinement.

This is probably most suitable for this comparison: we can sim-

ply assess the fraction of ML groups that contain each of the GZ

clean classifications. One could argue that if a high fraction of clean

classifications are contained within a small fraction of top level ML

groups, then the algorithm has successfully pigeon-holed the human

classifications. On the other hand, these clean descriptors are rather

broad, whereas even the coarsest level of ML classification offers a

way to segregate (for example) ‘smooth’ galaxies.

Figure 18. This figure shows two examples of what we refer to as a ‘concordance’ group, where over 50 per cent of the galaxies for which GZ classifications

were made have a weighted fraction over 0.5 for question T00 A0 ‘is the target smooth and rounded?’ The images show the top seven matches in the group

and the histograms compare the distribution of weighted fractions for questions T00 A0, A1 and A2 (see the text) for galaxies in the group (blue histogram)

compared to the full range of GZ classifications (grey histograms). Although not every ML grouping can be described as a concordance group when compared

to GZ classifications, this figure illustrates that the algorithm is creating groups that would have received a consistent human classification.

MNRAS 473, 1108–1129 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/473/1/1108/4159372
by University of Hertfordshire user
on 11 April 2018



1126 A. Hocking et al.

Figure 19. This figure shows two examples of what we refer to as a ‘concordance’ group, where over 50 per cent of the galaxies for which GZ classifications

were made have a weighted fraction over 0.5 for question T00 A1 ‘does it contain features or a disc?’. The images show the top seven matches in the group

and the histograms compare the distribution of weighted fractions for questions T00 A0, A1 and A2 (see the text) for galaxies in the group (blue histogram)

compared to the full range of GZ classifications (grey histograms). Although not every ML grouping can be described as a concordance group when compared

to GZ classifications, this figure illustrates that the algorithm is creating groups that would have received a consistent human classification.

We consider each of the clean classifications described above

and sort the list of top level ML groups according to the number

of galaxies matched to the clean lists. We then simply calculate

the cumulative fraction of each clean list to assess the fraction of

unique groups containing 50 per cent and 100 per cent of the clean

classification galaxies. The results are given in Table 2, which lists

the 50 per cent and 100 per cent fractions describing how the vari-

ous clean classes are distributed within our ML groups. For spiral,

featured, clumpy and edge-on galaxies, the majority of the cleanly

classified galaxies are contained within less than 10 per cent of the

top-level groups. The fraction is slightly higher for the smooth class.

In all but the smooth class, 100 per cent of the clean classifications

are contained within around 50 per cent of the ML groups. For the

smooth classification, this is much higher – the galaxies seem to be

spread over the majority of the ML groups. This is perhaps unsur-

prising because the smooth classification dominates the clean class

galaxies, and our algorithm has segregated these into a diverse set

of sub-classes even at the top level of our hierarchical classification.

Still, the fact that in all cases around half of the clean classifications

are described by a minority of machine classes suggests that the

algorithm is automatically classifying targets in a manner that is not

dissimilar to a human inspector.

We conclude this section with a suggestion of an additional po-

tential use for this technique that is to make predictions on which

galaxies will be classified as, for example, clean_spiral by hu-

man classifiers. Indeed, blending the machine learning and human

classification methods might be a particularly powerful technique;

for instance, for extremely large samples of galaxies (or just large

images), the algorithm could perform a ‘first pass’ unsupervised

classification and feed subsamples of those results (blindly) to a

cohort of human inspectors.

5 SU M M A RY

We present an efficient unsupervised machine learning algorithm

that uses a combination of GNG, HC and connected component

labelling to explore surveys by automatically segmenting and la-

belling imaging data. The technique is a patch-based model that

does not process whole images of galaxies. Instead, it processes

many small overlapping patches from survey images. Each small

overlapping patch is typically much smaller than the size of a galaxy

such as a section of a spiral arm, or a section of a low-surface bright-

ness feature. The combination of a patch-based model and graph

algorithm is a novel technique previously unseen in astronomy. In

addition, unlike existing unsupervised techniques, the features of

the technique are very simple and as such are very computationally

efficient enabling it to process FITS surveys, whereas existing tech-

niques typically convert FITS survey images into normalized JPG

image stamps of individual galaxies.

As a demonstration we have applied the algorithm to images

from the HST FFs survey, showing how the algorithm can exam-

ine data from one field (Abell 2744) and search another ‘unseen’
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Figure 20. This figure shows two examples of what we refer to as a ‘concordance’ group, where over 50 per cent of the galaxies for which GZ classifications

were made have a weighted fraction over 0.5 for question T00 A2 ‘is the target a star or artefact?’ The images show the top seven matches in the group and

the histograms compare the distribution of weighted fractions for questions T00 A0, A1 and A2 (see text) for galaxies in the group (blue histogram) compared

to the full range of GZ classifications (grey histograms). Although not every ML grouping can be described as a concordance group when compared to GZ

classifications, this figure illustrates that the algorithm is creating groups that would have received a consistent human classification.

Table 2. Fraction of top level ML classification groups containing

50 per cent and 100 per cent of the galaxies in the various GZ ‘clean’ classes.

GZ Fraction of ML groups Fraction of ML groups

clean class containing 50 per cent containing 100 per cent

of clean class of clean class

Smooth 13 per cent 89 per cent

Spiral 7 per cent 52 per cent

Featured 5 per cent 53 per cent

Clumpy 8 per cent 51 per cent

Edge-on 5 per cent 47 per cent

image (MACS 0416.1−2403) to successfully classify galaxies that

would be classified as ‘early’ and ‘late’ types by a human inspector.

From this trivial example, we apply the algorithm to all five HST

CANDELS fields, producing a catalogue of ∼60 000 galaxy auto-

matic classifications. The catalogue, visual catalogue and galaxy

similarity search is available at www.galaxyml.uk. We demonstrate

how the automatic classifications have distinct distributions in more

familiar parameter spaces such as magnitude, colour and redshift,

allowing for post-labelling to place them in an astrophysical context

(z ≈ 1 red spiral, etc.). By comparison to crowd sourced classifica-

tions for thousands of the same galaxies in the GZ project, we also

demonstrate that many of our automatic groupings have a ‘consen-

sus’ classification from a large cohort of human inspectors.

One simple way of utilizing the CANDELS classification cata-

logue is to use it to assemble samples of galaxies (or stars) that are

photometrically and morphologically similar to a given test exam-

ple. For example, one might have detailed observations of a specific

galaxy in CANDELS and desire to find more examples of similar

objects to build a statistical sample. One could simply match this

target to the classification catalogue to find out which classification

group it resides in, and therefore find all the other galaxies that

‘look’ (as far as the feature space allows) similar to it. Naturally,

the selection function for this exercise would be complicated to un-

derstand (i.e. difficult to express in terms of, say, colour cuts), and

that might be a limitation of this approach.

The unsupervised nature of the algorithm allows for the dis-

covery of features not previously known; this will be useful for

data discovery in the era of extremely large surveys such as

Euclid and LSST. The feature space that is mapped by the algo-

rithm is completely arbitrary, and could involve a large number

of parameters not explored here (where we have concentrated on

pixel intensity distribution). For example, in the case of LSST, one

could introduce the time domain into the classification process, af-

fording the ability to automatically identify and classify transient

phenomena.

There are limitations to the method that should be noted. The

most significant is the choice of the initial data matrix. In this

work, we use sample vectors that effectively encode information

about colour and intensity distribution on small (few pixel) scales.
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In principle, the sample vector can be arbitrarily large, but at the

cost of computation time; therefore, there is a balance between

performance and the sophistication of the data matrix. It is clear that

the exact choice of data matrix will have an impact on the ability of

the algorithm to successfully segment and classify input data. It is

possible that one could use an algorithm that identifies the optimal

set of features to use [see unsupervised feature learning in Bengio,

Courville & Vincent (2013), also stacked denoising autoencoders

by Vincent et al. (2010)], but that is beyond the scope of the current

paper.

We have not fully optimized the algorithm for speed (and as

noted above, performance will depend on the complexity of the

data matrix); however, as a guide, in the example presented here

the training process on the Abell 2744 imaging took 36 ms per

pixel and the application of the trained algorithm to the new

MACS 0416.1−2403 image took 1.5 ms per pixel. The work was

performed on a desktop Intel Core i7-3770T 2.50 GHz with 8 GB

RAM. These performances can clearly be dramatically improved,

especially through the use of GPUs and optimal threading. The clas-

sification process is fully parallelizable, and the compute time for

classification scales linearly with the number of pixels for a given

model, making this a highly efficient algorithm to apply to large

imaging data.

We conclude by noting that the algorithm presented here is not

limited to imaging data: spectral data could also be passed through

the process, which may be relevant to current and next generation

radio surveys. Indeed, the algorithm is completely general and one

can envision applications beyond astronomy, for example in medical

or satellite imaging.
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