
24

An automatic visual database interface

E. Pichat
Universite Claude Bernard- Lyon 1
Batiment 710 43 boulevard du 11 novembre 1918
France 69622 Vilieurbanne Cedex
Tel. 72 44 83 70 Fax 72 44 83 64 e-mail: pichat@ligia.univ-lyon1.fr

D. Saker
Nat Systemes
100 rue La Fayette France 75010 Paris
Tel. (1) 40 22 95 94 Fax (1) 40 22 95 92

Abstract

Today's relational and object-oriented databases come with very powerful declarative query
languages like SQL. However, such languages are still not adapted to the needs of the
occasional user because of their syntax requirements and because they do not facilitate the
understanding of the database semantics, navigation within tables and the formulation of
queries.

This paper proposes an especially assisting visual interface for database query. This is
possible with a powerful and easy-to-understand database scheme representation, the
normalized semantic graph (NSG) which is underlain by the Universal Relation with Inclusions
(URI) data model, and by making NSG more explicit by automatic generation. First the
interface displays the set of the relational schemes and a set of basic links in background: it is
the relation-to-relation NSG, a kind of restriction of NSG. Displaying links with tables makes it
easier for the user to understand the database scheme and to find his way about tables.
Secondly the interface calculates and displays the possible join-links of a table designated by the
user. This is the evolving query graph. As it evolves with the designated node, the user
progressively specifies his query: he only has to select the attributes to project, precise selection
conditions and click on the desired join-links to obtain the query graph, which is translated in
SQL.

This interface by-passes syntactic specifications and assists the user as closely as possible
in his declaration. The paper also shows how to generate all the possible links between relations
implied by the NSG as well as how to complete them with compatible attributes. In this way,
the complete query graph is obtained. But to avoid drowning the user in a mass of information,
only those links of the complete query graph which are contiguous to the node designated by
the user are displayed.

A prototype is available in the GraphTalk® environment.

Keywords

Data model, universal relation with inclusion, normalized semantic graph, common attribute,
compatible attribute, inclusion dependency, complete query graph, evolving query graph

S. Spaccapietra et al. (eds.), Visual Database Systems 3

© Springer Science+Business Media Dordrecht 1995

376 Part Eight Data Models and Data Structures

1 INTRODUCTION

DBMS are today popular applications. But unfortunately, users are still reduced to asking
predefined questions or to making the effort of using data manipulation languages such as SQL.
Although SQL is a declarative and much easier language to use than, say, network and
hierarchical model query languages, it still remains a difficult language to learn for the non
expert user [Reisner 81] and does not sufficiently enhance productivity. To formulate a query,
the user is expected to know the theory underlying the data model, remember the database
scheme learn, specify join conditions and force the syntax of the query language.

Considering the limited number of tables, attributes and syntactic units likely to be involved
in querying a database and the advantages accruing from the graphical representation of the
conceptual data scheme, visual query interfaces represent an interesting alternative to formal
query expressions. This is even more so with the emergence of new techniques of Man
Machine interaction (direct manipulation, WYSIWYG and object-action dialog) that are more
effective from the dual point of view of learning and use.

The table in Figure 1 provides a quick summary of the evolution of graphical interfaces
aimed at assisting users in database query. The assistance provided by CUPID is very limited
because the user is still expected to link the different components and maintain coherence with
the data scheme himself. CUPID has served as model for many interfaces, such as LAGRIF
[Lakhal 86] and IQL [Ramos 91]. ISIS represents an important step forward in the effort to
assist users in query formulation: before ISIS, join paths were not made explicit to the user and
syntactically correct but semantically incorrect queries were possible. Its graphical conceptual
scheme, based on the semantic model SDM, generates a graphical representation of classes of
objects grouped together under several trees using two types of relationship:
superclass/subclass and aggregation. GLAD also represents a major step forward since it
visualizes a unique graphical conceptual scheme of the database which it uses as query medium.
In addition, its implementation with an object-oriented language testifies to the blessings
accruing from the object paradigm in the implementation of Man-Machine dialog. The first
interfaces to implement direct manipulation [Schneiderman 83] [Nanard 90] appeared in the
90s. The all-graphical approach to the specification of complex selection conditions in Pasta-3
and other interfaces such as IQL, is only justified as a component of a graphical toolbox and
cannot be a substitute to the formal representation of statements. Visual interfaces also facilitate
the querying of object-oriented DBMS with their inheritance and composition links. CANDID,
CQL and SUPER permit the modeling of complex data. OHQL authorizes declarative queries
formulated with methods and navigation operations drawn from the hypertext approach.

The user interface proposed in this paper implements the enhancements described above:

• it is descriptive in so far it provides a concise and complete visualization of the data scheme

(only one medium is necessary);

• it uses the same medium both for the description of the data scheme and for the representation

of the formulated query: the semantic assistance given to the user cannot be more complete;

• it is interactive: the formulation of a query is made by simply designating the nodes and arcs

of the displayed semantic graph and the syntactic units through the technique of direct
manipulation;

• it accepts both complex [Fallouh 94] and normalized data although because of problems of

space, we will restrain ourselves here to only normalized data.

Our interface introduces three enhancements:
First, it uses a more powerful and canonical data model than the usual semantic models. In

Section 2, we introduce the Universal Relation with Inclusions model adopted in URITalk
interface, especially its graphical representation, the normalized semantic graph.

The only available running joins at the present state of development of DBMS and data
manipulation languages concern two tables as elementary join conditions. The second
advantage of the query interface presented here is that it does not only display relation-to
relation links of the normalized semantic graph but also helps the user in the formulation of

An automatic visual database interface 377

queries by being able to visualize all the possible binary semantic links. Section 3 is devoted to
the construction of the complete query graph from the normalized semantic graph. However,
the complete query graph cannot be displayed because of the large number of links.

SQL[IDM81][Melton93]?"fi0'~ ~ ~-~~~

QBE [Zloof 77]

CUPID [McDonald 75]

RU [Ullman 89]

ISIS [Goldman 85]

Pasta-3 [Kuntz 90]

GLAD [WU 84] [WU 89]

CANDID [Trepied 89]

CQL [Kari 90]

SUPER [Auddino 91]

OHQL [Andonoff92]

URITalk [Saker 93]

yes 0:no ?'A W$#//#A W$/$/h W//$$/h 7'$////////A

yes V1'/$$/A0 yes 0W//AW/A ~

~~0~~~~

yes ~no~~~

yes

yes yes

Figure 1 Evolution of query interfaces.

Section 4 presents a partial graph of the complete query graph which is used as query
medium: the evolving query graph that continues to change with every progress the user makes
in the specification of his query.

Finally, Section 5 shows how the URITalk interface assists the user in formulating queries
involving selection-projection-joins on the evolving query graph. Thus the query graph is
obtained.

2 THE URI DATA MODEL AND THE NSGraph

2.1 The Universal Relation with Inclusions

Relational DBMS and relational query languages are based on the relational data model [Codd
70] [Ullman 89]. The Universal Relation (UR) assumption provides a rigorous procedure for
constructing the different relations of a database. The functional dependencies (FD) L R, where
L (the left side) and R (the right side or functionally determined attributes side) are sets of
attributes that belong to the UR R(U), permit the decomposition of the U into a set of relational
structures Ri(Kl K2 ... Kn Remainder) in refined third normal form [Maier 83] through the

normalization process. K 1> K2 ... , Kn are a set of keys of Ri and Remainder the subset of the

set of the attributes of Ri that do not belong to any of the keys. Let be x+ the closure of the

attribute set X (X+ is the set of the attributes functionally determined by X). Then each relation

closure Ui+ and the number of keys per relation are invariants of the normalized relational

database scheme. The introduction of join components (JC), assimilable to FDs without right
side, for the purpose of preserving data, increases the descriptive power of the model.

378 Part Eight Data Models and Data Structures

However data modeling remains unsatisfactory with respect to Entity-Relationship, for
example. Inclusion dependencies make up for this shortcoming: an inclusion dependency (ID)
[Casanova 84] [Lafaye 1982] [Mannila 86] [Mitchell83] noted:

AJ ... Ak>:;a.BJ ... Bk

where Ai and Bi are attributes and a. names the ID and distinguishes it from the set inclusion, is

verified on the Universal Relation R if and only if the projections of any instance R of Ron the

right and left sides of the ID verify the set inclusion:

R[At ... Ak] >:;; R[Bt ... Bk].

The Universal Relation with Inclusions (URI) is the Universal Relation data model

extended to the IDs [Pichat 90]. URI comes with a normalization process extended to IDs
[Pichat 89]. The above-mentioned results obtained for the normalized form of UR are valid for
URI.

The set of normalized relational structures is partitioned with the concept of Partial
Universal Relation (PUR). Two normalized structures, Ri and Rj, belong to one and the

same PUR if and only if there is a sequence of normalized relational structures

Ri, ... Rk,R 1 , ... , Rj such that for any pair {Rk, R 1} of adjacent relational structures in the

sequence, their closures Uk + and U 1 + have at least one attribute in common. The PURs also

partition the set U of the attributes of R.

2.2 The Normalized Semantic Graph

The normalized semantic graph (NSG) is the URI graphical representation of a database

scheme. It is made up of a set of nodes and a set of hyperarcs (see Appendix 1):

• the nodes are PURs. Each PUR can, in turn, be represented with a directed graph without

circuits:

• its nodes are the normalized relational structures Ri<KI K2Kn Remainder);

• the arc (Ri, Rj) exists if and only if

• the closure Ui+ at the origin includes the closure U/ at the extremity,

• it cannot be obtained through the transitivity of the other arcs,

• its origin and its extremity have at least one attribute in common: Ui n Uj "# q>.

These closure inclusion arcs are termed common attribute arcs; they represent
monovalued functions,

• the hyperarcs represent the normalized inclusion dependencies. They are termed inclusion

hyperarcs between PURs because they are graphically represented from a set of (initial)
PURs to another set of (terminal) PURs (see 3.2-a below).

Example: The figure in Appendix I shows the NSG of the "the Program Committee's

treatment of submitted papers" [Heuser 93], itself part of the classical example "Preparation of
an IFifl conference" [Olle 82]. Each paper, identified by its title, may concern a number of
different conference topics and be co-authored by several persons. Each referee has one
address, is competent in several topics and cannot receive more than one paper at a time. As

soon as a paper is read, the referee writes his report and the paper is considered to have

changed from the table of distributed papers to the table of papers that have been evaluated. All

the papers are judged together. The NSG in Appendix I has five nodes (PUR) and six IDs.

Three of the nodes are made of only one relation each (JudgedPaper, Evaluation and

Distribution). The two other PURs (RECEIVED PAPERS and REFEREES) contain two

An automatic visual database interface 379

relations each (Author and PaperTopic, on the one hand, and RefereeTopic and Referee,
on the other). REFEREES contains the common attribute arc (RefereeTopic, Referee)
showing that the closure of the RefereeTopic relation includes the closure of the Referee
relation, that is a tuple of the RefereeTopic relation identifies one and only one tuple of the
Referee relation. We also notice that the RefereeTopic, PaperTopic and Author relations
are join components. With the exception of the relation Referee which has two keys
(RefereeName and RefereeNickName), all relations have a unique key.

The underlying principle of semantic models is to provide concepts that are powerful
enough to yield the closest possible specification of a real-world situation. The URI model is
more powerful than most Entity-Relationship models because of its underlying UR assumption
and IDs [Andraws 91]. It provides the framework for bringing together 00 data model
composition and inheritance, relational database key and referential dependency, and most
Entity-Relationship model extensions. It is used in this article to calculate (and visualize) the
semantic relationships between tables based on common attributes and IDs.

3 FROM NSG TO COMPLETE QUERY GRAPH

In this section we examine more closely the idea floated and experimented upon by [Wu 86]
concerning the formulation of queries: instead of using a pure relational database scheme (or set
of relations without links), we construct a query medium defined by the data semantics.

Of course URITalk vizualizes the explicit binary links of NSG (its common attribute arcs)

and the inclusion arcs between relations easily deduced from its inclusion arcs L (;;a R between

PURs (case of two PURs having either only one relation intersecting L or R, or a relation
functionally equivalent to L or R). The graph thus obtained is called the relation-to-relation
NSG: it is a kind of partial graph of the NSG, but a graph between relations and consisting
only of arcs of the NSG, making it easier to identify relations to be joined.

An area in which URITalk innovates is that it completes the relation-to-relation NSG with
edges:

• which are common attributes not represented by common attribute arcs, or

• which are implicit because they are represented in NSG by n-ary IDs with n>2 or binary IDs
concerning more than two relations, or

• which result from compatibility, or

• which are transitive links (for instance, Appendix 3, the two inclusion arcs

JudgedPaper (;;7 Paper).
We examine in this section how to construct the complete query graph (with all the possible
table-to-table relationships) from the basic relation-to-relation NSG. The expression of join
conditions for users becomes simply a matter of selecting the appropriate links. In the next
section, we will see that the complete query graph is not visualized in its wholeness, but
through the evolving query graph.

3.1 Common attribute edges

We have seen in 2.2 that the NSG visualizes common attribute arcs. However it does not
visualize all the possible joins implied by common attributes. For instance the Author and
PaperTopic relations of Figure 2-a have the common attribute Paper. Yet, the many-many
relationship between them resulting from the common attribute is not visually represented on
the semantic graph. The common attribute edge between Author and PaperTopic (see Figure
2-b) is the medium of the natural join between the two relations and is part of the complete
query graph.

380 Part Eight Data Models and Data Structures

PaoerTooic Author
Paper Paper

PaperTopic Author

Normalized semantic graph
(a) (extracted from the NSG in Appendix 1)

Figure 2 Common attribute edge.

PaperTopic Author
Paper ___.; Paper

PaperTopic Author

(b) Normalized semantic graph
with common attribute edge

3.2 Representation of an inclusion hyperarc with relation-to
relation arcs

We will explain this representation in three steps:

a) From an inclusion arc on the UR to an inclusion hyperarc between PURs

Generally speaking, IDs are defined on the UR (see Figure 3-a). However, given that an
attribute cannot belong to more than one PUR, it is easier to understand the representation of an
ID between semantic graph PURs. For example, the inclusion dependency:

TestPilot Prototype~~ Driver Car

is easier to visualize in Figure 3-b than in Figure 3-a. An ID L ~a R will be represented by a

hyperarc whose origins are PURs having an intersection that is not empty with L, and whose
extremities are PURs having an intersection not empty with R. Let us emphasize that a PUR
can be both origin and extremity of a hyperarc.

b) From an inclusion hyperarc between PURs to an inclusion hyperarc between
relations

Because relational DBMS do not implement the PUR concept, we need to represent IDs
between relations to be able to use the links resulting from the IDs as possible join paths
between relations.

Figure 3-c illustrates this representation in the form of an inclusion hyperarc between
relations. Each ID between PUR: L ~a R (from the set of the source PURs of a PuRl to the

set of the terminal PURs of a PURr) can be represented by an inclusion hyperarc between
relations, from the relations R1k(Uu) belonging to a PUR PuRl and having the not empty

intersection (U1k n L) with L, to the relations Rrm(Urm) belonging to a PUR PURr and having

the not empty intersection (Urm n R) with R. In this way we obtain a NSG represented with

only relations Ri(.Kt K2Kn Remainder) defined Section 2 and each hyperarc is a

common attribute arc or an inclusion hyperarc defined between relations. We shall be using the
term NSG between relations to designate this representation of NSG in the rest of this
paper.

An automatic visual database interface 381

'IESTPILOTS
PROTOTYPEs

TestPilot I'Z$J .~

~ Manufac •.

T~¥-C.
1ESTS ·:·

I Test I
DrlV!l[s~ TestData :

(a) by an arc on the Universal Relation (b) by a hyperarc between PURs

(c) by a hyperarc between relations (d) by arcs between relations

Figure 3 ID representations.

c) From an inclusion hyperarc between relations to a set of relation-to-relation
inclusion arcs

If the representation of an ID by a hyperarc between relations is semantically equivalent to its
defmition between PURs, it does not bring out the relation-to-relation connections implied and
so does not assist the user. Before specifying them, let us introduce the notations we shall be
using: given an ID L ~a R and L' a sub-sequence of L, lla(G') refers to the subset of R

corresponding to the subset L'. In the same way, ll-a(R') is the sub-sequence of L
corresponding through a to the sub-sequence R' of R. For example, given the ID
ABCEF ~~ HIJKM, and the set X= BCFIMN, we then obtain:

X n L =BCFet llt(X n L) = IJM,
X n R = IM et ll-t(X n R) = BF.

Any ID L ~a R from the PUR PuRJ(Ul) to the PUR PuRr(Uj), or hyperarc from the

relations R1k(UJk) to the relations Rrm(Urm)• is represented for querymg by the set of relation
to-relation inclusion arcs obtained by:

382 Part Eight Data Models and Data Structures

For all relation RnlUik) of PUR1(U1) such that (L n UJk) "-$do

For all relation Rnn(UrnJ of PURr(Ur) such that (R n Unn) "- cjl QQ.

I If R' = Ila[L n UJk] n Unn "- $ then

I Create the inclusion arc Il-a(R') ~lknn R' of Rlk(UJk) to Rnn(Urm)·

For example, the ID of Figures 3-a, b and c is represented by the two relation-to-relation
inclusion arcs shown in Figure 3-d.

The representation of an ID by a set of relation-to-relation inclusion arcs is enough for
querying tables but it degrades the semantics of the original ID. This is why updating
operations entails checking data consistency by calculating joins in addition to checking
relation-to-relation inclusion arcs [Fallouh 91].

3.3 Edges of compatible attributes

The concept of IDA~ B generalizes the concept of common attribute. We can go ahead and
generalize the inclusion dependency: two attributes are said to be compatible if their domains (or
the set of all possible values) are not disjoint and if they are "semantically close". For example,
knowing that sometimes workers decide to go on further studies and that students are
sometimes engaged in paid employments, we can say that StudentName and EmployeeName
are compatible. On the contrary, the attributes PersonName and PlaceOffiirth are, a priori, not
compatible even if it is possible for someone to be known as Paris. However, if we are
working on the etymology of names, then PersonName and PlaceOffiirth will be compatible
attributes.

A compatibility relation Ai ¢::> Aj defined on all the attributes of the database scheme is
an equivalence relation. Such a relation therefore defines a partition of the attributes of the
database scheme into equivalence classes or compatibility classes.

There may be several compatibility relations on the attributes. It is also possible to define
a compatibility relation between the compatibility classes, that is, create more encompassing
compatibility classes from the basic compatibility classes. Consider for example the following
relations:

R 1 (Person Name Passion)

R2(Person Occupation)

R3~ Job Hobby)

R.l(Secretary Duty)

Rs(CivilServant Function).

All the attributes of these relations can be partitioned into four compatibility classes:
C1 = {Person, Student, CivilServant, Secretary}
Cz ={Hobby, Passion}
C3 ={Occupation, Job, Duty, Function}
C4 ={Name}.

If we take the ID Student ~:; 1 Person, CivilServant ~;;2 Person, Secretary ~;;3 Person, the class
c1 of compatible attributes coincides with the set of all the attributes of the same rank in an ID.
Generally speaking, the common attribute relation defined on all occurrences of the attributes of
a database scheme is more discriminating than the inclusion relation between attributes, which
in tum is more discriminating than the attribute compatibility relation, which is also more
discriminating than the relation ensuing from the fact that two attributes are of the same type
(see Figure 4-a). For the class c2, a passion, for example music, can be a hobby, etc.
Compatibility classes c2 and c3 can be grouped together in a second-order class to give a

compatibility class C23 comprising the join possibilities defined by Cz and C3. The visual
interface may be consulted in the restricted compatibility relation or in the extended form.

An automatic visual database interface 383

-r·~
included/including attributes Employee

J" .b

--~ r:·~

EmnlQ:teeCode Name Addres

Address <=>District

Firm

FinnCQde Manager District
(typed) attribute

1 ,, Inheritance relationship between pairs
1 4' of attributes used in the article

(b) Edge of compatible attributes

Figure 4 Compatible attributes.

An edge of compatible attributes links two tables with compatible attributes: such an edge
visualizes a possible join between the two tables. For example, Figure 4-b shows the edge of

compatible attributes (Address <=> District) for retrieving the names of employees who come
from the same town as a certain ftnn.

4 EVOLVING QUERY AND QUERY GRAPHS

The complete query graph developed in the preceding section will in complex cases be like a
spider's web. That is why URITalk displays only a partial graph, the evolving query graph.

4.1 Links contiguous to a node in the evolving query graph

The nodes of the evolving query graph are those of the relation-to-relation NSG, and its arcs
are those of the relation-to-relation NSG plus, for a node designated by the user, the contiguous
links of the complete query graph. The mechanism of navigating through and displaying new
links in the evolving query graph is simple. The user moves from one node to another by
pointing to the destination node. For a given designated node, the evolving query graph
visualizes, with the relation-to-relation NSG as background, the complete query graph links
that have this node as one of their extremities. The user selects some of these links with the
result that they become incorporated in the query graph. Thereafter, he designates another
node of the evolving query graph: the contiguous links of the complete query graph are in tum
displayed whereas the contiguous links of the first node not belonging to the relation-to-relation
NSG or to the query graph disappear from the query window (see the illustration in 5.3).

4.2 Extension of the query graph to autojoins, nested joins and
group operators

The query graph greatly facilitates the user's task of specifying the joins of different tables.
However, the definition of the join of a table by using the same table (auto join) requires the
duplication of the table [Ramos 91] and the creation of links between the two [Wong 76]. The
formulation of a sub-query or a query linked to another query by UNION, INTERSECT or

384 Part Eight Data Models and Data Structures

MINUS group operator is done in an auxiliary window for duplicating evolving query graph
and query graph.

Figure 5 shows the different graphs considered in the article.

attribute edges

arcs implied by inclusion

hyperarcs between relations

Compatible attribute edges

Figure 5 The different graphs considered in the article, ordered by the partial subgraph

relation t, their nodes and links.

5 DESCRIPTION OF URITalk INTERFACE

The URITalk interface facilitates the formal and visual conception of the database scheme as
well as the graphical querying of the database. It was developed in the object-oriented

environment Graph Talk® [Jeulin 88] for software engineering workshop development

5.1 The conception of the database scheme

The conception of the database scheme from functional dependencies, join components and

inclusion dependencies is done with the help of the LACS! package [Roche 90]. The software
package has two modules:

• a specification interface for entering and modifying FDs and JCs in a "Functional

Dependencies" window, and IDs in an "InclusionDependencies" window,

• a normalization module for fine-tuning the normalization (extended to ID) of the specification.

It produces a NSG (for example, the figure in Appendix 1)

Each relation is an object represented by a rectangle named after the relation. The relation

rectangle (see Figure 6) has a pull-down menu for performing the following tasks:

• displaying or hide-ing the rectangles representing keys and attributes of the relation that do

not belong to a key,

• contiguity for searching for links that are contiguous to the relation (this operation can also be

carried out by double-clicking above the relation icon),

• rename-ing the relation.

An automatic visual database interface

:':unel
renommer

I Relation I~ I Attribut I
Figure 6 Relation icon. Figure 7 Link icon.

Attributs du lien

Auribut-gl Attribut.<J I

Attribut-g2 AUribut-<12

385

Each ID link also has a pull-down menu which, aside from permitting the management of
the graphical representation, facilitates the definition of a join condition on all the pairs of
attributes of the same rank associated with the link. The "Null" option of the comparator menu,
selected for a line in the list, enables the exclusion of a pair of attributes of the join condition.
The "Undo" item is for undoing the join operation associated with a link. Finally, the "Hide"
item in the menu hides a link that belongs to the evolving query graph without belonging to the
relation-to-relation NSG. This has the effect of augmenting the readability of the scheme.

5.2 The graphical query screen

The interface has one main window:

• the query window, which displays three superimposed graphs with different shades:

. the relation-to-relation NSG is bright and fixed, in the background to guide the user,

. the evolving query graph is less bright, contains in addition to the first graph (the same

nodes and arcs) all the binary links between a node selected for query and the other nodes,

. the que1y graph under development, which is in reverse video.

The window has a selection bar which, in addition to the traditional File and Edit menus,
contains:
1. the Query menu, used for choosing the type of query to be made on the query graph

(default query, insert, modify, delete). To make an insert operation, the user simply
designates the appropriate relation and the corresponding edit window is displayed. In the
same vein, to delete or update, the user simply designates the relation concerned and
enters a selection condition. The menu has the following three sub-menus:

. Condition: for specifying a condition in WHERE or HAVING clauses or UPDATE
or DELETE commands in a new query window,

. Set operator: for formulating queries involving the three operators,

. Execute: generates the SQL code and, if it is coupled with a DBMS, executes the

query thus generated.

2. the Help menu.

The interface comes with three other windows:

• the attribute window for displaying all the attributes of the database scheme,

• the SQL code window for displaying the corresponding SQL code of the visual query

formulated,

• the result window for displaying the result of the executed query.

5.3 Illustration

Let us use the NSG in Appendix 1 to show how to formulate the following query: "find the
addresses of possible readers of the papers written by John". The user will proceed thus:

386 Part Eight Data Models and Data Structures

The initial screen contains the relation-to-relation NSG (Appendix 2).
The user designates the projected attributes: RefereeName in either RefereeTopic or

Referee (see Appendix 4), RefereeAddress in the relation Referee. To establish the selection
condition Author= 'John', the user carries out the following actions:

• double-clicks on the attribute Author of the Author relation and the pull-down menu

associated with this attribute is displayed,

• chooses the Selection option in the menu,

• (implicit) chooses the comparator"=",

• (implicit) chooses the option "value to be entered",

• enters the value 'John' in the open edit box.
In order to formulate the join predicates, assuming the user has selected the Referee Topic
relation, the user double-clicks above its icon. The system will, in response, display the
contiguous links with RefereeTopic (that have not yet been displayed) of the complete query
graph, in this case the two inclusion arcs:

Evaluation.EvalRefereeName s;z RefereeTopic.RefereeName,

Distribution.DisRefereeName s;4 RefereeTopic.RefereeName.

Double-clicking on the common attribute arc RefereeName from RefereeTopic to Referee,

causes it to belong to the query graph, that is, specifies the natural join predicate:

Referee.RefereeName = RefereeTopic.RefereeName.

In the same vein, double-clicking on the arc of the ID PaperTopic s;6 RefereeTopic specifies

the equijoin condition:

PaperTopic.PaperTopic = RefereeTopic.RefereeTopic.

Next the user selects the PaperTopic relation (see Appendix 5) and the RefereeTopic
relation is unselected and IDs 2 and 4 not belonging to relation-to-relation NSG disappear. The

contiguous links with PaperTopic of the complete query graph appear: IDs 3, 5, and 7, the

common attribute edge between PaperTopic and Author. Double-clicking on the last line
specifies the natural join of PaperTopic and Author. The query graph appears in bold on the

display.

6 CONCLUSION

The normalized semantic graph of the URI model is a bold attempt to assist the user in database

designing and querying: it is automatically constructed and represents much of the database

semantics in a condensed and evocative visual form. However, it graphically details only part

of the common attributes. It also represents ID in a condensed form (between PURs) but, a
priori, not in a relation-to-relation representation. It does not use transitive arcs and

compatibility edges. For being of the greatest assistance possible to the user in the formulation
of a query, so that he only has to select already displayed links, we showed how to obtain the
complete query graph made up of all the possible join links between tables. Yet the URITalk

interface remains user-friendly despite the large number of possible joins because it displays

them only when necessary, at the request of the user.

Further work is necessary

• to see if the relation-to-relation NSG cannot be enriched and made to draw more from the

NSG without losing its evocativeness, if the complete query graph cannot shed some of its

An automatic visual database inteiface 387

transitive arcs without losing its power or if it can be partially implemented by extended
inheritance,

• to validate the usability of URITalk interface such as [Cartaci 95],

• to extend to more complex queries [Klein 95] but always constructed from the normalized
semantic graph.

In conclusion, we would like to emphasize that an interface such as the one proposed in the
present paper is also a prototyping tool. It also can be used to compare the hypertext approach
[Conklin 87] [Nielsen 90] with declarative approaches in matters of database querying as well
as to enhance database administration.

We thank Claude Boksenbaum, Therese Libourel and Uzoma Chukwu for their attentive
comments.

7 REFERENCES

Andonoff E., Mendiboure C., Morin C., Rougier V., Zurfluh G. (1992) Une interface
graphique pour !'interrogation d'une base de donnees orientee objet. V/1/eme Journees
Bases de Donnees Avancees, Tregastel, INRIA Ed, 258-276.

Andraws A., Pichat E. (1991) EAPlus ou !'introduction de roles dans le modele Entite
Association. Journees Bases de Donnees Avancees, Lyon, INRIA Ed, 93-111.

Atzeni P., Chan E. P. F. (1987) Independent database schemes under functional and inclusion
dependencies. Proceedings of the 13th VWB Conference, Brighton, 159-166.

Auddino A., Dennebouy Y., Dupont Y., Fontana E., Spaccapietra S., Tari Z. (1992)
SUPER: A Comprehensive Approach to DBMS Visual User Interfaces. Actes du ler
seminaire sur les BD 91, Alger, 341-364.

Cartaci T., Santucci G. (1995) Diagrammatic Vs Textual Query Languages: A Comparative
Experiment, in Proceedings of the 3rd IFIP 2.6 Conference on Visual Database Systems
(ed. S. Spaccapietra and R. Jain), Chapman & Hall.

Casanova M. A., Fagin R., Papadimitriou C. H. (1984) Inclusion dependencies and their
interaction with functional dependencies. Journal of Computer and System Sciences, 28,
29-59.

Codd E. F. (1970) A relational model of data for large shared data banks. Comm. ACM, 13,
6, 377-387.

Conklin J. (1987) Hypertext: An Introduction and Survey. Computer, September, 16-41.

Fallouh F., Pichat E., Saker D. (1991) Le controle de l'integrite referentielle et de dependances
d'inclusion. Actes de congres INFORSID, Paris, 273-291.

Fallouh F. (1994) Donnees complexes et Relation Universelle avec Inclusions : une aide ala
conception eta !'interrogation des bases de donnees. These de Doctorat, Universite Lyon 1.

Goldman K.J., Goldman S.A., Kanellakis P.C., Zdonik S.B. (1985) ISIS: Interface for a
Semantic Information System. ACM, 0-89791, 328-342.

Heuser C.A., Peres E.M., Richter G. (1993) Towards a complete conceptual model: Petri nets
and Entity-Relationship diagrams. Information Systems, 18, 5, 275-298.

IBM (1981) SQL/Data System: Concepts and Facilities. GH-24-5013-0, IBM corporation,
White Plains, NY.

388 Part Eight Data Models and Data Structures

Kari S., Kangassalo H., Poso J. (1990) Conceptual Query Language- CQL: a visual user
interface to application data bases. lOS Press, Amsterdam, 608-623.

Klein H.- J., Kramer D. (1995) NQS - A Graphical Query System for Data Models with
Binary Relationship Types, in Proceedings of the 3rd IF/P 2.6 Conference on Visual

Database Systems (ed. S. Spaccapietra and R. Jain), Chapman & Hall.

Kuntz M. (1990) Description et evaluation de Pasta-3, une interface graphique manipulation
directe aux bases de donnees avancees. Journees Bases de Donnees Avancees, Montpellier,
INRIA Ed, 123-140.

Lafaye M.-C. (1982) Outil d'aide il. Ia conception des bases de donnees relationnelles ou
reseau (Multigraphe de projection). These de 3eme cycle lnformatique, Universite de
Rennes I.

Lak:hal L. (1986) Contribution il. !'etude des interfaces pour non-informaticien dans Ia
manipulation directe aux bases de donnees avancees. These de doctorat, Universite de Nice.

Maier D. (1983) The theory of Relational Databases. Computer Science Press, Potomac, Md.

Mannila H., Riiihii K.-J. (1986) Inclusion dependencies in database design. Int. Conf In Data

Engineering, Los Angeles, 713-718.

McDonald N.H. (1975) CUPID : a graphics oriented facility for support of non-programmer
interactions with a data base. Memorandum M563, University of California, Berkeley.

Melton J., Simon A. (1993) Understanding the new SQL; A complete guide. Morgan
Kaufmann.

Mitchell J.C. (1983) The Implication problem for functional and inclusion dependencies.
Information and control, 56, 154-173.

Nanard J. (1990) La manipulation directe en interface homme-machine. These de doctorat

d'Etat, Universite Sciences et Techniques du Languedoc, Montpellier.

Nielsen J. (1990) The art of navigating through HYPERTEXT. Communications of the ACM,

33, 3, 297-310.

Olle T.W., Sol H.G., Verrijn-Stuart A.A. (ed.) (1982) Information systems design
methodologies. A comparative Review. Proceedings of the IFIP WG 8.I Working

Conference, Noordwijkirhout, the Netherlands, 10-14 May, North-Holland.

Pichat E., Bodin R. (1990) Ingenierie des donnees. Masson.

Pichat E., Roche A. (1989) Extension de Ia normalisation aux dependances d'inclusions. Acres

du Congres INFORSID 89, Nancy, 57-77.

Ramos H. (1991) IQL : Interface Graphique Parametrable pour les requetes relationnelles.
Actes du 1 er seminaire sur les BD 91, Alger, 365-385.

Jeulin P. (1988) Graph Talk: environnement objets de developpement et d'utilisation d'ateliers

de genie logiciel. Rank Xerox France, 1988.

Reisner P. (1981) Human factors studies of DataBase Query Languages, a survey and

assessment. Computing Surveys, 13, 1, 1981.

Roche A. (1990) Definition et realisation d'un logiciel d'aide il. Ia conception de systemes
d'information. These de Doctorat, Universite de Montpellier II.

Saker D. (1993) L'interrogation des bases de donnees relationnelles assistee par le Graphe
Sernantique Normalise. These de Doctorat, Universite Lyon 1.

Schneiderman B. (1983) Direct manipulation, a step beyond programming language. IEEE

computer, 16, 8.

An automatic visual database interface 389

Trepied C., Schneider M. (1989) Candid: un modele semantique et un langage d'interrogation
gaphique pour l'utilisateur fmal. INFORSID 89, Nancy, 183-201.

Ullman J. D. (1989) Principles of Database and Knowledge-Base Systems. Volume I & II,
Computer Science Press.

Wong E., Youssefi K. (1976) Decomposition strategy for query processing. ACM Trans. on
Database Systems, l, 3, 223-241.

Wu C. T. (1986) A New Graphics User Interface for Accessing a Database. Proceedings
Conference on Advanced Computer Graphics, Tokyo, Springer Verlag, 203-218.

Wu C. T., Hsiao D. K. (1989) Implementation of visual database interface using an object
oriented langage. Visual Database Systems, T. L. Kunii (Editor), Elsevier, IFIP, 105-125.

Zloof M. (1977) Query By Example: a database language. IBM systems journal, 16, 1977,
324-343.

J
u

d
g
ed

P
a
p

er

Ju
dg

ed
P

a!
le

r
Ju

dg
em

en
t

J u
d
g
ed

P
ap

er
 'i

 I
E

va
lu

at
ed

P
ap

er

R
ef

er
ee

R

ef
er

ee
N

am
e

R
ef

er
ee

N
ic

kN
am

e

R
ef

er
ee

A
dd

re
ss

A
p

p
en

d
ix

 1

E
va

lu
at

ed
P

ap
er

P

ap
er

A
u

th
o
r

P
ap

er

A
ut

ho
r

lffi~si~j)~Afi~s•·········

N
o

rm
al

iz
ed

 S
em

an
ti

c
G

ra
p

h
.

JudaedP~er

lu
d

!!
ed

P
aw

Ju

d
g
em

en
t

JudgedPaper~
E

v
al

u
at

ed
P

ap
er

E
v
a
lu

a
ti

o
n

E

va
!R

ef
er

ee
N

am
e
EvaluatedPa~r

R
ep

o
rt

E
va

!R
ef

er
ee

N
am

e

~
R

ef
er

ee
N

am
e

D
is

tr
ib

u
ti

o
n

Q.isRefereeNam~: D

is
tr

ib
u
te

d
P

ap
er

~·sReft~ame
k

 5

_§

4
R

e£

N
am

e

R
ef

er
ee

T
I.

!I
!

c
P

a
p

er
T

o
p

J
c

A
u

th
o
r

RefereeN~
~e/

P
ap

er

t-
P

ap
er

R

ef
er

ee
T

IC

P

ap
er

T
o
p
ic

A

ut
ho

r

Ju
 i_

ap

er
T

o
p

ic
k

 6
R

ef
er

ee
T

o
p
ic

R
ef

er
ee

R

ef
er

ee
N

am
e

R~:fereeNi~kNil!!!!:

R
ef

er
ee

A
dd

re
ss

A
p

p
e
n

d
ix

2

R
el

at
io

n
-t

o
-r

el
at

io
n

 N
S

G
.

w

1
.0

0
 ~ :t
 ~ ~ s ~ ~ !:

;"

~ ~ s ~ ~ ~ "'

R
ef

er
ee

R

ef
en

:e
N

am
e

R
ef

er
ee

N
jc

i;N
am

e

R
ef

er
ee

A
dd

rc
ss

A
p

p
e
n

d
ix

 3

ju
d

g
e
d

P
a
p

e
r

Ju
dg

ed
P

;m
er

Ju

dg
em

en
t

pe
r T

op
ic

 ~
6R

ef
er

ee
T

op
ic

C
o

m
p

le
te

 q
u

er
y

 g
ra

p
h

(r

el
at

io
n

-t
o

-r
el

at
io

n
 N

S
G

 i
n

cl
u

d
ed

).

Ju
dg

ed
P

ap
er

 ~
IE

va
lu

at
ed

P
ao

er

~2
R

e
rc

re
cl

lla
n
t

A
p

p
e
n

d
ix

4

!
;
 6

 R
ef

er
ee

 T
op

ic

E
v

o
lv

in
g

 q
u

e
ry

 g
ra

p
h

 w
it

h
 t

11
e

se
le

ct
ed

 n
o

d
e

R
ef

er
ee

T
o
p

a
c.

~ 1::
>

;:
: s ~ ~- "' [~ s 2"

~ s·

~ ~ '"' "' w

'0

A
p

p
e
n

d
ix

 5

Ju
M

ed
P

an
er

Ju
d
g
ed

P
ap

en
;; 1

1
 Ev

al
u

ab
i.

P
ao

er

E
ya

!R
ef

er
ee

N
am

e
E

v
a!

u
a!

ed
P

ap
er

R

ep
or

t ~;;;
6
 R

ef
er

ee
T

op
ic

E
v

o
lv

in
g

 q
u

e
ry

 g
ra

p
h

 w
it

h
 t

h
e

se
le

ct
ed

 n
o

d
e

P
a

p
er

T
o

p
ic

.
A

p
p

e
n

d
ix

6

J u
dQ

ed
P

an
er

Ju
d

g
ed

P
ap

er
q

 IF
.v

al
u
at

PL
IP

a.
..-

r

E
ya

lR
ef

er
ee

N
am

e
E

v
al

u
at

ed
P

ao
er

R

ep
o
n

E
 va

lu
at

ed
P

ap
er

~;;

3
P

ap
er

Q
u

e
ry

 g
ra

p
h

 (
an

d
 r

el
at

io
n

-t
o

-r
el

at
io

n
 N

S
G

).

w

\
0

tv

~ ::t
 ~ ~ ~ ~ 1}

~ ~ ~ ~ w

~ <;
l "'

An automatic visual database interface 393

Etienne Pichat

Etienne Pichat received the Engineer Diploma in 1963 from the Ecole Centrale des Arts et
Manufactures, Paris and the D. Sc Degree in I 970 from the IMAG Institute, University of
Grenoble. He is currently a professor of Computer Science at Lyon !-Claude Bernard
University. He has published papers and books in finite order sets, databases and data
models.

Dib Saker

Dib Saker received the Engineer Diploma in 1987 from ISSAT, Damas and the Ph.D. degree in
Computer Science from Lyon 1 University in 1992. Currently he is a member of the technical
staff at Nat Systems, Paris. His main research interests are in database interfaces and
distributed databases.

