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ABSTRACT 
Collaborative filtering identifies information interest of a 
particular user based on the information provided by other similar 
users. The memory-based approaches for collaborative filtering  
(e.g., Pearson correlation coefficient approach) identify the 
similarity between two users by comparing their ratings on a set of 
items. In these approaches, different items are weighted either 
equally or by some predefined functions. The impact of rating 
discrepancies among different users has not been taken into 
consideration. For example, an item that is highly favored by most 
users should have a smaller impact on the user-similarity than an 
item for which different types of users tend to give different 
ratings. Even though simple weighting methods such as variance 
weighting try to address this problem, empirical studies have 
shown that they are ineffective in improving the performance of 
collaborative filtering. In this paper, we present an optimization 
algorithm to automatically compute the weights for different items 
based on their ratings from training users. More specifically, the 
new weighting scheme will create a clustered distribution for user 
vectors in the item space by bringing users of similar interests 
closer and separating users of different interests more distant. 
Empirical studies over two datasets have shown that our new 
weighting scheme substantially improves the performance of the 
Pearson correlation coefficient method for collaborative filtering.  

Categories and Subject Descriptors 
H.3.3  [Information Search and Retrieval]:  Information Search 
and retrieval—Information Filtering 

Keywords 
Collaborative filtering, memory-based approach, leave one out 
method, item weighting scheme. 

1. INTRODUCTION 
Collaborative filtering predicts the utilities of items for a 
particular user based on the rating information for the same set of 
items given by many other users. In the past years, many 
collaborative filtering algorithms have been developed [1, 2, 3, 4, 
5, 8, 12]. Generally, they can be categorized into two classes: 
memory-based algorithms and model-based algorithms [1]. To 
obtain a prediction for a particular user (i.e., a test user), the 
memory-based algorithms first identify users from the training 
database that are most similar to this user in terms of the rating 
patterns, and then combine those ratings together. This category 
includes the Pearson-correlation based approach [4], the vector 

similarity based approach [1], and the extended generalized vector 
space model [3]. Model-based approaches group together 
different users in the training database into a small number of 
classes based on their rating patterns. In order to predict the rating 
from a test user on a particular item, these approaches first 
categorize the test user into one of the predefined user classes and 
use the rating of the predicted class on the targeted item as the 
prediction. Algorithms within this category include Bayesian 
network approaches [1] and the aspect model [5]. Compared to 
the memory-based approaches, the model-based approaches have 
an advantage that only the profiles of models need to be stored. 
However, the memory-based approaches are usually much simpler 
than the model-based approaches and require little offline 
computation whereas model-based approaches usually have to 
spend many computation cycles on creating model profiles. 
Furthermore, the model-based approaches tend to assume that a 
small number of user classes are sufficient for modeling the rating 
patterns of many different users, and thus may lose the diversity of 
users. Finally, model-based approaches tend to perform worse 
than the memory-based approaches when the number of training 
users is small [15]. This is because ratings by only a small number 
of users are usually insufficient to create reliable clusters of users. 
To combine the strength of both approaches, hybrid methods such 
as ‘Personality Diagnosis’ approach [12] is developed, which 
outperforms several model-based and memory-based approaches. 

Because of the simplicity and robustness, the memory-based 
approaches have been widely used in many real world 
applications. The key to the memory-based approaches is to 
identify the users within the training database that are most similar 
to the test user. The similarity between two different users is 
usually computed by matching the ratings given by the two users 
over the same set of items. For many memory-based approaches, 
items are treated with equal importance. Apparently, this is 
undesirable because the discrepancies in different items have not 
been taken into account. Some items may be highly favored by 
most users while others are rated significantly differently by 
different users. Intuitively, items with similar ratings should have 
smaller impact in determining the user-similarity than those with 
different ratings.  In other words, items with a large variance in 
their ratings tend to be more important than items with a small 
variance in ratings. However, this is not necessarily true because a 
large variance in the ratings of an item can also arise from the 
difficulty in rating such an item by many users. As shown in 
Herlocker et al. [2], weighting items using their rating variance 
leads to slightly worse results than no weighting. In addition to 
variance, other weights such as inverse user frequency [1], 



entropy, and mutual information [13] have been studied in the 
previous literature. The results in [13] indicate that few weighting 
schemes for items are able to improve the performance of 
collaborative filtering. One of the reasons, in our opinion, is that 
most of the current weighting schemes are usually hand crafted 
and computed by predefined functions.  It is unclear what global 
objectives those weighting schemes try to achieve.  

To address this problem, in this paper, we present a new 
weighting scheme based on the leave-one-out (LOO) method. 
This work is built upon the intuition that the rating behavior of an 
individual user should be similar to the rating behaviors of some 
but not all other users. Therefore, a good weighting scheme for 
items should bring users of similar interests closer and meanwhile 
separate users of different interests further apart. Another way of 
describing this idea is to look at the user “distribution” over the 
item space. Consider the vector space spanned by different items 
and each user is a point in this space with the projection on each 
axis representing his rating of the corresponding item. The above 
intuition leads to a clustered distribution of user points in the item 
space, i.e., each user point is surrounded closely by several user 
points and is distant from others. In other words, the rating 
behavior of each user is well “explained” by several users, but is 
totally different from many others. A good weighting scheme for 
items should shape the original user “distribution” (i.e., a user 
distribution without using any weights for items) into such a 
clustered distribution. In this paper, we formalize this idea into a 
probabilistic optimization problem, in which the appropriate 
weights of items are found by maximizing the likelihood for each 
user to be similar to at least one of other users. Unlike most 
previous work on weighting schemes where item weights are 
determined by predefined functions, our approach automatically 
computes the appropriate weights for different items using the 
observed ratings provided by the training users. 

The assumption of having a clustered distribution for user points 
in the item space is similar to the clustering assumption embedded 
in most model-based approaches. One important distinction is that 
our approach makes a less explicit assumption about the clustered 
distribution of user rating behaviors. Unlike many model-based 
approaches that separate users into several disjoin classes, our 
algorithm only requires that for each user, there always exists at 
least one user that is similar to that user. As a result, our algorithm 
does not have to specify the exact number of clusters, while most 
model-based approaches have to. Another view of the difference 
between our method and the model-based approaches is that most 
model-based approaches are generative models whose goal is to 
explain the observed ratings by different training users, while the 
new approach is a discriminative model whose goal is to explain 
why some training users are similar to each other and different 
from the others. As a result, most model-approaches search for the 
seeds of clusters that can be used to generate the ratings of 
different users. Our algorithm tries to find the weights for 
different items that bring each user close to the similar users and 
distant from the dissimilar ones. The disadvantage of a generative 
model versus a discriminative model is that a generative model 
has to explain the observed ratings of all items, even the ones that 
are useless in distinguishing user’s interests. In contrast, the 
discriminative model only focuses on the important items by 
assigning them much higher weights. In effect, various studies of 
classification problems have shown that in general a 

discriminative model performs better than a generative model 
[18].  

The rest of this paper is arranged as follows: Section 2 provides a 
brief description of several major approaches for collaborative 
filtering. Section 3 discusses the related work on item weighting. 
Section 4 describes the details of our weighting scheme for 
collaborative filtering. The results from empirical studies are 
presented in Section 5, followed by the conclusion in Section 6.  

2. Background 
In this section, we briefly describe several major approaches that 
have been used for collaborative filtering. First, we introduce the 
notations that are used throughout this paper. Let 

},......,,{ 21 MxxxX =  be a set of items, },......,,{ 21 NyyyY =  be a 

set of training users, and ty  be the test user. Let 

)},,(),.....,,,{( )()()()1()1()1( LLL ryxryx  be all the ratings 

information in the training database. Each triple ( ) ( ) ( )( , , )i i ix y r  

indicates that item ( )ix  is rated as ( )ir  by the user ( )iy . For each 

user y, )(yX  denotes the set of items rated by him, )(xRy  

denotes the rating of item x by him, and yR  denotes his average 

rating. The rating scale goes from 1 to rmax.  

2.1 Memory-based Approaches 
Two commonly used memory-based algorithms are the Pearson 
Correlation Coefficient (PCC) algorithm (Resnick et al., 1994) 
and the Vector SPACE Similarity (VS) algorithm (Breese, 
Hckerman & Kadie, 1998). The main idea of these two algorithms 
is to calculate the similarities of a set of training users to a test 
user. To predicate the rating of an item given by the test user, the 
ratings from the training users for the item are averaged and 
weighted by their similarities to the test user. These two 
approaches differ in the computation of similarity. More 
specifically, the PCC method defines the similarity between two 
users ,ty yw  as: 
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while the VS method defines the similarity as: 
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More details can be found in [1]. 

2.2 Model-based Approaches 
Two popular model-based algorithms are the aspect model (AM) 
[5, 14] and the Personality Diagnosis model (PD) [12]. 

Aspect model is a probabilistic latent space model, which models 
individual preferences as a convex combination of preference 
factors [5, 14]. The latent class variable },.....,,{ 21 KzzzZz =∈  is 



associated with each observed pair of a user and an item. The 
aspect model assumes that users and items are independent from 
each other given the latent class variable.  Thus, the probability 
for each observation tuple ),,( ryx  is calculated as follows: 

( | , ) ( | , ) ( | )
z Z

p r x y p r z x p z y
∈

= �  

where p(z|y) stands for the likelihood for the user y to be the class 
z and p(r|z,x) stands for the likelihood of assigning the item x with 
the rating r by the class z of users. In [14], the ratings of each user 
are normalized to be norm distribution with zero mean and one 
variance. A Gaussian distribution is used for the parameter p(r|z,x) 
and a multinomial distribution for p(z|y). 

Personality diagnosis approach treats each user in the training 
database as an individual model. To predicate the rating of an 
item by a test user, this approach first computes the likelihood for 
the test user to be in the ‘model’ of each training user and then 
uses the aggregate average of ratings for the item by the training 
users as the estimator. By assuming that the observed rating of the 
test user yt on an item x is drawn from an independent normal 

distribution with the mean as the true rating ( )
t

True
yR x , we have 

2 2( ( ) ( )) 2( ( ) | ( ))
True

y yt t
t t

R x R xTrue
y yp R x R x e

σ− −∝  

Then, the probability for the test user yt to be in the model of any 
user y in the training database can be written as: 

2 2( ( ) ( )) 2

( )
( | ) y yt

t

R x R x
t

x X y
p y y e

σ− −

∈
∝ ∏  (1) 

 

Finally, the likelihood for the active user y’ to rate an item x as r 
is computed as: 

2 2( ( ) ) 2( ( ) ) ( | ) y

t t

R x r
y y y

y
p R x r p R R e σ− −= ∝�  

Previous empirical studies have shown that the PD method is able 
to outperform several other approaches for collaborative filtering 
[5], including the PCC method, VS method and the Bayesian 
network approach. 

3. Related Work 
Automatically assigning appropriate weighting to items has not 
been well studied in the previous literatures. To our knowledge, 
there are only two major approaches, i.e., inverse user frequency 
weighting and the variance weighting. 

The first approach borrows the TF.IDF weighting schemes [19] 
from information retrieval. In [1], the authors proposed the 
inverse user frequency (IUF) for weighting different items. This is 
an analogy to inverse document frequency (IDF) for information 
retrieval. More specifically, the IUF weight for an item kx  is 

defined as ( )log /IUF
k kw N N=  where N stands for the number of 

training users and kN  stands for the number of training users that 

have rated item kx . Similar to the IDF weighting, the IUF 
weights favor the items that have been rated by only a few training 
users. Apparently, this may not be a good idea since items rated 

by fewer training users may not necessarily be useful in 
distinguishing users of different interests. In the empirical study 
conducted by Yu et al. [13], the IUF weighting has degraded the 
performance of the PCC method.  

The second approach weights different items proportionally to 
their variance in ratings given by different users [2]. It is based on 
the intuition that an item with a large variance in its ratings is 
more valuable in discerning a user’s interest than an item with a 
small variance. According to [2], the weight for item kx  is 

computed as min

max

var var
var

VW k
kw

−
=  where 

2
1( ( ) )
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1

i

N
y k ki

k
R x R

N
= −

=
−

�
. kR  represents the averaged 

ratings for item kx . As discussed in Section 1, an item with a 
large variance in its ratings may not necessarily be a good item in 
discerning the user’s interests because the large variance can be 
caused by the fact that the item is difficult to rate for most users.  

4. Automatic Weighting Scheme for Items 
The main idea of our new automatic weighting scheme is to find 
appropriate weights for items such that each user is brought closer 
to the users that share the similar interests and separated apart 
from the users that have different interests. Viewing from the item 
space, a good weighting scheme will result in a clustered 
distribution for different user points, in which each user point is 
closely surrounded by several neighbors and meanwhile distant 
from the points of dissimilar users. In the following sections, we 
first describe a probabilistic model for measuring the similarity 
between different users that can incorporate weights for different 
items. With the probabilistic description for user-similarity, we 
then formulate the problem of finding appropriate weights into an 
optimization problem and describe the solution.  

4.1 A Conditional Exponential Model for 
Measuring User-Similarity 
First, let ( | )i jp y y  denote the likelihood for a user jy  to be 

similar to a user iy . This likelihood can be viewed as the 

similarity between the users jy  and iy . The larger the likelihood 

( | )i jp y y  is, the more similar is the user jy  to iy . However, 

different from the standard similarity measurement, this likelihood 
is asymmetric, i.e., ( | ) ( | )i j j ip y y p y y≠ . In other words, even 

though the user jy  may find that iy  is the most similar one 

among all the training users, user iy  can still find himself more 

similar to others than the user jy . This is because ( | )i jp y y  

measures the similarity of user jy  to user iy  from the view point 

of jy , while ( | )j ip y y  measures the same similarity but from 

the view point of iy .  

Second, we introduce a pseudo user O to account for the users 
that are outside the set of training users. Therefore, the complete 
user set should be 1 2{ , ,..., , }Ny y y O . Each user jy  is similar 

either to at least one of the remaining users in the training 



database or to the pseudo user O. Therefore, the sum of the 
probability ( | )i jp y y  over different users has to be one, or,  

{ | }( | ) ( | ) 1j i ji i j
p O y p y y≠+ =�  (2) 

Now, we need to express the likelihood ( | )i jp y y  more 

explicitly. As indicated in Equation (1), the Personality Diagnosis 
method uses a generative Gaussian model to express a similar 
likelihood. This could be problematic since it requires the ratings 
of every item by the user iy  to be well “explained” by rating 

behavior of the user jy  without putting more emphasis on the 

items that are useful in discerning user’s interests. As a result, a 
user can be determined as dissimilar to another user only because 
he does not provide ratings for the items that most users share a 
similar opinion. In order to incorporate the weights of items into 
the probabilistic model, we use the conditional exponential model 
[16] to describe the likelihood ( | )i jp y y , i.e. 

, ,
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1
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M
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� �
� �
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The variable ,i kv  denotes the normalized rating for an item kx  by 

a user iy . It has a definition similar to the one used in Pearson 
Correlation Coefficient method, i.e.,  

2
,
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jZ  is a normalization factor that ensures the sum of conditional 

probability ( | )i jp y y to be one, which is further written as: 

, ,
{ | } 1
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M
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≠ =
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Here we introduce a constant ρ to account for the probability mass 
( | )jp O y . The likelihood for a user jy  to be similar to the 

pseudo user O ( | )jp O y  equals to / jZρ . This expression 

indicates that when the user jy  shares similar ratings as many 

other training users over a large number of items, the likelihood 
( | )jp O y  will be small because the normalization factor jZ  is 

large in this case. On the other hand, likelihood ( | )jp O y  will be 

large when the user jy  cannot find a similar rating behavior 

among other training users. 

Note that Equation (3) is similar to the similarity measurement 
used for the Pearson Correlation Coefficient method in that both 
of them measure the user-similarity using the dot product of the 
normalized ratings by different users. However, they differ in the 
following two aspects: 

1) Equation (3) introduces weights {wi} to determine the 
importance of different items and the weights can be 

automatically estimated using the leave-one-out method. The PCC 
method does not use any weights for items. 

2) In Equation (3), likelihood ( | )i jp y y  is asymmetric, i.e. 

( | ) ( | )i j j ip y y p y y≠ while the similarity measurement used in 

the PCC method is symmetric. 

4.2 Learning Weights for Items 
According to the aforementioned idea, we need to adjust weights 
such that each training user is similar to at least one of the rest 
training users and distant from other dissimilar ones. To realize 
this goal, we take the leave-one-out approach. More specifically, 
for each training user, we measure how well the rating behavior of 
the training user can be “explained” by the rating behaviors of the 
rest training users. To measure such a quantity, for every training 
user iy , we compute the following expression  

{ | }
1

( | )
1 i jj j i

p y y
N ≠− �  (5) 

This quantity can be interpreted as the average similarity of other 
training users to the user iy . It is important to note that we use 

( | )i jp y y in Equation (5) instead of ( | )j ip y y . In other words, 

this average similarity is measured from the perspective of other 
training users (i.e., jy ), not the user iy itself. This is important 

because, when replacing ( | )i jp y y  in Equation (5) with 

( | )j ip y y , the expression will be simplified as 

( )1 / /( 1)jZ Nρ− − . This quantity is maximized when ρ is zero 

and therefore has nothing to do with the weights for items.  

Equation (5) measures how well the rating behavior of a user iy  
can be “explained” by the rest of training users. Since our goal is 
not just targeting one single training user, but rather ensuring that 
the rating behavior of any training user can be “explained” by the 
rating behaviors of others, we apply this leave-one-out approach 
to every training user. The overall measurement becomes the 
product of the expression in Equation (5) for all training users. 
The following equation gives an overall measurement: 

{ | }
1

1
( | )

1

N

i jj j i
j

p y y
N ≠

=

� �

 −� �

�∏  (6) 

The above quantity indicates globally how well the rating 
behavior of a single training user is “explained” by the rest 
training users. By maximizing this measurement, we will find the 
optimal weights for different items. Formally, the optimization 
problem is stated as follows: 

{ | }
1

1
* arg max ( | ; )

1

N

i jj j i
w j

w p y y w
N ≠

=

� �= 
 −� �
�∏�

� �
 (7) 

In the above, the notation w
�

 stands for weights 1 2{ , , ..., }Mw w w . 

We put weights w
�

on the conditional side of the likelihood 
( | )i jp y y , i.e., ( | ; )i jp y y w

�
, to emphasize that the likelihood is 

parameterized by weights w
�

.  



To understand how the optimization problem in Equation (7) is 
able to twist the weights for items, consider the extreme case 
when an item is rated identically by all the training users. If a 
much larger weight is assigned to this item than other items, most 
likelihood ( | )i jp y y  will be on the order of 1/N, which is a small 

value. As a result, the summation { | } ( | ; )i jj j i
p y y w≠�

�
 tends not 

to be large and the measurement in Equation (6) is not 
maximized. As a result, it is not optimal to assign high weights to 
the items that are rated similarly by most users.  

In addition to the formulation in Equation (7), we can improve the 
robustness of the learning algorithm by introducing constraints on 
the weights. First, we restrict weights to be positive, or 0kw ≥  
for all k. This is because when a negative weight is assigned to an 
item, users with same ratings on the item will have a smaller 
similarity than users with different ratings on the item. 
Apparently, this contradicts our intuition. Second, to prevent a 
single weight from being too large, we introduce an upper bound 

on each weight, i.e., 1
100 M

k mm
w w

M =≤ � . This constraint 

indicates that no weight is allowed to be one hundred times larger 
than the average of all weights. As a result, no item will be 
dominative in the similarity measurement. 

Putting the constraints into the optimization problem in Equation 
(7), the final optimization problem becomes: 

{ | }
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1
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100
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 (8) 

Finding the optimal solution to Equation (8) is rather difficult due 
to the non-concave objective function and the constraints. We 
derive an optimization strategy for Equation (8) that uses the idea 
of auxiliary function. The main idea is to divide the optimization 
procedure into many steps. For each step, a simple auxiliary 
function, which is a lower bound of the original objective 
function, is used for optimization. Details about the optimization 
procedure are described in a separate paper. 

Finally, to predict the ratings for the test user, we will simply add 
the weights to the standard memory-based approach. In our 
experiments, we used the Pearson Correlation Coefficient method 
as our basis. With the computed weights, the similarity in PCC 
method is computed as: 
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5. Experiment 
We conducted a set of experiments to examine the effectiveness of 
our new weighting scheme. Particularly, we address the following 
three issues: 

1) How does the constant ρ influence the prediction accuracy? 
The constant ρ controls the likelihood for a training user to be 
similar to a user outside the training database. The larger ρ is, the 
less likely it is for a training user to be similar to any other 
training users. Experiments are conducted to examine the impact 
of this constant on the final performance of the new weighting 
scheme. 

2) How is our weighting scheme compared to the existing 
weighting scheme for items? Our approach is compared to two 
commonly used weighting schemes: the inverse user frequency 
(IUF) [1] and the variance of ratings [2], together with a detailed 
comparative analysis of the computed weights.  

3) How is the weighted memory-based approach compared to 
other approaches? We compare the weighted memory-based 
approach (by incorporating our weighting scheme) to standard 
memory-based approach including the Pearson Correlation 
Coefficient (PCC) method, the Vector Similarity (VS) method, 
the Aspect Model (AM), and the Personality Diagnosis (PD) 
method. 

5.1 Experiment Design 
Two datasets of movie ratings are used in our experiments:  
MovieRating1 and EachMovie2.  For the EachMovie dataset, we 
extracted a subset of 2,000 users with more than 40 ratings. The 
global statistics of these two datasets as used in our experiments 
are summarized in Table 1.  

Table 1: Characteristics of MovieRating and EachMovie. 
 MovieRating EachMovie 

Number of Users 500 2000 
Number of Items 1000 1682 

Avg. # of rated Items/User 87.7 129.6 
Number of Ratings 5 6 

 To compare algorithms more thoroughly, we experimented with 
several different configurations. For MovieRating, we altered the 
training size to be the first 20, 100, or 200 users, and for EachMovie 
we used the first 20, 200 or 400 users for training.   The rest of 
users in both cases were used for testing. Furthermore, for each 
testing user, we varied the number of rated items provided by the 
test user from 5, 10, to 20.  By varying the number of training 
users and the number of given items, we are able to test our 
weighting scheme for different configurations. Particularly, the 
experiment with only 20 training users is able to evaluate the 
robustness of our weighting scheme given a small number of 
training users. 

The evaluation metric used in our experiments is the mean 
absolute error (MAE), which is the average absolute deviation of 
the predicted ratings to the actual ratings on items the test user has 
actually voted.  

|)(|
1 ^

)()( )( ly
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l
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xRr
L

MAE
l

−= �  

 

(9) 

                                                                 
1 http://www.cs.usyd.edu.au/~irena/movie_data.zip 
2 http://research.compaq.com/SRC/eachmovie 



where TestL denotes the number of the test ratings. 

 Finally, to predict ratings for a test user, the computed weights 
are incorporated into the Pearson Correlation Coefficient method 
as described in Section 3. 

5.2 Experiments (1): Impact of Constant ρρρρ 
In the first experiment, we vary the constant ρ from 0.1, 0.5, to 2. 
The results of using different constant ρ for computing item 
weights over dataset MovieRating and EachMovie are presented in 
Table 2 and 3, respectively. We can see that ρ=0.5 performs 
slightly better than ρ=0.1 and ρ=2 for most configurations. Since 
the constant ρ controls the likelihood for a training user to be 
similar to all other training users, these results indicate that best 
weights for items are obtained when we assign a medium chance 
for every training user to find itself to be dissimilar to other 
training users. 

5.3 Experiment (2): Comparison to Existing 
Weighting Schemes 
In this experiment, we compare our weighting scheme to two 
commonly used weighting schemes, i.e., inverse user frequency 
weighting (IUF) and variance weighting (VW). Both our 
weighting scheme and the two weighting schemes to be compared 
are incorporated into the Pearson Correlation Coefficient method 
to predict ratings for test users. The results are listed in Table 4 
and 5, together with the results for the Pearson Correlation 
Coefficient method without using any weighting scheme. The first 
observation is that, both the inverse user frequency weighting and 
the variance weighting do not improve the performance from the 

baseline method that does not use any weighting for items. This is 
actually consistent with the founding in [2, 13]. In contrast, our 
new weighting scheme is able to boost the prediction accuracy for 

User Index 

Table 2: MAE using different ρ on MovieRating. A smaller value 
means a better performance. 

Training 
Users Size ρ 

5 Items 
Given 

10 Items 
Given 

20 Items 
Given  

0.1 0.852 0.817 0.796 
0.5 0.851 0.816 0.795 20 
2 0.855 0.831 0.812 

0.1 0.849 0.813 0.789 
0.5 0.846 0.812 0.785 100 
10 0.849 0.818 0.791 
0.1 0.846 0.810 0.779 
0.5 0.842 0.807 0.777 200 
2 0.850 0.815 0.778 

 

Table 3: MAE using different ρ on EachMovie. A smaller value 
means a better performance. 

Training 
Users Size ρ 

5 Items 
Given 

10 Items 
Given 

20 Items 
Given  

0.1 1.208 1.156 1.136 
0.5 1.207 1.155 1.133 20 
2 1.217 1.164 1.150 

0.1 1.175 1.115 1.086 
0.5 1.175 1.114 1.085 200 
2 1.174 1.115 1.090 

0.1 1.163 1.114 1.087 
0.5 1.162 1.106 1.075 400 
2 1.168 1.114 1.089 
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Figure 1: The distribution of weights computed for the 
movies in dataset ‘MovieRating’ under the 
configuration of 100 training users. 

Figure 2: Distributions of normalized similarities for 
‘MovieRating’ database using 100 training users. The 
solid line represents the distribution computed without 
weights and the dot line represents the distribution 
computed with weights. 

Figure 3: Distribution of weights for items versus the 
variance of ratings. 



all configurations. 

To better understand why our weighting scheme improves the 
performance of Pearson Correlation Coefficient method, we first 
examine the distribution of weights for different movies. Figure 1 
plots the computed weight distribution for the MovieRating 
dataset given 100 training users. As indicated in Figure 1, the 
distribution of weights for different movies is rather skewed: only 
2% of items are weighted larger than 0.05, and only 20% of items 
are weighted larger than 0.015; more than 50% of items are 
weighted equal or less than 0.01. This skewed weight distribution 
indicates that only 2% of items are very important in determining 
the user-similarity and around 50% of items are almost ignorable 
in the computation of user-similarity. This is similar to the 
phenomenon in text categorization, in which people found that 
only a small number of words are important in determining the 
category for a document [20].  

Second, we examine how the computed weights shape the 
distribution of user-similarities. Figure 2 displays the distribution 
of normalized similarities calculated based on the weights. The 
distribution of the similar similarities without using weights is 

shown in Figure 2. Here, a normalized similarity of a user iy  to a 

user jy  is computed as ( , ) / max( ( , ))i j i k
k i

sim y y sim y y
≠

. Both 

distributions are computed under the configuration of 100 training 
users. Observed from Figure 2, we can see that by introducing 
weights for items, a large similarity becomes even larger and a 
small similarity becomes even smaller. In other words, the 
incorporation of weights makes similar users more similar and 
dissimilar users more dissimilar. This effect is consistent with the 
intuition that stated in Section 4, namely a good weighting scheme 
for items should bring similar users closer and separate dissimilar 
users further away.  

Third, we examine the correlation between the computed weights 
and the variance of ratings. The distribution of weights versus the 
variance of ratings is plotted in Figure 3. Unlike the variance 
weighting scheme, where the weight of an item is proportional to 
the variance of ratings for the item, the plot in Figure 3 indicates 
that the items with medium variances are assigned with large 
weights and items with both large and small variances are actually 
assigned with only small weights. Again, this is consistent with 

Table 4: MAE using different weighting scheme on 
MovieRating. Title ‘No’ refers to Pearson Correlation Coefficient 
using no weighting schme; title ‘VW’ refers to the variance 
weighting; title ‘IUF’ refers to using inverse user frequency for 
weighting items; title ‘New’ refers to the new weighting scheme. 
A smaller value means a better performance.  
Training 

Users Size Weight 5 Items 
Given 

10 Items 
Given 

20 Items 
Given  

No 0.878 0.835 0.808 
VW 0.875 0.842 0.817 
IUF 0.925 0.915 0.913 20 

New 0.851 0.816 0.795 
No 0.875 0.829 0.804 
VW 0.881 0.845 0.818 
IUF 0.910 0.880 0.879 100 

New 0.846 0.812 0.785 
No 0.874 0.829 0.796 
VW 0.879 0.845 0.812 
IUF 0.899 0.875 0.855 200 

New 0.842 0.807 0.777 
 

Table 5: MAE using different weighting scheme on 
MovieRating. Title ‘No’ refers to Pearson Correlation Coefficient 
using no weighting schme; title ‘VW’ refers to the variance 
weighting; title ‘IUF’ refers to using inverse user frequency for 
weighting items; title ‘New’ refers to the new weighting scheme. 
A smaller value means a better performance. 
Training 

Users Size Weight 5 Items 
Given 

10 Items 
Given 

20 Items 
Given  

NO 1.242 1.178 1.143 
VW 1.258 1.200 1.180 
IUF 1.302 1.262 1.251 

20 

New 1.207 1.155 1.133 
NO 1.226 1.153 1.119 
VW 1.258 1.196 1.174 
IUF 1.238 1.206 1.183 

200 

New 1.175 1.114 1.085 
NO 1.218 1.154 1.111 
VW 1.253 1.1981 1.176 
IUF 1.258 1.218 1.212 

400 

New 1.162 1.106 1.075 

Table 6: MAE on MovieRating for the Vector Similarity (VS) 
method, Pearson Correlation Coefficient using the proposed 
weighting scheme (PCC+), Personality Diagnosis (PD) method, 
and the Aspect Model (AM) method. A smaller value means a 
better performance.  
Training 

Users Size Methods 5 Items 
Given 

10 Items 
Given 

20 Items 
Given  

VS 0.912 0.840 0.812 
PD 0.888 0.882 0.875 
AM 0.982 0.976 0.958 

20 

PCC+ 0.851 0.816 0.795 
VS 0.859 0.834 0.823 
PD 0.839 0.826 0.818 
AM 0.882 0.856 0.836 100 

PCC+ 0.846 0.812 0.785 
VS 0.862 0.950 0.854 
PD 0.835 0.816 0.806 
AM 0.891 0.850 0.818 

200 

PCC+ 0.842 0.807 0.777 
 

Table 7: MAE on EachMovie for the Vector Similarity (VS) 
method, Pearson Correlation Coefficient using the proposed 
weighting scheme (PCC+), Personality Diagnosis (PD) method, 
and the Aspect Model (AM) method. A smaller value means a 
better performance.  
Training 

Users Size Methods 5 Items 
Given 

10 Items 
Given 

20 Items 
Given  

VS 1.24 1.19 1.17 
PD 1.25 1.24 1.23 
AM 1.28 1.24 1.23 

20 

PCC+ 1.21 1.16 1.13 
VS 1.25 1.24 1.26 
PD 1.19 1.16 1.15 
AM 1.27 1.18 1.14 

200 

PCC+ 1.18 1.11 1.09 
VS 1.32 1.33 1.37 
PD 1.18 1.16 1.15 
AM 1.28 1.19 1.16 

400 

PCC+ 1.16 1.11 1.08 



the studies in information retrieval [17], where words with 
medium frequency are usually most informative. 

5.4 Experiments (3): Comparison with Other 
Approaches for Collaborative Filtering 
This experiment compares the Pearson Correlation Coefficient 
approach using our weighting scheme to the other three methods: 
the Vector Similarity (VS) method, the Aspect Model (AM) 
approach, and the Personality Diagnosis (PD) method. Table 6 
summarizes the results for these three methods. Clearly, the 
Pearson Correlation Coefficient method using our weighting 
scheme (referred as ‘PCC+’) outperforms the other three methods 
in all configurations. This experiment shows that our new 
weighting scheme is effective in improving the prediction 
accuracy for collaborative filtering. 

6. Conclusion 
In this paper, we present a novel algorithm to automatically 
determine appropriate weights for different items for collaborative 
filtering. Unlike the previous weighting schemes where weights 
are computed using a predefined function, our algorithm 
automatically learns weights for different items from the ratings 
given by training users. The main idea behind this weighting 
scheme is to adjust weights of items to bring similar users closer 
and separate dissimilar users further apart. Based on this idea, an 
optimization approach is developed to efficiently search for a 
weighting scheme. Empirical studies have shown that our new 
weighting scheme can be incorporated to improve the 
performance of Pearson Correlation Coefficient method 
substantially under many different configurations. Comparison 
with two existing weight schemes and three different approaches 
also indicates the effectiveness of our approach for collaborative 
filtering. 
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