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[1] A new technique designed to automatically identify and characterize waves in three-
axis data is presented, which can be applied in a variety of settings, including triaxial
ground-magnetometer data or satellite wave data (particularly when transformed to a
field-aligned coordinate system). This technique is demonstrated on a single Pc1
event recorded on a triaxial search coil magnetometer in Parkfield, California
(35.945�,�120.542�), and then applied to a 6-month period between 1 June 2003 and
31 December 2003. The technique begins with the creation of a standard dynamic
spectrogram and consists of three steps: (1) for every column of the spectrogram (which
represents the spectral content of a short period in the time series), spectral peaks are
identified whose power content significantly exceeds the ambient noise; (2) the series of
spectral peaks from step 1 are grouped into continuous blocks representing discrete wave
events using a ‘‘spectral-overlap’’ criterion; and (3) for each identified event, wave
parameters (e.g., wave normal angles, polarization ratio) are calculated which can be used
to check the continuity of individual identified wave events or to further filter wave events
(e.g., by polarization ratio).

Citation: Bortnik, J., J. W. Cutler, C. Dunson, and T. E. Bleier (2007), An automatic wave detection algorithm applied to Pc1

pulsations, J. Geophys. Res., 112, A04204, doi:10.1029/2006JA011900.

1. Introduction

[2] A large variety of plasma waves are routinely en-
countered in studies of the magnetosphere, carrying with
them information about the generation mechanism and
medium of propagation between source and receiver [e.g.,
Gurnett and Inan, 1988; Samson, 1991; Stix, 1992]. Such
waves have been studied for well over 100 years [Mursula
et al., 1994] and have provided invaluable information
about the space environment.
[3] Currently, there exist large quantities of wave data

gathered from over 50 years of space and ground observa-
tions [Walker et al., 2005], which are growing daily due to
the unprecedented number of deployed instruments and
affordability of mass storage. The exponential increase in
computational speed [e.g., Moore, 1965] allows analysis of
these large data sets in reasonable periods of time and only
requires suitable algorithms to extract information about the
waves. Such information would ideally include the shape of
the wave event in the frequency-time domain (specified as
upper- and lower-frequency bounds which change as a
function of time throughout the event), intensity, orientation

of the wave normal, as well as wave polarization parameters
such as polarization ratio, ellipticity, and sense of rotation.
[4] Previously, wave events in the Pc1 frequency range

(0.2–5 Hz [Jacobs, 1970, p. 20]) were identified either
manually [e.g., Campbell and Stiltner, 1965; Fraser, 1968;
Anderson et al., 1992a, 1992b; Fraser and Nguyen, 2001;
Meredith et al., 2003] by examining a series of spectro-
grams or with a variety of simple automated routines. For
example, Anderson et al. [1992a] used spectrograms of their
data and examined each column for a (single) five-point
sliding average peak which sufficiently exceeded a thresh-
old power level. Similarly, Erlandson and Anderson [1996]
treated each column of the spectrogram (each column
representing �30 s) as an individual wave event and
searched for (multiple) spectral peaks exceeding a threshold
level. Loto’aniu et al. [2005] used a threshold in both
duration and intensity in electric and magnetic components
of the wave individually to identify wave events. While the
above algorithms identify the presence of wave events, they
do not extract the frequency-time (f � t) shape of the event.
Such information could be obtained using an edge-detection
[Canny, 1986] algorithm applied to the spectrogram but this
approach does not (by itself) yield any further wave
parameters. Other approaches (VLF range) have used
matched filtering to extract wave information [Hamar and
Tarcsai, 1982; Singh et al., 1999] but require a priori
knowledge of the shape of the spectrum, which limits their
generality.
[5] In the present paper we introduce a simple technique

which is nevertheless useful in automatically detecting and
characterizing wave events in time series data. This tech-

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, A04204, doi:10.1029/2006JA011900, 2007
Click
Here

for

Full
Article

1Department of Atmospheric and Oceanic Sciences, University of
California, Los Angeles, California, USA.

2Department of Aeronautics and Astronautics, Space Systems
Development Laboratory, Stanford University, Palo Alto, California, USA.

3Also at QuakeFinder, LLC., Palo Alto, California, USA.
4QuakeFinder, LLC., Palo Alto, California, USA.

Copyright 2007 by the American Geophysical Union.
0148-0227/07/2006JA011900$09.00

A04204 1 of 12

http://dx.doi.org/10.1029/2006JA011900


nique is presented in the context of detecting a typical Pc1
pulsation in three-component magnetometer data but can be
applied generally to a variety of wave types and frequency
regimes, for waves recorded using ground instruments or on
satellites (particularly when the satellite data is rotated into a
field-aligned coordinate system). In section 2 we present our
methodology, which consists of identifying spectral peaks
in short segments of time series data, temporally grouping
the spectral peaks into blocks, and finally extracting useful
wave characteristics for each block (e.g., polarization ratio,
ellipticity, and wave normal direction). In section 3 we
apply our algorithm to 6 months of magnetometer data and
discuss various aspects and extensions of our technique
using this example data. In section 4 we summarize our
technique and findings.

2. Methodology

[6] We use the Fast Fourier Transform (FFT) imple-
mented in a conventional dynamic spectrogram as the
starting point for our identification algorithm [Bracewell,
2000, p. 491]. This is done for a number of reasons:
(1) dynamic spectrograms are a common method of ana-
lyzing wave phenomena and are routinely generated. Thus it
is expedient for us to use the output of the dynamic
spectrograms as a starting point for our detection algorithm;
(2) after the particular time series has been converted into a
dynamic spectrogram format, our technique proceeds in a
standard way through the analysis, regardless of the fre-
quency range or type of wave under consideration, making
this technique fairly general and independent of the type of
wave and platform upon which it is measured; (3) the
information obtained from dynamic spectrograms is partic-
ularly useful in that we can directly calculate a number of
wave parameters from it such as polarization ratio, elliptic-
ity, and wave normal orientation. These wave parameters
can be used as a further check on the identification
algorithm.
[7] In the subsections that follow, we use as an example

the magnetic field data from a triaxial search coil magne-
tometer at Parkfield, California (Geographic: (35.945�,
�120.542�), CGM: (41.61�, �56.8�), dip: 60.2�, declina-
tion: 14.7�, L value: 1.77), on 6 June 2003. This example
contains a typical Pc1 wave event and is used to demon-
strate our procedure which consists of three broad steps:
(1) for every column of the spectrogram (which represents
the spectral content of a short time period), spectral peaks
are identified whose power content is significantly higher
than the ambient noise (section 2.1); (2) given a series of
spectral peaks from step 1, we temporally group the peaks
into continuous blocks representing discrete wave events
(section 2.2); and (3) for each identified wave event,
polarization parameters are calculated which serve as a
filter for either continuity or wave quality (section 2.3).
At every step, there are a number of free parameters which
can be chosen for the specific application at hand, and these
parameters are discussed in the context of our example in
the section below.

2.1. Frequency Band Identification

[8] We begin by creating a dynamic spectrogram of a long
time series of sampled data in the usual way [Bracewell,

2000, p. 491]. In our case three time series of magnetic field
intensity are used, representing each component of our
triaxial magnetometer set. The data are sampled at fs =
40 Hz and are processed in blocks of 1 day (3,456,000
samples). The time series are then divided into consecutive
and overlapping time segments, each time segment is mul-
tiplied by a Hamming window to reduce edge effects, and
the FFT is applied to the resulting time series. In our case, we
have chosen the time segment to be Nch = 4096 samples long
(�102.4 s per time segment), with an overlap of wol �30%
(�30.7 s), resulting in 1205 time segments per day with a
�71.7 s spacing between adjacent time segments. The
particular choice of Nch and wol results in a trade-off between
frequency and time resolution (as well as information
duplication) and must be carefully chosen by the user
bearing in mind the typical characteristics of the wave, and
data in question. We note in passing that our value of wol is
not specified precisely but is given as a value with some
tolerance, e.g., wol = 30 ± 1%, and an optimization algorithm
chooses the precise overlap (for our choice of parameters) so
as to fit as many time segments into a day’s worth of data,
minimizing the number of unused samples at the end of the
(day’s) time series.
[9] In Figure 1a we show the dynamic spectrogram of the

X-component (geographic north) in greyscale, as a function
of time and frequency for the first 12 hours (local time) of
06/06/2003. The rectangle bounding the region t = 2 to t =
5.4 hours, and f = 0.5 to f = 2.5 Hz contains a typical Pc1
pulsation which is analyzed further below (Figures 1e–1h).
The vertical line at t = 2.79 hours (time segment i = 140)
indicates a time period which will be used as an example to
illustrate our peak detection algorithm (Figures 1b, 1d, 1f,
and 1h).
[10] Labeling the windowed time signals at a specific

time segment i as xi(t), yi(t), and zi(t), and the corresponding
Fourier transforms Xi ( f ), Yi( f ), and Zi( f ), we can define the
covariance matrix in the frequency domain as

J i fð Þ ¼
Xi fð ÞXi* fð Þ Xi fð ÞYi* fð Þ Xi fð ÞZi* fð Þ
Yi fð ÞXi* fð Þ Yi fð ÞYi* fð Þ Yi fð ÞZi* fð Þ
Zi fð ÞXi* fð Þ Zi fð ÞYi* fð Þ Zi fð ÞZi* fð Þ

�

�

�

�

�

�

�

�

�

�

�

�

ð1Þ

where the asterisk superscript denotes complex conjugate.
Using the off-diagonal elements of the covariance matrix
(and noting that jJilmj = jJimlj for l, m = x, y, z), we define the
signal:

Ci fð Þ ¼ jJ i12j
2 þ jJ i13j

2 þ jJ i23j
2 ð2Þ

which provides a distribution of the total cross-covariance
(squared) between all the components, as a function of
frequency. The signal Ci(f) is advantageous in that it is more
immune to random noise than the autocovariance (diagonal)
elements, since three mutually incoherent spatial signals
will, by definition, have mutual coherencies of 0, resulting
in a diagonal covariance matrix [Means, 1972]. The signal
Ci(f) is computed for every value of i to form a typical
spectrogram representing the cross covariance power
(Figure 1c).
[11] In both Figures 1a and 1c, the Pc1 pulsation (marked

by the rectangle) is clearly visible by inspection since it
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stands out sharply against the background. In order to
automate the wave identification process, our algorithm
needs to similarly estimate the background noise spectrum
against which any unusual signals should be compared. This
is achieved with a row-wise median extraction, i.e., if the
spectrogram consists of 4096 rows (representing frequency)
and 1205 columns (representing time segments), for every
frequency component we select the median value of the
1205 elements so that we are left with 4096 values,
representing the median value of the signal as a function
of frequency, throughout that day. In Figures 1b and 1d the
heavy line represents the daily median, log10[M( f )], of
Figures 1a and 1c, respectively, together with the signals

at t = 2.79 hours shown as the thin gray lines (log10[X140( f )]
and log10[C

140(f)] in Figures 1a and 1c, respectively). The
spectral peak of the Pc1 pulsation clearly rises above the
median in both cases.
[12] In Figure 1e we show the expanded spectrogram

corresponding to the rectangle in Figure 1a but with the
median removed, such that at each time segment the signal
log10[C

i( f )] � log10[M(f)] is plotted. The dashed vertical
line at t = 2.79 hours (as before) indicates the time segment at
which the spectrum in the right panel (Figure 1f) is plotted.
Note that the background signal is now distributed near unity
(zero on the logarithmic scale in Figure 1f), while the spectral
peak is several orders of magnitude more intense.

Figure 1. Frequency band identification. (a) Dynamic spectrogram of a single component of the field
and (b) frequency spectrum at t = 2.79 hours (dashed line in Figure 1a) shown in gray, daily median
shown as dark line. (c) Dynamic spectrogram of cross-covariance signal C( f ), (d) similar spectrum to
Figure 1b, corresponding to Figure 1c. (e) Expanded portion of Figure 1c with daily median removed.
Time limits indicated by rectangle in Figure 1a, (f) spectrum of Figure 1e at time of dashed line.
(g) algorithm-identified Pc1 pulsation, and (h) as in Figure 1f showing sliding window averaged signal
and threshold value at Ath = 1.
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[13] As a final step, a sliding-average window is applied to
the normalized signal and a threshold detection level is set. In
our case, the sliding average was chosen to be wslide = 1% of
the sampling frequency (or 0.4 Hz) and the threshold value
was set at Ath = 1 on the logarithmic scale, to ensure that
detected signals were at least one order of magnitude greater
than the background. The results of the sliding average and
the original signal are shown in Figure 1h as the heavy line
and light gray line, respectively, and the threshold level is
shown as the dotted line. A spectral peak is detected when the
averaged signal exceeds the threshold, resulting in three
recorded frequencies: a bottom frequency (fbot

pk = 0.91 Hz),
a top frequency (ftop

pk = 1.66 Hz), and a frequency of
maximum power (fmax

pk = 1.22 Hz), indicated in Figure 1h
as two filled circles and a diamond symbol, respectively.
[14] It is also necessary to choose a lower and upper cutoff

frequency, in our case f cutbot = 0.1 Hz and f cuttop = 10 Hz, and a
minimum width for the spectral peak, Dfpeak = 0.1 Hz. The
spectral peak is considered valid when fbot

pk > f cutbot , ftop
pk< f cuttop,

and [ftop
pk � f pkbot] > Dfpeak. In Figure 1g we show the same

dynamic spectrogram as in Figure 1e, on a lighter color
scale, and overlay the automatically identified series of fbot

pk,
ftop
pk, and fmax

pk values. As shown, there is excellent agreement
between visual and automatic identification.
[15] A few points should be noted at this stage: first, we

choose to use a median value which is a function of
frequency M(f) because the background noise spectrum
could (in some environments and/or frequency regimes) be
changing very rapidly as a function of frequency, for example,
�exp( f/f0). Using only a single median value (not as a
function of frequency) could cause the more intense parts
of the noise spectrum (lower end in our example) to cross the
threshold frequently, and the less intense parts of the spec-
trum (upper end in our example) to not cross the threshold,
even when waves are present. For this reason we consider it
vital to compare each frequency of the spectrum against the
median value at that particular frequency. Second, if there is
a long-enduring, constant frequency tone present in the data
for most of the day, the daily median value will be set to the
level of the tone, at the tone’s frequency, and the tone itself
will not be detected as a wave event. If a coincident Pc1 wave
occurs over the frequency band covered by the tone, it will be
detected only if it exceeds the tone’s amplitude by a
significant amount (set by Ath).
[16] In both cases discussed above, our detection algo-

rithm was designed to closely mimic the way a human
would manually detect wave activity by looking at a
spectrogram, i.e., by looking for intense patches, where
‘‘intense’’ means that the power in the portion of the
spectrum in question appears to be significantly larger than
surrounding values, which could vary with frequency in
some regular way. Constant tones that run across the length
of the day would be rejected as legitimate wave events both
by the human user, and our detection algorithm. However,
in cases where the data block is on the order of the wave
duration, the ‘‘data block median’’ may be set too high and
the detection algorithm (and a human user with no prior
experience) will not be able to detect the wave event. The
solution in this case is to consider data blocks that are
significantly longer than the typical duration of the wave
events being sought in order to extract a meaningful median
or to build some experience into our algorithm (to use the

human user analogy) and calculate a median value over
several data blocks. In the present case this problem is
considered very unlikely since Pc1 pulsations exhibit a
strong diurnal effect (which restrict them to durations of a
few hours), and the frequency band exhibits some drift.
[17] We examine the efficacy of our spectral peak detec-

tion technique in the presence of noise in Figure 2. The
noise is injected by generating a normally distributed time
series with a standard deviation snoisex,y,z equal to some fraction
of the standard deviation of the corresponding time series
ssigx,y,z. The noise is added directly into the output signal of
the analog-digital converter (i.e., before transfer function
compensation) to simulate electronic noise coupling into the
circuit. The rows of Figure 2 correspond to noise levels of
snoise/ssig = 0, 0.1, 0.5, and 1. Columns 1 and 2 are
computed in the same way as Figures 1f and 1h, except
for the addition of the noise. Figure 2 illustrates that even
though the spectral peak of the signal blends progressively
into the noise floor as the level of noise is increased, for a
low signal to noise ratio of 1 (bottom row) the signal is
nevertheless detectable using our method.
[18] The robustness of our detection algorithm to noise is

anticipated on theoretical grounds, since it can be shown

Figure 2. Spectral peak identification with noise. Columns
correspond to Figures 1f and 1g, with each row having
increasing noise, from top to bottom: SNR = 0, 0.1, 0.5,
and 1.
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[Means, 1972] that incoherent noise is expected to enter
only the diagonal elements of the covariance matrix and not
the off-diagonal elements, which we use in our technique.
However, in practice, when comparing detection efficiency
using the diagonal elements of the covariance matrix against
the detection efficiency using the off-diagonal elements of
the covariance matrix (not shown), we have found only
marginal improvement. Nonetheless, we use the off-diagonal
elements in our identification algorithm since these terms
provide direct information about wave properties (section 2.3)
which we can use as a check on our temporal grouping
technique (section 2.2).
[19] We have thus demonstrated that the spectral peak

identification algorithm presented in this section works in
the presence of severe noise and produces a list of three
frequencies fbot

pk, ftop
pk, and fmax

pk per identified peak as dis-
cussed above. Of course, any number of spectral peaks can
occur in a single time segment, and the next task of the
algorithm is to associate spectral peaks in contiguous time
segments into individual, discrete wave events.

2.2. Temporal Grouping

[20] The temporal grouping of individual spectral peaks
into discrete wave events proceeds as follows: (1) given a
list of identified peaks, we search for extended quiet periods

which are then used to divide the list into smaller data
blocks which can be processed individually; (2) the data
blocks are checked for length and those blocks that are
shorter than a specified length are discarded; (3) each data
block is then individually traversed beginning with the first
spectral peak. Adjacent peaks are tested for continuity, and
if a continuity occurs, the following peak is tested, and so
on. When no continuity of spectral peaks is found over
several adjacent time segments, the end of the wave event is
signaled. In this way continuous wave events are identified
and progressively removed from the data block and stored
separately. Peaks that do not exhibit continuity are discarded
until the entire data block is emptied, being divided essen-
tially into either positively identified wave events or spuri-
ous peaks which are treated as noise.
[21] To illustrate our procedure, we show the list of

identified spectral peaks in Figure 3a, where day 0 corre-
sponds to local midnight on 4 June 2003 and day 3 is local
midnight on 7 June 2003. The first half of day 2 (6 June
2003, 0000–1200) is the period previously shown in
Figures 1 and 2. In Figure 3a the spectral peaks are drawn
as vertical lines at every time segment, extending from fbot

pk

to ftop
pk, with no filtration, i.e., this is the raw output of the

spectral identification procedure described in section 2.1.
The list of peaks is then divided into contiguous data blocks

Figure 3. Illustration of spectral peak association; (a) all identified spectral peaks, (b) short data blocks
removed, when tblkn < tblk

min, (c) all nonassociated spectral peaks removed, and (d) expanded portion of
Figure 3c illustrating spectral peak association algorithm.
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as shown by the labels tblk1, tblk2, etc., by looking for
temporal separations (where no spectral peaks have been
identified) in the data greater than a critical value, i.e., tsepn
> tsep

min, where tsepn is the nth temporal separation of the peaks
in our data (e.g., tsep1 and tsep2 in Figure 3a), and tsep

min =
10 min in our example. Since the grouping algorithm is
memory-intensive, it is computationally much more effi-
cient to divide the entire list of identified spectral peaks into
smaller data blocks and perform spectral peak grouping on
each data block in turn, than to perform it on the entire list.
Using predefined time periods for processing (e.g., 1 day at
a time or 1 week at a time) could achieve the same goal, but
since the waves of interest could (and typically do) cross
from one day to the next, or one time period to the next,
they would be artificially split into two separate events
(across the boundary) as opposed to one. We have thus
chosen to split the data in a more natural way, by using
extended quiet periods in our data to serve as the boundaries
that separate individual data blocks (Figure 3a).
[22] The temporal separation described above results in

a number of data blocks containing groups of spectral
peaks. The next step is to discard data blocks that are too
short, i.e., impulsive bursts. Figure 3b shows the results of
this filtration, where we only retain data blocks with tblkn >
tblk
min and tblk

min = 10 min in our example. As shown, many of
the spurious spectral peaks have been eliminated, but those
peaks that occur in conjunction with other large, contiguous
blocks of data still remain.
[23] As a final step, we traverse each data block sepa-

rately and check for association between adjacent spectral
peaks, discarding those peaks that do not show association.
The results of the association check are shown in Figure 3c,
where we have now eliminated all spurious spectral peaks,
and are left only with genuine Pc1 pulsation events (this is
easily verified by inspection).
[24] The association procedure is illustrated in Figure 3d,

where we show an expanded portion of Figure 3c between
1.048 < t < 1.063 days and 0.8 < f < 2.3 Hz, and the lines
which marked spectral peaks in Figures 3a, 3b, and 3c are
now replaced with points at fbot

pk and ftop
pk at every time

segment, as we did previously in Figure 1g. We use the
shorthand symbols L and H to represent the low- and high-
frequency bounds of the spectral peaks, respectively, and
the subscript represents the spectral peak number in the data
block. Beginning with the first peak (L0, H0), we test the
next peak for continuity, such that the Boolean condition:

Liþ1 < Hið Þ AND Hiþ1 > Lið Þ ¼ TRUE ð3Þ

is satisfied, ensuring nonzero spectral overlap between
adjacent peaks. If (3) is satisfied, the following peak is
tested, and so on until (3) is no longer satisfied. If a certain
minimum number of peaks are found to be associated (i.e.,
(3) holds between any adjacent peaks), corresponding to a
minimum duration tPc1

min then those peaks are grouped
together into a ‘‘wave event,’’ stored in a separate file and
removed from the data block. If no association is found for a
certain temporal peak, or association of several peaks is
found, but the total duration of the event is less than tPc1

min,
those peaks are assumed to be spurious noise and are
discarded. In our case, we have chosen tPc1

min = 5 min. There
is also the possibility that a spectral peak at a particular time

segment has not been identified by the frequency band
identification procedure (section 2.1), due to added noise or
reduced signal amplitude, but the spectral peaks surround-
ing this time segment are indeed associated. To account for
such cases, we extend the definition of ‘‘associated peaks’’
(or spectral overlap) from satisfying (3) at adjacent time
segments, to that of satisfying:

Liþj < Hi

� �

AND Hiþj > Li
� �

¼ TRUE ð4Þ

where j is incremented from 1 to some value such that ti+j �
ti � tPc1

skip, and in our case we choose tPc1
skip = 3 min which

allows a maximum of two time segments to be skipped.
[25] Each of the identified spectral peaks at time segment

i is compared with the spectral peaks at time segment i + 1
(or i + j in the more general case), starting from the lowest-
frequency spectral peak and ending at the highest-frequency
spectral peak. If an association is found (i.e., (4) is satis-
fied), the next time segment is checked for association by
traversing all the identified spectral peaks from low- to
high-frequency spectral peaks. The end of the event is
marked when no associated spectral peaks have been
detected in tPc1

skip, and all the entire event is stored in a
separate file and removed from the data block. The process
then continues until all the spectral peaks have been
removed from the data block, as either spurious noise or
wave events. In the case when two or more frequency bands
merge into a single frequency band, the spectral overlap
criterion alone will associate the lower-frequency band with
the ‘‘merged’’ band, and remove this event from the data
block, and the upper-frequency band will remain as an
isolated event. However, one might wish to associate the
frequency band, or individual spectral peaks, which are
most ‘‘consistent’’ or ‘‘continuous’’ with adjacent peaks or
bands when there is a choice. So far, our technique has been
somewhat comparable to a simple edge detection algorithm,
but due to the hierarchial way in which we have set up our
problem and reduced our data, we are now able to compute
the complete wave parameters for each wave event, which
can be used in further filtering, continuity checking, or
characterization, as discussed in the following section.

2.3. Continuity in Polarization Parameters

[26] The polarization parameters of a plane wave provide
important information on the type of wave being studied, its
origin, and the propagation characteristics of the medium
through which it traveled. There have been a number of
techniques published in the literature to determine the
polarization parameters [e.g., Born and Wolf, 1970;
McPherron et al., 1972; Means, 1972; Samson, 1973;
Samson and Olsen, 1980; Rezeau et al., 1993; Santolik et
al., 2003]. The majority of these techniques use as their
starting point the magnetic divergence equation B	k = 0,
which is multiplied by the conjugate of the magnetic signal
B*, to give three mutually dependent equations:

X

3

l¼1

BlBm*kl ¼ 0; l;m ¼ x; y; z; ð5Þ

where kl are the components of the wave normal vector,
BlBm* form the elements of the Hermitian covariance matrix
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after appropriate manipulation, and we have now switched
our notation from a general three-component vector, to a
specific coordinate system to present our example Pc1 event,
where the x, y, and z directions correspond to geographic
north, geographic east, and vertically downward, respec-
tively. In our case, we follow the methodology of Means
[1972] due to its relative simplicity and use of the imaginary
part of the off-diagonal elements of the covariance matrix,
which is more immune to random noise than methods
utilizing the real diagonal part of the covariance matrix [e.g.,
McPherron et al., 1972].
[27] At a particular time segment i, we use the covari-

ance matrix Ji(f) (from (1)) and the bounding frequencies
of a particular spectral peak fbot

pk, ftop
pk, to obtain the band-

integrated covariance matrix S:

Slm ¼
Z f

pk
top

f
pk

bot

J ilm fð Þdf ð6Þ

where l, m = x, y, z, and it is now understood that S is
computed at a specific time segment i and over the
identified frequency band.
[28] The wave normal vector is obtained directly from the

imaginary part of S (SI) [Means, 1972] as

kx ¼
SIyz

a
; ky ¼

�SIxz
a

; kz ¼
SIxy

a
; ð7Þ

where a2 = Sxy
2 + Sxz

2 + Syz
2 , and k2 = kx

2 + ky
2 + kz

2 = 1. The
wave normal vector direction can be described by a set of
polar angles (qk, fk), as

qk ¼ arctan

ffiffiffiffiffiffiffiffiffi

k2xþk2y

p
kz

� �

;

fk ¼
arctan ky=kx

� �

for kx � 0;
arctan ky=kx

� �

� p for kx < 0; ky < 0;
arctan ky=kx

� �

þ p for kx < 0; ky � 0;

8

<

:

ð8Þ

where we have been careful to locate fk in the correct
quadrant [Santolik et al., 2003]. Figure 4a illustrates the
orientation of the k-vector and polar angles (qk, fk).

[29] The remainder of the procedure takes place in the
principal coordinates, which requires that we rotate our
coordinate system in such a way that the new z-axis is
aligned with the k-vector. We use the general rotation
matrix R = BR CRDR, composed of three successive coun-
terclockwise rotations of the axes about the z-, x-, and
z-axes, respectively, defined by the Eulerian angles fR, qR,
and yR [Goldstein, 1965, p. 109], such that

BR ¼
cos yRð Þ sin yRð Þ 0

� sin yRð Þ cos yRð Þ 0

0 0 1

2

4

3

5 ð9Þ

CR ¼
1 0 0

0 cos qRð Þ sin qRð Þ
0 � sin qRð Þ cos qRð Þ

2

4

3

5 ð10Þ

DR ¼
cos fRð Þ sin fRð Þ 0

� sin fRð Þ cos fRð Þ 0

0 0 1

2

4

3

5 ð11Þ

where fR = fk � p/2, qR = �qk, and yR = 0, ensuring that
the new z-axis (z0) is parallel to the k-vector, x0 is parallel to
the horizontal plane (the former x � y plane), and y0

completes the RH coordinate set. The rotated coordinate
system is illustrated in Figure 4a.
[30] Applying the similarity transformation to our band-

integrated covariance matrix S, we obtain S0 = RSR�1, and
note that only the upper [2  2] submatrix contains nonzero
elements and is retained in further calculations. The remain-
der of the polarization parameters can now be obtained
directly [Fowler et al., 1967].
[31] The matrix S0 is divided into a polarized and unpo-

larized part, P and U, respectively, given by

U ¼ D 0

0 D

� �

ð12Þ

where

D ¼ 1

2
S0xx þ S0yy

� �

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S0xx þ S0yy

� �2

� 4jS0j
r

ð13Þ

where jS0j is the determinant of S0, and P = S0 � U.
[32] The polarization ratio, defined as the ratio of polar-

ized power to total power is given by

Rpol ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4jS0j

S0xx þ S0yy

� �2

v

u

u

t

ð14Þ

The angle between the major axis of the polarization
ellipse and the x0-axis is defined by the angle qax determined
from

tan 2qaxð Þ ¼ 2<e Pxy

� �

Pxx � Pyy

¼ Aax ð15Þ

Figure 4. Orientation of axes. (a) rotation of XYZ
coordinates into the principal coordinate system, (b) polariza-
tion ellipse in principal coordinates.
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giving

2qax ¼
arctan Aaxð Þ for S0xx > S0yy;
arctan Aaxð Þ þ p for S0xx � S0yy & Aax > 0;
arctan Aaxð Þ � p for S0xx � S0yy & Aax � 0

8

<

:

ð16Þ

which gives the correct angle of rotation. To ensure that qax is
in the range (�p/2; p/2), we further add p if qax < �p/2 and
subtract p if qax > p/2. The explicit adjustment of qax in (16)
is necessitated by the fact that direct inversion of (15) gives a
range of �p/4 � qax � p/4, corresponding to the angle
between the x0-axis and either the minor or the major axes of
the polarization ellipse, which is insufficient for our
purposes. The steps outlined above ensure that qax is indeed
the angle between the x0-axis and the major axis of the

polarization ellipse. As a final note, when qk = 0, the
azimuthal angle fk becomes arbitrary, so we set it to p/2,
thus ensuring that qax returns an angle relative to the positive
x-axis (geographic north).
[33] The ellipticity and sense of polarization are described

by the angle bax, where

sin 2baxð Þ ¼ i Pyx � Pxy

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pxx � Pyy

� �2þ 4PyxPxy

q ð17Þ

and tan(bax) gives the ratio of the minor axis to the major
axis (ellipticity), the sign of bax indicating the sense of
polarization, bax > 0 (bax < 0) corresponding to RH (LH)
rotation about the z0-axis. The coordinate transformation
(x, y, z) ! (x0, y0, z0), and angles qax and bax are shown in
Figures 4a and 4b, where the sense of rotation has been
indicated for bax > 0.
[34] Since the equation B 	 k = 0 is being solved, the

magnitude k = jkj can be multiplied by any arbitrary scalar
constant (positive or negative) and hence does not contain
any useful information, so it is normalized to unity for
convenience. Consequently, there is an inherent ambiguity
in the wave normal direction, since both k and �k are
solutions. This ambiguity further reflects in the sign of bax

as follows: suppose a circularly polarized wave is detected,
with the phase front lying in the x-y plane, such that k lies
along the z-axis and that when viewed from above, the sense
of polarization is clockwise. If k is chosen to lie in the
direction of +z (down), the sense of polarization is RH and
bax > 0, whereas if k is chosen to lie in the direction of �z,
the sense of polarization is LH and bax < 0. Since the only
information we have is the rotation of the wave’s magnetic
vector, and the plane in which it lies, both answers are
legitimate solutions. This ambiguity can be resolved by
either introducing additional information, such as an electric
field vector which would determine the direction of k (by
calculating the direction of the Poynting flux), or making an
assumption about either the direction of k or sense of
polarization (for example knowing that whistler-mode
waves in space always rotate in a RH sense). In our case,
we restrict k to be in the positive z half-space (i.e., k always
faces toward the center of the Earth) under the assumption
that the wave impinges onto the magnetometer from above,
and thus the sense of polarization is allowed to be RH or
LH, consistent with past work [e.g., Summers and Fraser,
1972]. Since our magnetometer is located in the northern
hemisphere where the geomagnetic field is directed into the
Earth, the sense of RH and LH polarizations are consistent
with the definitions commonly used in plasma physics,
which use the positive direction of the static magnetic field
as the reference.
[35] In Figure 5 we show an example calculation of the

polarization parameters for the Pc1 pulsation event shown
previously in Figures 1–3. Figure 5a shows the identified
spectral peaks as a set of upper- and lower-frequency values
(dots) and a frequency of maximum power within each band
(‘‘x’’-symbol), as a function of time in days (corresponding
to the timescale used in Figure 3). Figure 5b shows the polar
angles (qk, fk) describing the k-vector orientation, indicat-
ing that the wave normal is within �30� of the vertical
between t = 2.12 and t = 2.22 days, oriented at �150� to the

Figure 5. Polarization properties. (a) algorithm-identified
wave event, (b) wave normal vector polar angles,
(c) polarization ratio, (d) ellipticity, and (e) axis inclination
angle.
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x-axis which corresponds roughly to a south-southeast
direction.
[36] The polarization ratio in Figure 5c indicates that

Rpol > 90% for the entire duration of the event, which is
significantly higher than the polarization ratio measured
away from the identified spectral peaks where Rpol � 0.
Figure 5d shows that the ratio of minor axis to major axis
was relatively small, with 0.1 < tan(bax) < 0.4, and
remained relatively close to the x0-axis, with 5� < qax <
10� roughly, as shown in Figure 5e. The sign of bax

indicates that the sense of rotation was RH, consistent with
typical characteristics of Pc1 pulsations [e.g., Jacobs, 1970,
pp. 19–32] which routinely exhibit both a RH and a LH
sense of rotation.
[37] As described in the above section, a complete

description of the wave’s polarization parameters is readily
obtained with only a few steps beyond the computation of
the Fourier transformation, which is itself used in the
production of standard spectrograms. The calculated wave
parameters remain relatively constant for the duration of the
event (see, e.g., fk) and can be used as an additional check
on the temporal grouping algorithm (i.e., checking that the
correct spectral peaks were grouped together). We may also
choose to include a continuity criterion together with the
spectral overlap criterion when we perform the temporal
grouping, i.e., in addition to satisfying (4), we also require
that j(ai+j � ai)/aij < c, where c is some threshold value
(e.g., 0.1 for less than 10% variation), and ai represents any
of the polarization parameters (e.g., qk, fk, etc.) at time
segment i.
[38] We can also use any of the polarization parameters

to perform additional filtering, for (1) quality, e.g., retain-
ing only events with Rpol > 0.8, or (2) a particular wave
characteristic, e.g., identifying only RH-polarized events,
only events above a certain frequency threshold, only
waves propagating in a given direction, and so on. Of
course, we may choose to do no additional wave filtering
beyond the temporal grouping algorithm (section 2.2), and
simply study the morphology of all detected waves over
some period of time. An example of the latter is presented
below.

3. Case Study: June–December 2003

[39] To demonstrate our technique over an extended
period, we use the Parkfield, California, search coil data
(c.f. section 2) during the period 06/01/2003–12/31/2003,
several examples of which are shown in Figures 1, 3, and 5.
Our aim in this section is to present the typical outputs of
our algorithm and possible uses of this technique on a
typical data set, as opposed to conducting a study of the
characteristics of the Pc1 waves themselves, which is too
domain-specific and will not be handled in the current paper
but deferred to future work.
[40] During the period 06/01/2003–12/31/2003, 1336

wave events were identified in the data using the parameters
listed in Table 1. For each identified wave event, an average
quantity was obtained as

an ¼
1

T

Z tn0þT

tn0

an tð Þdt ð18Þ

where an(t) is any of the wave properties (e.g., universal
time tUT, local time tLT, Df = f pkmax � f pkmin , qk, fk, Rpol, f

pk
max,

etc.) associated with the nth identified wave event, having a
start time tn0 and duration T.
[41] Figure 6 shows the identified wave characteristics in

the above period. In Figure 6a we plot f
pk
max versus tUT

(shown as day of year in 2003), such that each identified
event is represented by a single point on the plot.
Days 237–255 represent a data dropout and contain no
identified events. This type of display essentially represents
a summary of the dynamic spectrogram shown in Figure 3
and can be useful in identifying or associating coarse
temporal features with other events. For example, we note
the increase in occurrence and f max

pk of Pc1 pulsations on
days 326–329 (exceeding 4 Hz on day 328), following one
of the largest (Dst � �472 nT) geomagnetic storms in the
past 50 years on day 324 (20 November) [Ebihara et al.,
2005]. This behavior is consistent with past work which
shows an increase in Pc1 occurrence and midfrequency with
delay of 2–8 days after storms [Tepley, 1965].
[42] To obtain a sense for the distribution of various

parameters, we show in the second row of Figure 6 histo-
grams of a number of parameters. Figures 6a–6c show that
the identified Pc1 events are predominantly observed at low
frequencies (peak �0.25 Hz; mean �0.96 Hz), on the
nightside, and at relatively high polarization ratios (peak
�0.87; mean �0.73), respectively. The distribution of Pc1
events is consistent with past observations showing that the
majority of Pc1 events at middle to low latitudes are
observed on the nightside [Campbell and Stiltner, 1965;
Jacobs, 1970, p.28]. The generation of Pc1 events (electro-
magnetic ion cyclotron waves, or EMIC) is believed to be
driven by a cyclotron resonant interaction with anisotropic
ring current protons [Cornwall, 1965] and are observed
predominantly on the dayside at high L shells [Fraser,
1968; Anderson et al., 1992a, 1992b; Fraser and Nguyen,
2001]. The EMIC waves then propagate along field lines
predominantly in the left-hand mode, and couple into the
ionosphere at high altitudes, where they mode-convert and

Table 1. A Summary of the Values Which Must Be Set by the

User in the Wave Identification Algorithm, Together With the

Values Used in This Example

Parameter Description Value Used

Nch Number of samples in a time
segment

4096

wol Percentage overlap between
time segments

30% ±1%

wslide Sliding-average window width
(% of fsamp)

1%

Ath Threshold value for peak
identification

1

fbot
cut Lower cutoff of spectral peaks 0.1 Hz

ftop
cut Upper cutoff of spectral peaks 10 Hz

Dfpeak Minimum bandwidth of spectral peak 0.1Hz

tsep
min Minimum separation time

between data blocks
10 min

tblk
min Minimum duration of data block 10 min

tPc1
min Minimum duration of Pc1 event 5 min

tPc1
skip Maximum time to skip peaks

within an event
3 min

A04204 BORTNIK ET AL.: TECHNIQUES

9 of 12

A04204



travel predominantly in the right-hand mode in the iono-
spheric waveguide [Fraser, 1968; Manchester, 1968;
Jacobs, 1970, p. 115]. The decreased occurrence of Pc1
events on the dayside at low latitudes is explained by the
increased E layer absorption during the day, which strongly
damps the EMIC waves as it propagates from its secondary
source in the high-latitude ionosphere toward the equator
[Tepley, 1965].
[43] The identified wave characteristics can be used to

search for various associations as shown in the bottom row
of Figure 6. Figure 6e is a scatterplot of the mean bandwidth
(Df ) of each identified Pc1 event, against event duration
(Dt), showing that the two parameters are weakly correlated.
We compute the (nonparametric) Spearman rank order corre-
lation coefficient [Press et al., 2002, p. 640] to be rs �0.313,
with a t-value of�12.10 and P-value < 10�16, indicating that
the correlation is significant, and that the average event
bandwidth tends to increase with event duration.
[44] Variation in three parameters is analyzed as shown in

Figure 6f, where qk is binned as a function of f
pk
max and tLT.

As shown in Figures 6b and 6c, the identified Pc1 events are
clustered at low frequencies and around local midnight, but
binning operation in Figure 6f reveals that there is also a

systematic increase in qk as a function of frequency at most

local times, except for tLT = 1–4, and f > 3 Hz, where qk is

again very low. The diurnal variation of f
pk
max shows a

maximum before dawn and a minimum just prior to dusk
which is again consistent with past work [Campbell and

Stiltner, 1965], and related to the variation in F-region
characteristics from day to night.
[45] In Figure 6g we show a correlation matrix between 13

different quantities representing the mean characteristics of
each identified wave event, respectively: (1) tUT, (2) tLT,

(3) Dt, (4) f
pk
max, (5) Df , (6) Rpol, (7) qk , (8) fk, (9) bax, (10)

peak magnitude, (11) Kp index, (12) plasmapause location
(Lpp) estimated using the simple relation given by Carpenter
and Anderson [1992], and (13) equatorial Helium gyrofre-
quency at Lpp (estimated using a centered dipole field
model). This type of analysis is used to quickly identify
correlations between a large number of parameters, which
can then be used to infer various characteristics about the
source of the waves, propagation characteristics, and so on.
In our case the diagonals are perfectly correlated by defini-
tion, and the majority of the variables are uncorrelated.
Moderate correlations exist between fk and bax (variables
8 and 9), and Rpol and qk (variables 6 and 7). Strong
intercorrelations exist among variables 11–13 since these
quantities are all calculated using Kp as input. As shown,
there is not a strong correlation between the wave character-
istics and instantaneous Kp value, which is consistent with
past work [Tepley, 1965]. The wave frequency does not show
strong correlation to the proton gyrofrequency at the plas-
mapause, which is likely related to the fact that while EMIC
waves are clustered around the plasmapause, they can be
generated well away from it [Fraser and Nguyen, 2001;
Meredith et al., 2003]. Analysis of further relations dealing
with the detailed physics of Pc1 wave propagation is

Figure 6. Statistical properties of identified wave events. (a) mean frequency versus mean time;
distributions of (b) mean frequency, (c) local time distribution, (d) polarization ratio; (e) scatter plot of
bandwidth versus duration; (f) wave normal zenith angle versus mean frequency and mean local time;
(g) cross- correlation of 12 wave properties (see text for details).
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considered beyond the scope of the present work and will be
addressed in future studies.

4. Summary and Conclusions

[46] This paper discussed a new technique designed to
automatically identify and characterize waves in three-axis
data. This technique was demonstrated on a single Pc1
event recorded on a triaxial search coil magnetometer on 06/
06/2003 and then applied to the 6-month period 06/01/
2003–12/31/2003. The technique consists of three steps:
[47] 1. The first step is frequency band identification, in

which we divide the time series data into short time seg-
ments, obtain the FFTs for each segment, and create a cross
covariance signal Ci(f) for each time segment using (2). The
daily median value of Ci(f) is then subtracted, the resulting
curve smoothed, and all spectral peaks that exceed a given
threshold are recorded.
[48] 2. The second step is temporal grouping, in which

the identified spectral peaks are grouped into contiguous
blocks and blocks shorter than a given threshold are
removed. The remaining blocks are processed for temporal
association, i.e., spectral peaks are grouped together if there
is spectral overlap, equivalent to satisfying (4). If the
number of grouped spectral peaks exceeds a minimum
value, the peaks are recorded as an event.
[49] 3. The third step is polarization parameter calcula-

tion. Once individual events have been identified, the
spectral peaks are used to calculate band-integrated polar-
ization parameters such wave normal angles (qk, fk),
polarization ratio Rpol, major axis angle qax, and ellipticity
and sense of polarization bax. These parameters can be used
in further filtering, to check for continuity in a given event,
or simply for characterization.
[50] The free parameters and their descriptions, as well as

the chosen values used in this paper, are given in Table 1. In
examining the 6-month period 06/01/2003–12/31/2003,
1336 events were identified which were clustered predom-
inantly around low frequencies, on the nightside. Further
analytical techniques were demonstrated for our example
6-month data set, which could be generally applied to a
variety of data sets being analyzed with our technique.
[51] It should be noted that the parameters used in this

paper were generic and only meant for illustrative purposes.
In the current data set analyzed, our chosen parameters will
favor the identification of unstructured pulsations but can be
readily adjusted to identify a variety of other pulsations. For
instance, to identify structured pulsations (hydromagnetic
whistlers or ‘‘pearls’’), the time segments should be chosen
to be shorter and with a higher degree of overlap, to identify
each ‘‘pearl’’ in the series individually. In fact, it is often the
case that apparently structureless Pc1 pulsations do indeed
have fine structure which is obscured by strong overloading
signals or resolution limitations. The individual pearls will
then need to be grouped with an additional layer of filtering,
for example by looking for periodicity in the ‘‘center of
mass’’ in the f-t plane.
[52] Similarly, our technique can be applied to a variety

of frequency regimes and wave modes, measured both on
the ground and on spacecraft, for example identification of
lightning-generated whistlers, or magnetosheath lion roars

which all exhibit spectral overlap between successive time
segments for a given event. This technique is especially
useful when the satellite data are rotated into some stan-
dard reference frame (for example, a field-aligned coordi-
nate system) to facilitate the interpretation of the wave
normal directions and other polarization parameters. In
some instances, it is the ‘‘quiet band’’ between spectral
peaks which is of interest, for example the helium stop
band in electromagnetic ion cyclotron (EMIC) waves
[Mauk et al., 1981], which can be returned by our
algorithm if two or more frequency bands are simulta-
neously present.
[53] If only one or two axis measurements are present,

our technique can still be applied as follows: for the single
axis measurements, only steps one and two will be per-
formed, and the frequency bands will be identified using
only signal power (as opposed to cross-covariance). If two
axis measurements are present, the technique will proceed
as in three dimensions, but all wave properties will be
calculated in two dimensions assuming that the measure-
ments are already in the principal coordinate system.
[54] As a final note, we mention that our technique is

fairly general and can be tailored to analyze waves in a
variety of situations. It has the distinct advantage (compared
to simply looking for amplitude increases in a time series)
that the waves are detected as a function of frequency and
that the signal in which spectral peaks are sought is
normalized by the median background frequency spectrum
(c.f. section 2.1). This normalization implies, for example,
that weak waves (e.g., at higher frequencies), which are
nevertheless much stronger than the background in their
frequency band, will be easily detected and not obscured by
more intense signals (e.g., at lower frequencies) which are
nevertheless weak compared to the background levels in
their respective frequency band. The character of the back-
ground spectrum does not need to be known a priori
because the algorithm computes it automatically when
given sufficiently large data blocks (a day, in our case),
which again underscores its generality.
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