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Abstract—Current pulses are convenient to be actively
implemented by a Battery Management System (BMS).
However, the Short-Term Features (STF) from current
pulses originate from various sensors with uneven quali-
ties, which hinders one powerful and strong learner with
STF for the battery SOH estimation. This paper thus pro-
poses an optimized weak learner formulation procedure for
Lithium-ion (Li-ion) battery SOH estimation, which further
enables the automatic initialization and integration of the
weak learners with STF into an efficient SOH estimation
framework. A Pareto Front-based Selection Strategy (PFSS)
is designed to select the representative solutions from
the non-dominated solutions fed by a Knee point driven
Evolutionary Algorithm (KnEA), which guarantees both the
diversity and accuracy of the weak learners. Afterwards,
the weak learners, whose coefficients are obtained by Self-
adaptive Differential Evolution (SaDE), are integrated by a
weight-based structure. The proposed method utilizes the
weak learners with STF to boost the overall performance
of SOH estimation. The validation of the proposed method
is proved by LiFePO4/C batteries under accelerated cycling
ageing test including one mission profile providing Primary
Frequency Regulation (PFR) service to the grid and one
constant current profile.

Index Terms—Lithium-ion battery; State of health es-
timation; Automatic weak learner formulation; Ensemble
learning.

I. INTRODUCTION

RENEWable energy has recently played a significant role

in the power supply as well as in the transportation

sector. For improving the flexibility and reliability of the
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energy flow in the electrical grid and the driving range in e-

mobility, batteries have become a key energy storage technol-

ogy [1]–[4]. Lithium-ion (Li-ion) batteries have drawn much

attention from academia and industry due to their superior

performance, such as high energy density, long life-span, low

maintenance, etc. [5]–[9]. However, the complex and uncertain

degradation behavior of Li-ion batteries still hinders their

applications in a large-scale system [10]. During the long-time

operation, the performance of the Li-ion battery is subject to

degradation resulting in capacity fading and increased internal

resistance. Thus, the capacity and internal resistance can be

used to express the State of Health (SOH) of the batteries.

The battery degradation is influenced by various factors, such

as temperature, current rate, cycling number, etc.

Accurate SOH estimation can ensure the reliable and eco-

nomically viable operations of the battery by managing its

lifespan [11]. In this way, the aged batteries can be replaced

before causing any severe accidents. The long downtime

periods can be avoided so that the usage of the battery could

be maximized. Unfortunately, the SOH cannot be directly

measured by placing a sensor inside the battery. Measuring the

capacity or internal resistance is a straightforward approach to

know battery SOH. However, the Li-ion battery is not always

fully charged or discharged during the operation, which means

it is not convenient to measure its capacity during daily usage.

Considering the fact that the internal resistance of a high-

power Li-ion battery is usually a small value in the range of

milli-Ohms, it is also not effective to measure an accurate

internal resistance taking into account the interference from

the sensors. Thus, various advanced techniques have been

proposed to estimate the battery SOH.

The existing battery SOH estimation methods in literature

can be divided into three categories: empirical models [12],

model-based methods [13], [14], and data-driven methods

[15]–[17]. After collecting the measurement from a long-

term degradation test under various stresses, such as storage

time, temperature, cycling current rate, empirical models are

developed based on the polynomial or exponential functions

to describe the connections between those stresses and the

battery SOH [18]. One drawback of the empirical model is

that the models are only suitable for a specific battery for

which they are parameterized. The main limitations are the

model’s oversimplified structure and the developer’s personal

experiences [19]. Model-based estimation identifies the inter-

nal resistance and capacity online [13]. It is noted that the

online estimation of resistance and capacity is vulnerable.
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The identified values are easily contaminated by noises from

the sensors [20]. In addition, the state space equations for

internal resistance and capacity identification are not explicit.

For example, online capacity identification usually needs the

battery State of Charge (SOC) acting as an input, but the SOC

itself is an estimated value with uncertainties.

Recently, great progress has been made in the machine

learning area, which utilizes the information behind the orig-

inal dataset. Machine learning techniques, such as Extreme

Learning Machine (ELM) [21], Gaussian Process Regression

(GPR) [16], [22], Support Vector Regression (SVR) [15], [17],

[23], [24], Prior Knowledge-based Neural Network (PKNN)

[25], Long Short-Term Memory (LSTM) network [26], etc.,

have been used for SOH estimation. An efficient SVR based

SOH estimation method under different measurement con-

ditions is established in [15], which aims at improving the

flexibility of using one data-driven estimator in reality. After

selecting the degradation features from the voltage curve,

the Markov chain is adopted to enhance the performance

of PKNN-based SOH estimator in a long-term period [25].

Using LSTM as the base model, transfer learning is chosen

to estimate the battery SOH in [26] with the features coming

from the charging voltage curves.

After analyzing the previous works, we find there are two

pivotal procedures for battery SOH estimation with data-driven

methods: the feature collection and the training process. The

feature contains information related to battery ageing, and a

training process is used to establish the data-driven methods.

In [27]–[30], the long-term degradation features extracted from

Incremental Capacity (IC) curve and Differential Voltage (DV)

curve are used. It is easily known from the calculation of

the IC and DV curves that those curves are sensitive to the

measurement noise. Additionally, the battery has to be charged

or discharged with an extremely small current (1/25C) [31] for

the purpose of acquiring the IC and DV curves in reality. The

aforementioned limitations restrict the usage of IC and DV

curve-based methods. The voltage curve during the charging

process is chosen as the features in [32]–[34]. Although the

charging process is relatively deterministic, the degradation

features from the voltage charging curve are still subjected to

a long-term measurement period. One should be aware that the

users may not always charge the battery through a pre-defined

voltage range only for SOH estimation. Thereby, one issue for

the data-driven methods in battery SOH estimation is that the

feature cannot be conveniently obtained in real applications.

Another issue is that we can obtain only weak learners,

which are not perfect, in most conditions. Although the data-

driven methods have great potential in the field of SOH pre-

diction [35], [36], we find that most of the algorithms attempt

to establish a strong estimator. In fact, it is quite difficult to

establish a perfect estimator in practice. The historical dataset

of the battery comes from defective sensors, and the quality

of the measurement is difficult to be unified. In addition, the

training samples cannot cover all the cycling conditions of a

specific scenario, and it is burdensome to set a group of right

hyper-parameters for training a data-driven method.

In order to mitigate the above issues, we propose an ensem-

ble learning framework for Li-ion battery SOH estimation with

weak learners fed by Short-Term Features (STF). Those STFs

come from current pulse lasting only a few seconds, which is

convenient to be actively imposed to the cells in real-life appli-

cations. Therefore, the first issue regarding the convenience of

the feature is alleviated. Considering the fact that only weak

learners with the defective dataset and the imperfect hyper-

parameters are the reality for SOH estimation in real-life, an

automatic weak learner formulation procedure combined with

an ensemble framework, is proposed to solve the second issue

on estimation accuracy. Ensemble framework can boost the

overall SOH estimation performance by integrating a group

of weak learners, which can only predict the battery SOH

with limited ability. The weak learners should be as diverse

as possible in an ensemble learning framework [37]. Thus,

a Pareto Front-based Selection Strategy (PFSS) is proposed

to find the representative solutions originated from the Knee

point driven Evolutionary Algorithm (KnEA). Afterwards, the

integration of weak learners is optimized by Self-adaptive

Differential Evolution (SaDE) for the ultimate estimation.

The main contributions of this work are as follows:

(1) An automatic weak learner formulation procedure is pro-

posed for battery SOH estimation by combining a PFSS

with the non-dominated solutions generated by KnEA. In

this way, the diversity of each weak learner is naturally

guaranteed for an efficient ensemble estimator.

(2) STFs from the current pulses, which are easy to be

obtained in real-life applications, are chosen as the features

for battery SOH estimation.

(3) SaDE, which avoids the time-consuming parameter tuning

process in traditional Differential Evolution (DE), is used

to integrate all the weak learners so that the predictability

of SOH estimator can be significantly improved.

(4) Five LiFePO4/C (LFP/C) batteries aged under two differ-

ent cycling conditions, including one mission profile pro-

viding the Primary Frequency Regulation (PFR) service

to the grid and one constant current profile, are used to

verify the proposed method.

The rest of the paper is organized as follows. Section II

describes the STF. The automatic weak learner formulation

and the proposed ensemble framework are detailed in Section

III. The validation of the proposed method is presented in

Section IV. Conclusions are given in Section V.

II. THE SHORT-TERM FEATURE FOR LI-ION BATTERY

SOH ESTIMATION

Data-driven methods have great potential in battery SOH

estimation [36]. Features containing valuable information re-

lated to battery ageing should, however, be properly chosen in

advance.

The procedure in Fig. 1 is designed for cycling the five

LFP/C batteries under two different scenarios. For Case 1,

two LFP/C batteries are cycled with a mission profile, which

corresponds to a battery energy storage system providing PFR

to the grid. The mission profile has a length of one week, and

the SOC varies between 10% and 90%. In Case 2, a constant

current I=10A (4C-rate) is used for cycling three LFP/C

batteries in the range from 20% to 80% SOC.The ageing test is
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Fig. 1. The test procedure

tB

tA tD
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Fig. 2. The current pulse

periodically stopped and a Reference Performance Test (RPT),

including capacity test and current pulse test, is performed.

The current pulse test includes a series of charging and

discharging current pulses under three different C-rates (1C,

2C, 4C) at SOCs (20%, 50%, 80%). Each current pulse lasts

18 seconds. During the ageing test, the batteries are placed in

the climatic chamber at 25oC for Case 1 and 42.5oC for Case

2. The measurement data is logged with 1-second resolution.

The specifications of the LFP/C battery are as follows: the

nominal capacity is 2.5Ah, and the voltage ranges from 2.0V

to 3.6V. More information related to the LFP/C battery can be

found in [17].

For clarifying the STFs, the pattern of the current pulse is

illustrated in Fig. 2. It can be seen that the current profile

changes at 4 different transition times, i.e., tA, tB , tC , tD.

The voltage responses of a LFP/C battery measured at SOC

= 20% and I = 10A are chosen as an example in Fig. 3.

Since the voltage curves vary from Week 1 to Week 33, those

voltage responses definitely contain the information related to

the battery degradation. For simplicity, the voltage values at

4 transfer moments (tA, tB , tC , tD) is chosen as the features

and are represented as a vector [UA, UB , UC , UD]. As shown in

Fig. 1, the current pulse is performed at 18 different conditions.

A

B

C

D

Fig. 3. The voltage response of the current pulse test

(SOC=20%, I=10A) at different ageing stages

Thus, we have altogether a 72-dimension vector acting as the

input of the weak learners in the training phase. Because the

current pulse lasts only 18 seconds and the transfer moments

have already known from the controller of the power converter,

the proposed feature is very convenient to be obtained in

real applications. Features under various conditions have the

necessary diversity, which can lead to a promotion in the

generalization of the ensemble learning framework. Thus, the

diversity of the weak learners can be firstly achieved by the

proposed feature to some extent.

III. THE PROPOSED SOH ESTIMATION METHOD

Although STFs are efficient in practical applications, they

are also fragile considering the measurement noise. Thus, only

weak learners with limited accuracy can be obtained in reality.

The main purpose of this work is to optimize the weak learner

formulation with good diversity so that the weak learners

can be utilized to boost the overall performance of the SOH

estimation through an ensemble framework.

The diversity of weaker learners must be guaranteed at

first. Although different voltage responses can naturally ensure

the diversity of the weak learners to some extent, we still

need to enhance the diversity in the phase of the weak

learner formulation. Moreover, we aim at creating a genetic

method without the requirement of any manual interactions on

the feature selection and configuration of the algorithm. The

procedure of the SOH estimation method is shown in Fig. 4.

In Step 1, the process of feature selection and hyperpa-

rameters tuning are formed as a Multi-objective Optimization

Problem (MOP) which considers both the accuracy and the

complexity. The expected solutions are non-dominated with

each other and well-distributed in the objective space of MOP,

which means the solutions have the property of diversity.

Thanks to the natural diversity of the non-dominated solutions

from MOP, the requirement of diversity for ensemble learning

can be guaranteed simultaneously. However, it is still very

challenging to solve this MOP, especially in the scenario

where the diversity is more preferable. Hence, KnEA [38] is

utilized, which makes full use of its advantage on diversity

first and convergence second strategy. The ultimate solutions

are selected from KnEA according to the shape of the Pareto

front, which can be summarized as PFSS in this work.

In Step 2, Support Vector Regression (SVR) is chosen to

train the optimized weak learners, which can generate the
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Fig. 4. The procedure of the proposed method

regression model with good generalization to unknown dataset

taking the advantages of the Vapnik-Chervonenkis (VC) and

statistical theory.

Afterwards, a weight coefficient-based structure with SaDE

is used to integrate the weak learners into one unified frame-

work in Step 3, which avoids the costly trial and error

procedure on the trial vector generation strategies and tuning

the associate parameters in traditional DE [39].

A. Automatic weak learner formulation

In order to finalize the automatic weak learner formulation,

the selection of the STF and the hyperparameters of SVR are

formulated as an optimization problem.

In feature selection, the measurements come from various

conditions in reality. Especially, the current pulses used in

this work are convenient yet fragile. The overall quality of

the STF is hard to be unified and guaranteed in a BMS. 72

dimensions STF has to be carefully selected to extract useful

information. Thus, the procedure of feature selection is formed

as a combinatorial optimization problem in this work. The

decision value for each feature is a binary value that specifies

whether the current feature is selected or not as shown in Fig.

5.

1 0 0 1 1 ... 1 1 0

1 2 3 4 5 70 71 72STF No.

Decision 

value

Fig. 5. The decision value for each feature

Besides the STFs, tuning the hyperparameters of SVR is

another aspect to improve the diversity of the weak learners.

SVR depends on the hyperparameters C, ǫ and γ in the

training phase. Thus, the hyperparameters of SVR should

be tuned not only to improve the performance of the weak

learners but also to enhance their diversity from the training

aspect. The main idea of synchronously optimizing the feature

and hyperparameters can be referred to [17].

This work optimizes the feature selection and the model

setting simultaneously through a MOP procedure. For a spe-

cific weak learner, we generally tend to use all 72 dimensions

STFs hoping that sufficient information can be included. But

large numbers of STFs need the measurement from various

conditions and also induce a higher computing burden. In

Hyperparameters [C,    ,    ] 

SOC=50%, I=2.5A

SOC=80%, I=2.5A

UA UB UC UD

UA UB UC UD
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Solutions selection 

Section II

Section III.B

Section III.A.1
Section III.A.2

Fitness 

evaluation

Eqs.(1)-(2)

Initialization of 

weak learners

Section III.B

SVR 

 KnEA
Pareto Front Shape 

based Selection (PFSS)

Fig. 6. The procedure of the optimized weak learner formula-

tion

addition, the STF contains noise and redundancy, which will

lower the performance of the weak learner. There sometimes

exists a conflict, that is, to minimize the number of the features

and to maximize the accuracy of the weak learners. Hence, the

first reason that we formulate the MOP is to balance the two

objectives for obtaining accurate and efficient weak learners.

Another pivotal reason is to utilize its basic property that the

diversity of the weak learner will naturally be fulfilled once the

MOP is solved. The main idea of MOP for feature selection

and hyperparameters tuning can be found in [15]. Specifically,

the two objectives are defined as follows,

f1 = MSE5−foldCV (SV R) (1)

f2 = Numfeature (2)

where MSE5−foldCV is the MSE of SVR under 5-fold cross-

validation, Numfeature is the number of the features. It

should be noted that Numfeature counts [UA, UB , UC , UD]
individually in this work.

KnEA is used to solve the MOP and generates diverse non-

dominated solutions as shown in Fig. 6. According to the two

objectives in Eqs.(1) and (2), KnEA will select features from

the database as well as tuning the hyperparameters of SVR

in each iteration. Once the criterion of KnEA is meet, we

will obtain the non-dominated solutions for the MOP. Then,

PFSS will take over to choose representative solutions with

good diversity. By using KnEA to solve the MOP and PFSS

to choose a few representative solutions, the weak learners are

automatically initialized. More details related to KnEA and the

proposed PFSS will be detailed as follows.

1) KnEA [38]: Knee points are preferred for the selection

of the non-dominated solutions in MOP. KnEA uses the knee

points from the current population acting as the secondary

criterion for the parents’ generation. To be more specific,

the solutions are firstly chosen according to the dominance

comparison. If two solutions are non-dominated with each

other, the knee point will be used as the secondary criterion.

The knee point is chosen only if one solution has the largest

distance to the extreme line in the nearest neighborhood. The

extreme line L is determined by the solutions that have the

maximum value of the cost functions f1 and f2. For example,

the a1 and a5 in Fig.7. Define that L is represented by the

function ax+ by+ c = 0. The distance of the solution a3 can

be calculated by the following equation,

d(a3, L) =
|ax3 + by3 + c|√

a2 + b2
(3)
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where x3 and y3 are the coordinates of a3. According to the

largest distance from Eq. (3), a3 is thus knee point in Fig.7.

f1

f2

L

a1

a3

a4
a5

a2

Fig. 7. The knee point selection in KnEA

From the above descriptions, we can see that the non-

dominated solutions with knee point selection can also speed

up the convergence of the optimization for a MOP. If the

neighbourhood relationship of the non-dominated solution can

be maintained properly, the diversity will also be satisfied.

In KnEA, the size of the neighbourhood of the solutions is

adaptively adjusted so that the survived knee points would be

well sampled in the whole objective space. Thus, with high

speed on convergence and good property on diversity, KnEA

can provide us with a series of solutions that have a high

quality of diversity.

2) Pareto front based selection strategy (PFSS): Currently,

we cannot pass the optimized solutions directly to the inte-

gration steps. The main concern now is how to determine a

specific number of solutions in advance. In this phase, we

need strong diversification whereas no strong convergence is

needed. Therefore, a PFSS procedure is proposed to choose

a few representative solutions according to the shape of the

Pareto front. In this way, the diversity of the weak learners

is preserved to the utmost extent, and the numbers of weak

learners can be reduced.

The pseudo-code of the PFSS is shown in Algorithm 1.

Lines 2 and 3 are used to select a boundary solution from the

current solution set. The purpose of loop between Lines 5 and

9 is to iteratively select a solution from the final population of

KnEA with the largest angle to the V. It is worth mentioning

that the angle of a solution vector to a set can be defined as

the smallest one among the angles between this solution and

all solutions,

angle(s,V) = arg min
vi∈V

< s,vi > (4)

At last, a solution set V with K solutions is returned.

Fig. 8 is an example for clarifying the PFSS. The angle of a

vector to S is defined as the smallest angle between the vector

and the rest vectors in S. sr is randomly selected as the first

vector. Then, s1 has the largest angle to sr, and s2 has the

largest angle to s1. s3 has the largest angle to S including s1

and s2. If three solutions are the target, the red arrows in Fig.

8 will be the selected solutions by PFSS.

B. Training the weak learners

After the automatic weak learner formulation, each solution

has already contained the suitable hyperparameters and STFs

for initializing the SVR based weak learners.

f1

f2

s1

s3

s2

sr

Fig. 8. Example of the PFSS

Algorithm 1 Update procedure of PFSS

Input: Solution set S, the size of selected solution K, the

number of solution set N

1: V = ∅
2: p← rand(1, N ) // To randomly select an index of solution

from the solution set

3: V = V ∪{sp}, S = S\{sp}
4: i← 0
5: while i < K − 1 do

6: Find a solution sj in S with the largest angle to V.

An angle of the solution to a set can refer to Eq. (4)

7: V = V ∪{sj}, S = S\{sj}
8: i++
9: end while

10: return V

Compared with other regression algorithms, SVR has a

strictly proof in mathematics and can be represented as fol-

lows,

f(x) = w
T · ϕ(x) + b (5)

where w and b are the coefficients to be adjusted.

The original SVR can be transferred to solve the following

optimization problem,

min
1

2
‖w‖2 + C

N
∑

i=1

(ξi + ξ∗i ) (6)

Subject to the constrains,






yi −w
T · ϕ (xi)− b ≤ ε+ ξi

w
T · ϕ (xi) + b− yi ≤ ε+ ξ∗i

ξi, ξ
∗

i ≥ 0
(7)

where C is a positive constant and ξi is the slack variable.

After solving the above quadratic optimization, the SVR

regression function can be reformulated as follows,

f(x) =

N
∑

i=1

(β∗

i − βi) ·K(xi,x) + b (8)

where βi is the Lagrangian multipliers, and K(xi,x) is the

kernel function.

The kernel function can convert the nonlinear space into

a higher dimensional space. It is noted that the RBF kernel

function is able to approximate other kernel functions by

tuning its parameters. Thus, we choose to use the RBF kernel

function, which can be expressed as follows,

K(xi,xj) = exp(−1

2
‖xi − xj‖2/γ) (9)
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From the above equations, we can find that C (Eq. (6))

controls the trade-off between the flatness of SVR and the

degree to which the deviation larger than ǫ is tolerated, and γ
determines the performance of the kernel function. C, ǫ and γ
can significantly influence the performance of SVR. Thus, it

is possible to control the diversity of weak learners by tuning

the hyperparameters of SVR. Due to the superior performance

and the feasibility of controlling the diversity, SVR is chosen

in this work to form the weak learners.

C. Integration of the weak learners

Finally, the weak learners are integrated into an ensemble

framework as shown in step 3 of Fig. 4 for the SOH estimation.

The weak learners with STF are integrated by a weight

coefficients-based structure with SaDE [39]. A proper set of

the weight coefficients (w1, w2, w3, . . . ) can be obtained by

SaDE. The cost function of SaDE is defined as the MSE of

the SOH estimation with 5-fold cross-validation in this work,

which is similar to Eq. (1).

The performance of traditional DE is closely related to

the strategy for generating the trial vectors and the control

parameters, such as the population size NP, the scaling factor

F, and the crossover rate CR. In order to achieve good

solutions, a suitable trial vector generation strategy and the

control parameters for a specific problem have to be cho-

sen for DE. Thus, traditional DE still suffers from a time-

consuming tuning process. To alleviate this issue, SaDE is used

to adaptively adjust the trial vector generation strategy and

the associated parameters. A candidate pool including several

typical strategies in SaDE enables the adaptively choosing of a

suitable generation strategy for the trial vector. According to

the memory of success and failure, the strategic probability

is learned from the success rate of a particular strategy.

Moreover, CR is generated from a normal distribution N(CRm,

Std), and CRm can be adjusted according to the experiences of

CR in the previously promising solutions. The scaling factor

F, related to the convergence speed, can be randomly selected

in another normal distribution N(0.5,0.3). In this way, the trial

and error tuning process is avoided in SaDE, which is capable

of guaranteeing high-quality solutions in different situations.

For more details about SaDE, please refer to [39].

IV. EXPERIMENTAL VALIDATION

In this work, 5 LFP/C batteries are aged with different

cycling profiles as shown in Fig. 1. FuelCon test station is

used to implement the battery degradation test as introduced

in [24]. After the long-term cycling test, the capacity variations

of the 5 cells are shown in Fig. 9 and Table. I.

A. Validation of the automatic weak learner formulation

An optimized formulation procedure is responsible for the

automatic initialization of the weak learners with good diver-

sity, which is critical to the overall performance of the SOH

estimation in this work. Thus, the diversity of the weak learner

is firstly validated in this subsection.

According to the two cost functions (Eqs. (1) and (2)),

the non-dominated solutions from KnEA are illustrated as
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Fig. 9. The variation of battery capacity during the degradation

test

TABLE I. The variation of the capacity for the five cells

Cell NO. Initial Capacity (Ah) Final Capacity (Ah)

1 2.5743 2.1723

2 2.5629 2.3326

3 2.4028 1.9231

4 2.4425 1.9525

5 2.4627 1.9923

the red diamonds in Fig. 10. It is easily found from the

distribution of the red diamonds in Fig. 10 that the distribution

of the solutions endows the weak learners with diversity.

Each solution contains information about the STFs and the

hyperparameters setting of SVR, which can be further used to

establish a weak learner.
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Fig. 10. The non-dominated solutions from KnEA
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Afterwards, the representative solutions can be picked up

by PFSS. Generally, the solutions close to the origin of the

coordinate are a good balance of the two cost functions in

MOP. From Fig. 10, we can find that the non-dominated

solutions (red diamonds) can be distributed into several groups.

If all the non-dominated solutions are used to establish the

weak learners, the structure of the ensemble framework will

be exceeded. For both the efficiency and the accuracy, PFSS

is designed to simplify the structure and choose a few repre-

sentative solutions for an optimized weak learner formulation.

Regarding the shape of the Pareto front in Fig. 10, 4 typical

solutions are suitable for most cells. According to [40], we also

calculate the Pure Diversity (PD) to quantitatively evaluate the

diversity of the solutions selected by PFSS. The PD values of

the 5 cells in Fig. 11 are 114.66, 827.32, 635.64, 927.72, and

855.86, which proves the effectiveness of PFSS. Thus, the 4

blue boxes in Fig. 10 selected by PFSS are used to formulate

the weak learners with good diversity in this work. In this

way, PFSS keeps the diversity and reduces the complexity of

the whole ensemble structure simultaneously.

B. Validation of the proposed method in Case 1

From Fig. 1, we can find that the current pulses are

performed at 18 different conditions. 18 weak learners can

be naturally obtained, and the STFs from each condition

endows the weak learner with diversity to some extent. Thus,

an ensemble framework utilizing 18 weak learners [41] is

chosen as a comparison method for the purpose of showing the

advantages of the proposed method including a superior weak

learner formulation procedure. The comparison method [41] is

named as Method 1 in the following description. An obvious

difference between the proposed method and Method 1 is

that there is no specially designed weak learner formulation

procedure in Method 1. In order to show the advantages of the

SVR based method, the proposed method is also compared

with ELM and GPR used in [16], [21]. For ELM the Sine

function is used as an activation function and the number of the

hidden nodes is set to 20. For GPR, rational quadratic function

is selected as the kernel function. These configurations are

carefully tuned to make a fair comparison.

This subsection validates the proposed method in Case 1.

We have to point out here that all the tests of the SOH

estimation methods in this work are based on 5-fold cross-

validation as shown in Fig. 11. In step 1, the dataset is

randomly divided into 5 subsets. During step 2, 4 subsets are

used to train the model and the 1 left is used for testing. The

validation will repeat 5 times until traversing all the subsets.

The test results are then obtained in step 3. Thus, the validation

results can ensure the generalization of the SOH estimation in

this work.

The SOH estimation results in Case 1 are shown in Fig.

12. The proposed method is close to the reference (red line)

in most conditions for Cell 1, while larger errors exist in

the other three methods. For Cell 2 in Fig. 12b, we can see

similar results that the proposed method (blue line) is closer

to the reference. Compared with the comparison methods, the

proposed method presents a better estimation accuracy for
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Fig. 11. The test procedure of estimation methods

both Cells 1 and 2. It is noted that Method 1 includes 18

weak learners, while the proposed method contains only 4

optimized weak learners. Thus, the proposed method is able

to obtain accurate estimation results with fewer weak learners.

The MOP and PFSS in the proposed method can maintain the

diversity of the weak learner, thereby optimizing the weak

learner formulation. The advantages of the proposed method

are then proved.
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Fig. 12. The estimation results of two LFP/C batteries in Case

1

We further analyze the estimation results by calculating the

absolute error of the results in Fig. 12. The absolute errors of

the three comparison methods are much larger than the usual

error band in Fig. 13, which shows an unstable performance

of those methods.

The Maximum Absolute Error (MAE) and Mean Squared

Error (MSE) of the SOH estimation results are illustrated in

Table. II. The accuracy of the estimation using the proposed

method is much better than the other methods. The MAE of

the proposed method is less than 35% of Method 1, while the
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Fig. 13. The absolute error of two LFP/C batteries in Case 1

TABLE II. MAE and MSE of the SOH estimation methods in

Case 1

Cell NO. Error Type ELM GPR Method 1 Proposed Method

Cell 1
MAE 0.0859 0.0913 0.0855 0.0417

MSE 0.0018 0.0016 0.0017 3.7910×10
−4

Cell 2
MAE 0.1514 0.1574 0.1394 0.0344

MSE 0.0031 0.0038 0.0028 2.6642×10
−4

TABLE III. MAE and MSE of the SOH estimation methods

in Case 2

Cell NO. Error Type ELM GPR Method 1 Proposed Method

Cell 3
MAE 0.1175 0.1292 0.1287 0.0528

MSE 0.0018 0.0015 0.0015 4.8847×10
−4

Cell 4
MAE 0.1424 0.1150 0.1253 0.0590

MSE 0.0023 0.0016 0.0015 8.6598×10
−4

Cell 5
MAE 0.1503 0.1949 0.1641 0.0275

MSE 0.0025 0.0021 0.0021 1.9835×10
−4

MSE is less than 15% of Method 1. In this way, the advantages

of the proposed method are proved in Case 1.

C. Validation of the proposed method in Case 2

In this subsection, the SOH estimation methods are val-

idated on Case 2, including Cells 3, 4, and 5. From Figs.

14 and 15, we can see the proposed method estimates the

SOH with higher accuracy than the other methods. The MAE

and MSE of the SOH estimation methods in Fig. 14 are

summarized in Table. III. Both the error types of the proposed

method are smaller than the three comparison methods, which

proves the advantages of the proposed method in Case 2. It

should be noted that KnEA, PFSS, SaDE and SVR training

are both implemented in the training phase of the proposed

method. Only 4 weak learners integrated by a group of weight

coefficients are needed to be calculated for online estimation.

V. CONCLUSION

Considering the fact that one strong and unified data-

driven estimator is difficult to be established in practice, this

paper proposes a SOH estimation method by integrating a

group of weak learners with STFs. An optimized formulation

procedure, including PFSS and KnEA, is designed for the

automatic initialization of weak learners with good diversity.

3 6 9 12 15 18 21 24 28 31

1.9

2.0

2.1

2.2

2.3

2.4

C
ap

ac
it

y
 (

A
h

)

Time (Week)

 Proposed method

 Method 1  GPR

 ELM  Reference

(a) Cell 3

3 6 9 12 15 18 21 24 27 30 33
1.9

2.0

2.1

2.2

2.3

2.4

2.5

C
ap

ac
it

y
 (

A
h

)

Time (Week)

 Proposed method

 Method 1  GPR

 ELM  Reference

(b) Cell 4

3 6 9 13 17 20 23 26 29 32
1.9

2.0

2.1

2.2

2.3

2.4

2.5

C
ap

ac
it

y
 (

A
h

)

Time (Week)

 Proposed method

 Method 1  GPR

 ELM  Reference

(c) Cell 5

Fig. 14. The estimation results of three LFP/C batteries in Case

2
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Fig. 15. The absolute error of three LFP/C batteries in Case 2
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According to the distribution of the non-dominated solutions

in the Pareto front, weak learners can be well formulated.

Afterwards, SaDE integrates weak learners to boost the overall

performance of the SOH estimation. Note that the STF from

a current pulse test, which is convenient to be obtained in

real-life applications, can be used for Li-ion battery SOH

estimation with good accuracy.

The proposed method, which uses only 4 weak learners,

is validated on 5 LFP/C batteries aged under two different

cycling profiles. In Case 1, the average MSE of the proposed

method for Cells 1 and 2 is only 14.34% of Method 1 that

includes 18 weak learners. In Case 2, the average MSE of

the proposed method for Cells 3, 4, and 5 becomes 30.45%

of Method 1. Note that all the estimation results in this work

are validated by 5-fold cross-validation. Thus, the advantages

of the proposed method, including an automatic weak learner

formulation procedure, can be proved.

Since Li-ion battery generally presents a nonlinear degrada-

tion process, future works will focus on developing and vali-

dating this SOH estimation algorithm on a more sophisticated

dataset.
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