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Abstract

Automotive lane guidance systems, usually referred to as Lane Keeping Aid
or Lane Keeping System, are designed to prevent or warn the driver of lane
departure. They typically use a buzzer to alert the driver or a steering
wheel torque to actually steer the vehicle back into the center of the lane.
Emergency Lane Assist (ELA) combines conventional lane guidance systems
with a threat assessment module that tries to activate the lane guidance
interventions according to the actual risk level of lane departure. The goal
is to only prevent dangerous lane departure manoeuvres.

Such a threat assessment algorithm is dependent on detailed information
about the vehicle surroundings, i.e., positions and motion of other vehicles,
but also information about road and lane geometry parameters such as lane
width and road curvature. The thesis demonstrates that the lane estimate
can be improved by using an integrated filter that combines information
from object and lane tracking. This is done by introducing a road aligned,
curved coordinate system which also brings other advantages when it comes
to modelling and prediction.

Evaluation of the integrated tracking system has been carried out on real
data and the ELA decision algorithm has been tested in a demonstrator.
ELA successfully distinguishes between dangerous and safe lane changes on
a small set of test scenarios and is, if activated, able to take control of the
vehicle and put it in a safe position in the original lane.

Keywords: active safety, collision avoidance, lane guidance, state estima-

tion, target tracking, Kalman filter, centralized filtering, threat assessment
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Chapter 1

Introduction

1.1 Background

In the European Union, nearly 40,000 people are killed in traffic each year
[3]. Naturally, the automotive industry is more focused on safety technology
than ever. With the rise of well established car safety test institutions like
EuroNCAP (European New Car Assessment Program), automotive safety
systems are becoming important means of competition.

Safety systems are often put in the categories passive and active, al-
though in which category certain systems belong are not always clear. Pas-
sive safety systems are designed to mitigate the effects of accidents when
they happen, examples are air bags and seat belts. Active safety systems,
on the other hand, try to help the driver prevent accidents before they hap-
pen. Examples are ABS (Anti-lock Braking System) and anti-spin systems.
Other examples of active safety are the see-through A-pillars of the Volvo
Safety Concept Car, or even the air conditioning system, keeping the driver
alert. See [17] for a thorough discussion on this topic.

With the rise of affordable computer and sensor technology, more ad-
vanced active safety systems have become a major area of research in the
automotive industry. The next generation of active safety technology are
collision warning and avoidance systems, which are now starting to emerge.

Collision warning systems aims at preventing accidents by warning the
driver of an approaching threat where the warning has to come early enough
to allow a braking or a steering manoeuvre. Collision avoidance refers to
systems that autonomously intervene in the driving situation, of course
raising tough liability questions.
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Trends in automotive active safety

This section will give a brief overview and some of the milestones of the
development of active safety systems during the last few decades. Here we
have focused on mechatronic chassis functions.

Anti-lock Braking System (1978) ABS prevents the wheels from lock-
ing and will maintain the steering ability of the vehicle during hard
braking. ABS will also, during bad road conditions, reduce the stop-
ping distance. The system measures the velocity on all four wheels,
and if one of the sensors reports an abnormal acceleration (higher than
a physically reasonable value) it concludes that the wheel is about to
lock, and the pressure in the braking system is reduced. The Ger-
man automotive supplier Bosch actually has a patent from 1936 for
a ”mechanism to prevent locking of the wheels of a motor vehicle”.
The first ABS prototype was tested in 1970, but reliability of the elec-
tronics was too low and it was not before 1978 that the first system
was put in production and was manufactured by Bosch. Since 1978,
ABS technology has been developed further, Figure 1.1 shows that
the physical size of the system has been reduced significantly.

Figure 1.1: 1978 and 2001 ABS unit. The 2001 system is much more com-
pact. Photo: Bosch

Traction control (1985) The functioning of the traction control system
is very similar to that of the ABS. The system prevents the wheels
from slipping during accelerations by using the same velocity sensors
as the ABS. If a vehicle starts to slip, the engine power is reduced
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in order to maintain lateral control of the vehicle. The first traction
control system was launched in 1985 and was also a Bosch system.

Stability control (1995) Again, Bosch was first with their stability con-
trol system ESP (Electronic Stability Program) in 1995. While slightly
different configurations exist, a stability control system basically mea-
sures the yaw rate of the vehicle, i.e., the rotation in the ground plane,
and compares with the desired trajectory. If the deviation is greater
than some threshold, the system will activate the brake on one side of
the vehicle to correct this.

Adaptive cruise control (1998) While sources differ on this, [18] claims
that in May 1998, Toyota became the first to introduce an Adaptive
Cruise Control (ACC). ACC uses a forward looking sensor, usually
radar or laser, to monitor the distance to leading vehicles. If the
cruise control is active and time gap to the leading vehicle falls below
some threshold, the ACC vehicle will automatically brake in order to
maintain the distance.

While ACC is often not considered a safety system in itself, it usually
comes bundled with a forward collision warning. In Europe, govern-
ment restrictions typically limit the allowed braking to 3.0 or 3.5 m/s2.
If the vehicle detects that a higher deceleration is required to avoid
colliding with the leading vehicle, an audio warning is given to the
driver.

Forward collision mitigation (2003) Forward collision mitigation refers
to systems that will try to reduce the impact speed by applying the
brakes when a collision with the leading vehicle appears to be un-
avoidable. While many car manufacturers have announced near term
availability of such systems, there are only a few Japanese manufac-
turers that are currently selling them. Honda has sold a Collision
Mitigation System (CMS) since 2003.

Most systems have a similar functionality when it comes to the in-
tervention strategy. They use increasing warning levels as the threat
approaches. Hondas system, for example, uses the following technique:

Primary warning When there is a risk of collision with the vehicle
ahead or if the distance between the vehicles has become too
short, an alarm sounds, and the message ”BRAKE” appears on
the multi-information display in the instrument panel, prompting
the driver to take preventative action.
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Secondary warning If the distance between the two vehicles con-
tinues to diminish, CMS applies light braking, and the seat belts
are retracted gently two or three times, providing the driver with
a tactile warning. At this point, if the driver applies the brakes,
the system interprets this action as emergency braking, and ac-
tivates the brake assist function to reduce impact speed.

Collision damage reduction If the system determines that a colli-
sion is unavoidable, the seat belt pretensioners are activated with
enough force to compensate for seat belt slack or baggy clothing.
The CMS also activates the brakes forcefully, approximately 6
m/s2, to further reduce the speed of impact.

The system is presented in [23]. It has not been revealed how many
systems are actually sold, but it was mentioned that customer accep-
tance of the system has been quite low. For example, it seems that
the false alarm rate, especially for aggressive drivers, has been high.

Lane guidance system (2003) Lane guidance system refers to systems
that try to help the driver stay in the lane. Systems typically use an
acoustic warning or a steering wheel torque to alert the driver if the
vehicle is approaching the lane markings. If a steering wheel torque is
used, some of the proposed systems will automatically steer the vehicle
back into the center of the lane and work almost like an autopilot.

In Japan, Honda has been selling their Honda Intelligent Driver Sup-
port (HIDS), which includes the Lane Keeping Assist System (LKAS),
since 2003. The system is a combination of an audio warning and a
steering wheel torque. However, Honda’s idea is that the driver should
be kept in the loop at all times. Therefore, the system only supplies
80% of the required torque, the remaining 20% has to be provided by
the driver.

Their system has been approved by the Japanese Ministry of Land,
Infrastructure and Transport and is allowed on expressways in Japan.
See [16] for further details.

The market introduction years for these active safety systems are also
illustrated in Figure 1.2.

1.2 Ph.D. project description

The department of Vehicle Dynamics & Active Safety at the Volvo Car Cor-
poration is conducting research in, among other areas, the area of collision
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Figure 1.2: Milestones of the development of active safety systems during
the last few decades.

warning and avoidance. An important step in the future development of
active safety is, of course, answering the question: What is the next big
active safety function?

The Ph.D. project CAbS (Collision Avoidance by Steering) was launched
in 2002 and will hopefully help in finding the answer to this question. In
particular, Volvo want to know if a controllable steering system can be used
in collision mitigation or avoidance. The research is conducted in collabo-
ration with the Automatic Control group at the University of Linköping.

1.3 Document outline

First, trying to find the next ”big” active safety function, Chapter 2 presents
an evaluation method for safety functions which is then applied to a list of
candidates. The chosen candidate is then presented in Chapter 3. The cho-
sen active safety function will involve a signal processing unit used for track-
ing and a decision unit used to determine in which situations the function
should intervene. The tracking algorithm, of course, requires information
from different sensors, and uses some sort of actuator in order to deploy
countermeasures in potentially dangerous situations.

The sensors, actuators and other hardware are presented in Chapter 4.
Then, the signal processing unit and the decision unit are presented and
evaluated in Chapters 5 and 6 respectively.

After that, in Chapter 7, the simulation environment that was used
in the research is presented. Finally, the report ends with conclusions in
Chapter 8.
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1.4 Contributions

The main contributions of this work are the following:

• The evaluation method for active safety functions in Chapter 2.

• The derivation of the general coordinate transformation in Section 5.2
and the comparison between the different approximations in Section 5.4.
Also published in: A. Eidehall and F. Gustafsson. Combined road
prediction and target tracking in collision avoidance. In Proceeding of

IEEE Intelligent Vehicles Symposium, pages 619–624, Parma, Italy,
June 2004.

• The chosen active safety function in itself. It includes the function
description is presented in Chapter 3, the decision algorithm in Sec-
tion 6.1 and the combining of the threat assessment and the lateral
control algorithm in Section 6.2.

• Implementation and demonstration of the algorithms in a vehicle.



Chapter 2

Evaluation of active safety
systems

2.1 Introduction

In this research project, Collision Avoidance by Steering (CAbS) was ini-
tially thought of as a system that would make the host vehicle automatically
steer away from a potential hazard in cases where a pure braking manoeuvre
would be insufficient. However, the problem is currently addressed with a
wider perspective. The formulation has changed to: “If we were to design
any active safety system, which would have the greatest impact on road
traffic statistics with regards to system complexity (cost/unit)”.

2.2 Method

The first step in our analysis is to construct a list of potential active safety
systems, we are then going to evaluate these potential systems by their
utility and their complexity. Their utility is estimated from statistics and
their complexity is based on their cost-per-unit. As an additional basis
for our decision, a brief competitor analysis and an overview of available
technology is presented.

2.2.1 Statistics

Since accident statistics is the base for the system utility calculation, statis-
tical analysis is required. The main disadvantage of most of the currently
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available statistics is its focus on passive safety, i.e., vehicles with similar
damages are more likely to be statistically associated than accidents caused
by similar circumstances. To obtain relevant information on active safety
one has to ”read between the lines” and the results always has to be treated
with a certain level of suspiciousness.

Rather than projecting accident statistics directly on our potential active
safety systems, the statistics is first grouped into relevant types and sub-
types. As an example, all lane change accidents are identified as one main
type, and then grouped into different subtypes depending on the relative
speed and relative position of the vehicles. Other main types are ”unin-
tentional lane departure”, ”intersection accidents” etc. Detailed definitions
can be found in Appendix 2.B.

Since the statistics is going to be used for evaluation of active safety
systems, we are always interested in the first event in an accident sequence,
i.e., a car unintentionally leaving its lane and causing an accident is put in
the group of ”unintentional lane departure” regardless of what it hit and
the type of damage on the vehicle.

We can then evaluate any potential active safety system by adding fre-
quencies of the accident types it would affect. Compared to evaluating
specific active safety systems directly from statistics, this method is more
flexible since new systems easily can be added and evaluated.

2.2.2 Estimating system complexity

The complexity/cost of a system is based on the cost of its hardware com-
ponents and a template development cost. The development cost is divided
into three different areas:

• Engineering

• Test objects

• Tooling and production equipment

The sum of these costs are then divided by an estimated volume times the
expected penetration of the system throughout the product line. These
figures are all presented in Section 2.3.2 and are estimated based on the
vast experience of the engineers at the department of Vehicle Dynamics &

Active Safety at Volvo Cars.
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2.3 Data analysis

The list of active safety systems that we will evaluate is presented in Ap-
pendix 2.A. Some of these concepts have been presented before, but most
of them are new and have been developed in creative discussions.

2.3.1 Estimating system utility

In the first step we will use a European traffic accidents database called
EACS (European Accident Causation Survey). It contains just under 2,000
accidents and will be used partly to evaluate our own decision strategy,
which, if proven to be feasible, could be applied to a much larger German
database GIDAS (German In-Depth Accident Study).

First, assume we have defined n different accident types and that these
have the statistical frequencies a = (a1, a2, . . . , an). Then the utility of a
system j can be estimated by first forming a vector xj = (x1j , x2j , . . . , xnj)
where 0 ≤ xij ≤ 1 describes the assumed or estimated effect the active
safety system j has on accident type i. (If system j has 75% impact on
accident type i we would have xij = 0.75.) Then the total system utility
can then be defined as

uj =

n
∑

i=1

aixij

The accident frequencies from EACS are presented in Table 2.1. Definitions
of the accident types can be found in Appendix 2.B. We have created these
accident types to reflect important issues in potential active safety systems,
but not with a particular active safety function in mind. Note that only the
data in type 8x has been divided into its subtypes.

Table 2.2 shows the full utility matrix with the xij :s and corresponding
active safety systems. Empty positions represent the value zero.
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Type Light/no injuries Severe/fatal accidents
1x 321 94
2x 80 14
3x 60 15
4x 97 24
5x 419 126
6x 25 15
7x 91 30
81 7 3
82 116 114
83 79 39

Table 2.1: Data from the EACS (European Accident Causation Survey)
database.

Light/no injuries
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Figure 2.1: Diagram of the data from Table 2.1.
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Table 2.2: Utility matrix with the assumed impact on the different accident
types and the resulting utility value of each system.



12 Evaluation of active safety systems

2.3.2 Estimating system complexity

System complexity can be estimated similarly to the way the system utility
was estimated, with the difference that system development cost also needs
to be considered.

This time we start with a set of m hardware components with a cost
vector b = (b1, b2, . . . , bm). Next, for system j, we construct the vector yj =
(y1j , y2j , . . . , y2m), where ykj = 1 if system j involves hardware component
k, ykj = 0 if not. The component cost cC

j of system j can then be calculated
as

cC
j =

n
∑

i=1

biyij

The hardware components and their costs are presented in Table 2.3.

Component Assumed cost per unit (USD)
Laser 300
Front view camera 200
Side mirror camera 300
Infrared camera 700
RTI (GPS navigation system) 250
Steering wheel sensor 0
Gyro 0
Road friction detector 2
Driver monitoring system 150
Brake actuator 0
Steering actuator 0

Table 2.3: Cost of the hardware components.

As was mentioned in Section 2.2.2, the development cost can be esti-
mated as a combination of the assumed engineering, test objects and tooling

and production equipment costs. For system j, these are labelled cE
j , cT

j and

cP
j respectively. Now, if the total volume is V and pj denotes the amount of

these vehicles system j is installed in (pj is usually referred to as penetration

or take rate), then the development cost cD
j per unit can be calculated as

cD
j =

cE
j + cT

j + cT
j

pjV

Then we get the total cost per unit as

cj = cD
j + cC

j



2.3 Data analysis 13

Component and development costs are put together in Table 2.4. Again,
empty positions represent the value zero.
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2.3.3 Results

In Table 2.5 we compute, for each system, the ratio uj/cj , utility/cost. This
is a way to compare systems of different complexity and fields of application.
The target function uj/cj seems plausible, although other functions, such
as u2

j/cj could also be studied.
In Table 2.5 the target function is calculated in two columns, light/no

injuries in the first and severe/fatal accidents in the second. Also, to indicate
potential candidates, the values higher than half of the highest value of that
column are marked with arrows.
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LKA - Lane Keeping Aid 416 64,2 15,43 18,8 4,52

LCA - Lane Change Aid 366 6 1,64 1,5 0,41

CMbB 512 44,3 8,65 10,4 2,03

CMbB2 (CMbB + RFD) 515 46,7 9,07 10,82 2,10

CMbB3 (CMbB2 + RFD + Driver monitoring) 739 52,3 7,08 11,8 1,60

CW - Curvature Warning 288 14,55 5,05 3,6 1,25

LAS1 - Lane Assist System (LKA + LCA) 642 70,2 10,93 20,3 3,16

LAS2 (LAS1 + traffic outside blind spot) 1160 79,2 6,83 22,55 1,94

ELA (LAS2 + traffic in opposite direction) 1180 111,3 9,43 31,95 2,71

GWW - Give Way Warning 576 20,95 3,64 6,3 1,09

GS - Game Scanner 1022 0,7 0,07 0,3 0,03

PBS - Pedestrian & Bicycle scanner 660,8 48,75 7,38 38,25 5,79

OGS - Overtaking Guidance System 1186 2,5 0,21 1,5 0,13

True CAbS - Collision Avoidance by Steering 1300 145,8 11,22 39,05 3,00

True CAbS2 (True CAbS + RFD + Driver mon.) 1506 153,8 10,21 40,45 2,69

Table 2.5: Decision matrix. Values higher than half of the maximum value
have been marked with arrows.

2.4 Conclusions

Inspecting the decision matrix (Table 2.5) shows that the following choices
have a high target function value.

• Collision Mitigation by Braking (CMbB)

• Emergency Lane Assist (ELA)

• Pedestrian & Bicycle Scanner

• True Collision Avoidance by Steering (True CAbS)
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The system True CAbS is based on ELA and CMbB. Given the fact that
CMbB is already being developed, this suggests that going via ELA towards
True CAbS seems to be reasonable direction for our future work.

2.4.1 Future trends

This section will try to give an idea about what other research groups are
doing by presenting some of the latest applications in the area of automotive
safety. Many of these ideas have been presented at various conferences but
none of them has yet reached the market.

ACC with GPS In addition to the Adaptive Cruise Control system ex-
plained in Section 1.1, which is able to adjust the speed to a leading
vehicle, future ACC systems are believed to also being able to slow
down in sharp curves. The most common approach for achieving this
is by using a GPS satellite positioning system together with a digital
road map which provides information about the curvature approach-
ing curves.

Pedestrian detection Pedestrian detection is a major research area. Im-
age processing is used to analyze data from a camera, usually standard
video, but sometimes also infra-red, and if a pedestrian is detected in
a dangerous location, the system typically brakes the vehicle auto-
matically. Examples of pedestrian detection systems are [11] from
DaimlerChrysler and [13] from Volvo Technology Corporation, both
presented at the 2004 Intelligent Vehicles Symposium.

Interior sensing It is a well known fact that many accidents occur due
to driver drowsiness or driver inattention. By mounting cameras in-
side the vehicle looking at the driver, different parameters related to
drowsiness or distraction can be monitored. For drowsiness, the most
well established and promising measure is PERCLOS [28] which av-
erages eyelid closure over time. The cameras can also monitor gaze
direction and thereby detect when the driver is not looking at the
road.

The information can be used, either to recommend the driver to rest
or to adjust different thresholds in other active safety functions. For
example, we could allow a collision mitigation system to brake earlier
if the driver is not focusing on the road, since it is less likely that he
or she will steer away in the last moment.

Pre-crash safety Much effort is put into the area of preparing the ve-
hicle for an imminent collision. For example, DaimlerChrysler has
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announced that they are experimenting with extending bumpers that
would increase the deformation zone and also with active interior com-
ponents, for example extending door panels, that pushes the driver
away from the side door just before the collision [5].

Night vision Many car manufacturers, for example Volvo Car Corpora-
tion, have been working on night vision systems, an example is shown
in Figure 2.2. The systems are based on an infra-red camera mounted
in the front of the vehicle from which the image is then projected
onto a screen in front of the driver. An infra-red night vision system
has been reported to allow up to five times the viewing distance in
darkness.

Figure 2.2: The night vision system of the Volvo Safety Concept Car. Photo:
Volvo Car Corporation.
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2.A Potential active safety functions

This is a very brief description of the active safety functions evaluated in
Chapter 2. Some of these systems have been presented elsewhere, but most
of them are new.

Lane Keeping Aid Includes a vision system for lane detection and uses
a steering wheel actuator to keep the vehicle in the lane at all times
[24].

Lane Change Aid Assists during lane changes by activating a warning
light if another vehicle is driving in the blind spot. This system is
currently sold by Volvo Cars, see the web page www.volvocars.com
for details.

Collision Mitigation by Braking Automatic braking when forward col-
lision is unavoidable [17].

Collision Mitigation by Braking 2 Same as above but also includes road
friction detector to be able to brake earlier during bad road conditions.

Collision Mitigation by Braking 3 Collision Mitigation by Braking with
friction detection and a system for detecting drowsy or distracted
drivers to be able to brake even earlier.

Curvature Warning A warning is activated if the host vehicle is ap-
proaching a sharp curve too fast.

Lane Assist Systems Combination of Lane Keeping Aid and Lane Change
Aid. Does not use steering wheel actuator, only a sound warning.

Lane Assist System 2 Same as above, but also monitoring traffic which
is not necessarily in the blind spot but still poses a threat. Audio
warning on a dangerous lane change.

Emergency Lane Assist Same as Lane Assist System 2 but also moni-
toring oncoming traffic. This system uses a steering wheel actuator
to prevent dangerous lane departure.

Give Way Warning Warning if host vehicle is approaching an intersec-
tion with for example a red light or stop sign too fast.

Game scanner Game warning system. Warning if a big animal is entering
the road ahead of the host vehicle.
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Pedestrian & Bicycle scanner Searching for pedestrians/bicycles in front
of the vehicle [13, 11]. Automatic braking.

Overtaking Guidance System Warning the driver for dangerous over-
taking situations and informing about coming overtaking opportuni-
ties.

True Collision Avoidance by Steering System which is actually steer-
ing away when a pure braking manoeuver is insufficient. Includes
Emergency Lane Assist + Collision Mitigation by Braking 3.
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2.B Accident types

These are the accident types and subtypes. As was mentioned in Sec-
tion 2.3.1, these accident types were created to reflect important issues
in potential active safety systems, but not with a particular active safety
function in mind. Note that the vehicle marked with a ”H” in each scenario
refers to the host vehicle which is equipped with the active safety function.
Each row consist of the main type and its subtypes, e.g., 11, 12, 13 are
subtypes of 1x.

Type 1x
Unintentional
lane departure

Type 11
Running off road

Type 12
Collision with

vehicle in
opposite
direction

Type 13
Collision with
infrastructure

Type 2x
Collision with
object in same

lane

Type 21
Vehicle in same

lane

Type 22
Other object in

same lane
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Type 3x
Lane change

accident

Type 31
Blind spot

related accident

Type 32
Collision with
faster moving

vehicle

Type 33
Collision with
slower moving

vehicle

Type 4x
Loss of grip

Type 41
Entering curve

too fast

Type 42
Loss of grip due
to ice, snow etc.

Type 5x
Accident in
intersection

Type 51
Approaching

give-way situation
too fast

Type 52
Other accident in

intersection
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Type 6x
Overtaking in
two-way traffic

Type 7x
Miscellaneous,

parking, backing
etc.

Type 71
Leaving car park

Type 72
Other accidents

related to
parking, backing

etc.

Type 8x
Obstacle enters

lane

Type 81
Game

Type 82
Pedestrian

Type 82
Bicyclist
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Chapter 3

Function description

3.1 Description

Many lane guidance systems have been proposed in the recent years. Some
of them use a buzzer and some of them use a steering wheel torque to
indicate or prevent lane departure. There are two major problems with that
kind of systems. The first is false alarms when changing lane intentionally.
It is often claimed that this can be solved by disabling the interventions
when the indicator is used, but studies have shown that people generally do
not use the indicators at every lane change. Also, a very common behavior
is to cross the lane marking slightly on the inside of curves, usually referred
to as ”curve cutting”. The second problem is misuse. A system that applies
a steering wheel torque in order to keep the vehicle in the lane can almost be
used as an autopilot. Typically, the driver could rely on the system totally
for short periods of time while carrying out distractive tasks like changing
CDs or writing text messages, which would clearly be a very precarious
situation.

Honda has a proposed solution in [16], which was also discussed in Sec-
tion 1.1, were they only apply 80% of the required torque to keep the
vehicle in the lane. This is to keep the driver in the loop at all times. The
problem is that if the driver is actually not in the loop, i.e., is distracted
or misjudging the situation, the system will not prevent the lane departure.
Their studies certainly showed that people found the vehicle more stable
and easy to steer, this makes the system more of a convenience system than
a safety system.

Another possible solution is to combine the lane guidance system with
some sort of driver monitoring device. Clearly, if the system could be ac-
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tivated only when the driver is distracted or drowsy, this would reduce the
number of false alarms. As driver monitoring systems improve, this could
certainly become an interesting combination.

Emergency Lane Assist (ELA) provides another alternative of eliminat-
ing false alarms and misuse. The function will only try to prevent dangerous

lane departure. The system monitors adjacent lanes and as long as there
are no other vehicles approaching, the lane markings can be crossed without
ELA intervention, but as soon as a commenced lane change manoeuvre is
considered dangerous with respect to, for example an oncoming vehicles, a
torque is applied to the steering wheel in order to prevent lane departure.
The risk level of a lane change manoeuvre is judged based on the position
and motion of vehicles in the adjacent lanes, but also road edges and barriers
or even solid lane markings could be used to activate the intervention.

This approach makes ELA a pure safety system rather than a com-
fort/convenience system. Figure 3.1 shows critical ELA situations.

Prerequisites

The function must never prevent evasive action, i.e., if it is assumed that
the driver is departing the lane due to some obstacle in front of the vehicle.
First of all, evasive action can be detected by searching for threats in front
of the vehicle. If there is a risk of collision with a leading vehicle, a lane
departure manoeuver should never be prevented since it would lead the
host vehicle towards this threat. Evasive action could also be detected by
measuring the strength and speed of the steering manoeuvre. A powerful
and fast steering manoeuvre could be interpreted as if the driver is taking
evasive action.

In cases where an undesired intervention has taken place, it must always
be possible to override the system through a resolute steering manoeuvre.

3.2 Technical function overview

It is clear ELA requires information about the road geometry, lane markings
and other vehicles, both in front of and behind the host vehicle. It will also
require some sort of controllable steering system.

In this research project, we did have access to a camera and a radar,
these were chosen as forward looking sensors. The radar detects leading
vehicles by processing radar reflexes and the vision detects both vehicles
and lane geometry by using image processing. These two sensors also came
with a basic sensor fusion unit for objects.
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At this point, no rearward looking sensors were available, and thus a
somewhat restricted ELA which only regards objects in front of the host
vehicle had to be studied.

At an early stage it was noticed that the lane geometry estimate, in
particular the curvature, needed to be improved in some way. This is done
in a Kalman Filter based tracking system. Another big part of the ELA
function is, of course, a decision and intervention unit. A schematic overview
of how these units are connected are shown in Figure 3.2. It also shows in
which chapters of the thesis these different parts are explored.
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No ELA intervention
since there is no threat in

the adjacent lane.

ELA intervention.

ELA intervention. No ELA intervention
since there is a threat
also in the own lane.

Figure 3.1: Critical ELA situations. The letter ”H” indicate the ELA host
vehicle.
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Figure 3.2: ELA system overview and connections to the chapters in the
thesis. Chapter 4 discusses the sensors and actuators of the vehicle, de-
tails about the Extended Kalman Filter based tracking system are given
in Chapter 5 and the decision and intervention strategies are explained in
Chapter 6. Note that the rear view mirror cameras were not used in our
demonstrator.
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Chapter 4

Hardware

This chapter will give some details about the electronic hardware that has
been used in the ELA development, such as sensors, actuators, onboard
computers and computer networks, see Figure 3.2 on page 27.

4.1 Sensors

4.1.1 Radar

The radar that was used is a 77GHz unit which is placed in the grill of the
vehicle, as shown in Figure 4.1. The approximate range is 150 meters and
about 95% of the measurements end up within 20 to 30 centimeters from
the correct value. The radar also uses doppler shift analysis to determine
range rate, i.e., relative velocity, with a very high accuracy.

The field of view of the radar is 15◦ and it has an update frequency of
10Hz. The radar unit is equipped with its own signal processing unit with
a tracking system and for each object, the radar outputs range, range rate
and azimuth angle, but also information about how long the object has been
visible.

One problem with the radar is that other objects than vehicles, such as
road humps or road barriers, also give radar reflexes. In particular, there is
a sampling phenomenon when driving next to a road barrier and the host
vehicle move from one pole to the next with about the same sampling time
as the radar is using. This will give the impression of a vehicle driving just
in front of the host vehicle.
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Figure 4.1: The radar sensor.

4.1.2 Vision

The vision system is based on a single, black and white CCD camera
mounted next to the center rear view mirror, as shown in Figure 4.2. The
camera has a resolution of 640 times 480 pixels and is connected to an im-
age processing unit which uses advanced pattern recognition to find other
vehicles, bicycles, or even pedestrians, in the images.

The typical range at which vehicles are detected is about 60 - 70 meters,
but the accuracy is lower than the radar. The azimuth resolution, on the
other hand, is much better than the radar, which is why a vision system is
a very good complement to a radar sensor.

The image processing unit is also able to classify objects into cars, trucks,
motorcycles and pedestrians.

Another important use of the vision system is lane tracking. Distances
to the lane markings, plus some additional road geometry parameters like
heading angle and curvature, are determined by the vision algorithms. The
lane marking distances and the heading angle measurements are very robust
during bad weather conditions or worn lane markings. The curvature mea-
surement, on the other hand, can be quite unreliable, especially during rain
or fog. The system does, however, provide a quality signal which indicates
the confidence of the road geometry measurements.

The sampling time of the vision system is about 0.1 seconds, but it can
raise to around 0.14 seconds when the scene is very complex, for example
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Figure 4.2: The vision sensor.

in city traffic.

4.1.3 Sensor fusion

Since the radar has range measurements with high accuracy and the vision
system has azimuth angle measurement with high accuracy, the two sensors
are a perfect combination when it comes to fusing the data.

Another important benefit from combining the two sensors is the pattern
recognition in the image processing system. It can be used to rule out
radar reflexes that do not originate from vehicles or pedestrians, for example
reflexes from road humps or road barriers as it was described above.

A sensor fusion unit for basic fusion of objects from the vision with
tracks from the radar comes with the sensors.

4.2 Steering wheel actuator

It would of course have been convenient to use a vehicle equipped with
Electric Power Assist Steering (EPAS). Then the desired torque could just
have been added to the normal steering assist torque. The Volvo V70 we
used, however, is equipped with a standard hydraulic steering system which
is why an additional electric motor had to been mounted. This electric
motor, often referred to as a Haptic Steering Column or HapCol, sits on the
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steering column, just behind the steering wheel, and is able to deliver up to
17 Nm of torque. However, for safety reasons it is restricted in software to
7 Nm.

The steering wheel actuator is connected to the CAN bus, see Sec-
tion 4.3.1 and also comes with a steering wheel angle sensor.

4.3 Electronics

4.3.1 CAN bus

The Controller Area Network (CAN) bus has come to dominate the auto-
motive industry in Europe, and U.S. manufacturers are starting to adopt it.
Using vehicles with a CAN bus is a great advantage when it comes to build-
ing test cars since an on board computer connected to the bus immediately
can communicate with all nodes in the vehicle without any extra wiring.

A CAN network communicates with messages of up to 8 bytes plus
a Cyclic Redundancy Check (CRC) and an identifier. All nodes on the
network receive each message and then decide whether that identifier value
is of interest.

Choosing a CAN controller defines the physical and data-link portions
of the Open Systems Interconnect (OSI) protocol stack, see Figure 4.3.
This means that it involves basic error checking, acknowledgements and
retransmitting.

There are two versions of the physical protocol layer, low speed CAN
of 5 kbit/s and high speed CAN of 1 Mbit/s. Low speed CAN is typically
used for communicating with lights, mirrors and seat control whereas high
speed CAN is used, for example, for engine control and ABS.

We have been communicating with the sensors on a dedicated high speed
CAN bus and with the steering wheel actuator over the standard vehicle
high speed CAN bus.

4.3.2 dSpace AutoBox

For real time code execution, a dSPACE AutoBox equipped with a PowerPC
750 FX board running at 480MHz and a CAN controller was used. The real
time code was generated using Real Time Workshop which is a Matlab
compiler that generates machine code based on a Simulink model.
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data link layer

physical layer

transport layer

network layer

presentation layer

session layer

application layer

data link layer

physical layer

transport layer

network layer

presentation layer

session layer

application layer

CAN

Figure 4.3: For those familiar with the Open Systems Interconnect 7-layer
ISO standard, CAN specifies the bottom two layers. This means that it
involves basic error checking, acknowledgements and retransmitting.
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Chapter 5

Tracking system

This chapter will explain the tracking system, see Figure 3.2 on page 27.

5.1 Introduction

Active safety technology, such as the Emergency Lane Assist system de-
scribed in Chapter 3, will require detailed knowledge about the vehicle
surroundings. In this chapter, vehicle surroundings will refer to lane ge-
ometry and other vehicles. Typically, lane information is obtained from a
vision system and other vehicles are detected with vision and radar.

The importance of integrating data from object tracking and road ge-
ometry tracking has quite recently been recognized [8, 2, 29, 25]. The main
idea is to try to improve the road geometry estimate by studying the motion
of other vehicles and vice versa. For example, if a couple of tracked vehicles
suddenly all start moving right, one of two things can have happened. The
first is that they all started a lane change manoeuvre and the road remains
straight. The other is that we are entering a curve and the vehicles are still
following the center of their lanes. These possibilities can be treated in a
Bayesian framework, together with the information from the lane tracker, to
build a new estimator. In order to do this we need to construct a new object
measurement equation based on the road geometry. The derivation of this,
presented in Section 5.2 and the evaluation in Section 5.4 have previously
been published by the author in [10].

Typically, this geometric model is derived by introducing a road aligned,
curved coordinate system, which also brings a couple of other interesting
features. First of all, the motion model of other vehicles can be simplified.
The assumption that they will stay in their lane can simply be expressed
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as ẏ = 0 where y denotes lateral position in the road coordinates. In a
Cartesian or polar coordinate system, a higher order system would have to
be used and would still only describe a more primitive shape, see Figure 5.1.

This also relates to predicting future positions of other vehicles. With
the simple motion model, vehicles are predicted to follow straight lines,
which in the curved coordinate system means that they will follow the road.
Prediction with a higher order model can be difficult since many people tend
to wobble slightly when driving. This means that a prediction, say 50 or
100 meters ahead will often be outside the road. This is illustrated to the
right in Figure 5.1.

road aligned

coordinates,

1st order model

cartesian

coordinates,

coordinated

turn model

1st order

model

coordinated

turn model

Figure 5.1: Left: Comparison between a road aligned coordinate system
with a low order model and a Cartesian coordinate system with a higher
order model. In order to illustrate this difference, the curvature and clothoid
parameters of this road has been exaggerated. Right: Prediction with a
higher order model can be difficult since people tend to wobble slightly
when driving.

Also, since all positions are already given in the road coordinates, it is
easier to build different automotive applications. For example, if an Adap-
tive Cruise Control would want to know the distance to the leading vehicle,
it could simply look at vehicles with y-coordinate close to zero. They will
be in the same lane as the host vehicle, even if the road is turning.
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5.1.1 Overview

The position on the road for each vehicle is denoted (x, y). This means that
x is the driven distance along the road and y the lateral position in the lane.
To relate this to what the sensors on the vehicle will see, we need to relate
this to a Cartesian coordinate system attached to the vehicle, which will be
denoted (x̃, ỹ). The purpose of Section 5.2.1 is to find such a transformation
T : (x, y) −→ (x̃, ỹ). To derive this, we need a model of the road, and we
start with a general model describing the road curvature as c(x) = c0 + c1x.
This describes a clothoid curve and is a commonly used parametrization
in collision avoidance applications [22, 29, 25]. The trigonometric formulas
that arise do not give an explicit expression for T (x, y). If such an expres-
sion is needed, either the trigonometric functions can be Taylor expanded,
or a simpler model with c1 = 0 can be used (constant curve radius). These
approximations are treated in Section 5.2.3. To be able to apply a Kalman
filter, we first define a state vector that contains road geometry, the host
vehicle’s and the tracked vehicles’ positions. Section 5.2.4 gives the measure-
ment equations, where the host vehicle’s sensors are expressed as functions
of the state vector. A suitable motion model for the host vehicle and the
tracked vehicles is suggested in Section 5.2.4.

5.1.2 Preliminary definitions

In order to derive the measurement equation, a certain amount of math-
ematics and geometry will be required. First of all, if v is a vector with
components v1, v2, . . . , vn, then the derivative of this vector is defined as the
vector consisting of the derivatives of these components, i.e.,

dv

dx
=











dv1/dx
dv2/dx

...
dvn/dx











Similarly, the integral of a vector is defined as the vector consisting of the
integrals of the vector components. We will also use the exponential function
for matrices, which is defined as

exp(A) =

∞
∑

k=0

Ak

k!
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The two dimensional rotational matrix will frequently be used. It is used
to rotate vectors α radians in the coordinate plane:

R(α) �

(

cos α − sin α
sin α cos α

)

5.2 Model derivation

5.2.1 Coordinate system derivation

We will start by deriving a two dimensional coordinate transformation which
is a mapping T from a curved coordinate system (x, y) which follows the
road to a cartesian coordinate system (x̃, ỹ) which is attached to the host
vehicle, see Figure 5.2. The first part of the derivation is similar to what
was presented in [9].

x

t0

r(x)

t(x)

x~

~y

β

r0

c(x)
radius =

1

n(x)

y

H

Figure 5.2: Vectors used in the derivation of T . r(x) describes the y = 0
curve in the (x, y)-coordinates. t̂(x) is the tangent to r(x).

We start with a planar curve r(x), where x is distance along a curve.
Assume the curvature along the curve is given by c = c(x). Now, if t̂(x) is
the tangent vector we define the normal vector n(x) as

n(x) =
dt̂

dx
(x)
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From vector analysis we get an alternative expression for n(x) where we use
the fact that it is perpendicular to t̂(x) and that its length is precisely c(x).
This can be expressed using the rotational matrix as n(x) = c(x)R(−π

2
)t̂(x).

Thus, we end up with the differential equation

dt̂

dx
(x) = c(x)R(−π

2
)t̂(x)

which has the solution

t̂(x) = exp(R(−π

2
)

∫ x

0

c(τ)dτ)t̂0 = R(−
∫ x

0

c(τ)dτ)t̂0 (5.1)

The last equality is proved in Appendix 5.A. This can then be integrated
to obtain an expression for the position:

r(x) =

∫ x

0

t̂(τ)dτ + r0 =

=

∫ x

0

R(−
∫ τ1

0

c(τ2)dτ2)dτ1t̂0 + r0 (5.2)

The vectors r(x) and t̂(x) are illustrated in Figure 5.2.
To construct the coordinate transformation T we first define one of our

coordinates to be the distance along the curve: T (x, 0) = r(x). To define
the other coordinate we require T to be orthogonal, i.e.,

dT (x, y)

dy
⊥ t̂(x) for all x

A natural choice is to simply extend a straight line at T (x, 0) along −R(π
2
)t̂(x),

a vector that is orthogonal to t̂(x) for all x. This choice will also give us a
positively oriented transformation. T will look like

(

x̃
ỹ

)

= T (x, y) = r(x) − R(
π

2
)t̂(x)y (5.3)

5.2.2 Choosing curvature function

The road is often modelled as segments of straight lines, arcs and clothoids,
see for example [9]. Clothoids are segments were the curvature changes
linearly with the distance along the curve. According to [1], this agrees well
with how roads are constructed. The function

c(x) = c0 + c1x (5.4)
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will suffice for all these cases. Of course, when approaching a curve we
might, for example, have situations were the section 0 - 50 meters of our
field of view is a straight line and the section 50 - 100 meters is a clothoid,
a case which can not be modelled with a linear curvature law.

Plugging (5.4) into (5.1) and using

t̂0 =

(

cos β
sin β

)

we get

t̂(x) = R(−c0x − c1x
2/2)

(

cos β
sin β

)

=

=

(

cos(c0x + c1x
2/2) sin(c0x + c1x

2/2)
− sin(c0x + c1x

2/2) cos(c0x + c1x
2/2)

)(

cos β
sin β

)

=

(

cos β cos(c0x + c1x
2/2) + sinβ sin(c0x + c1x

2/2)
− cos β sin(c0x + c1x

2/2) + sinβ cos(c0x + c1x
2/2)

)

=

(

cos β − sin β
sin β cos β

)(

cos(c0x + c1x
2)

− sin(c0x + c1x
2)

)

= R(β)

(

cos(c0x + c1x
2)

− sin(c0x + c1x
2)

)

(5.5)

(5.5) gives the second term of (5.3). In order to get an expression for the
first term we need to integrate (5.5), which can not be done analytically.
Instead we need to do some sort of approximation.

Before we continue we shall use the free parameter r0 to describe an
offset perpendicular to t̂0 by simply setting

r0 = yoffR(−π

2
)t0 = yoff

(

0 1
−1 0

) (

cos β
sin β

)

= R(β)

(

0
−yoff

)

The vector r0 is shown in Figure 5.2.

5.2.3 Approximations

If we try to use (5.5) in the coordinate transforation, it can not be expressed
on closed form. A closed form expression is desirable since in the Kalman
filter, we will need to evaluate it and its partial derivatives very frequently.
Using the exact expression would involve numeric integration of (5.5) which
might be an option, but this have not been investigated so far.
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In this section, three different approximations of (5.2) will be derived.
While the the first two, Approximation A and B, does not appear in the
literature for lane tracking, the last one, Approximation C, is a commonly
used expression [22, 29, 25].

Approximation A: Omitting the clothoid parameter

Using c1 = 0 in (5.5) we get

t̂(x) = R(β)

(

cos(c0x)
− sin(c0x)

)

which, used in (5.2) gives

r(x) = R(β)

(

sin(c0x)
cos(c0x) − 1

)

1

c0

− R(β)

(

0
yoff

)

and, since rotations commute, the coordinate transformation (5.3) becomes

Ta(x, y) � r(x) − R(
π

2
)t(x)y =

= R(β)

(

(1 + c0y) sin(c0x)
(1 + c0y) cos(c0x) − 1 − c0yoff

)

1

c0

Approximation B: Linearizing the trigonometric
functions

If we use sin τ = τ and cos τ = 1 then (5.5) becomes

t̂(x) = R(β)

(

1
−c0x − c1x

2/2

)

Plugging this into (5.2) we get

r(x) = R(β)

(

x
−c0x

2/2 − c1x
3/6

)

− R(β)

(

0
yoff

)

and from (5.3) we get the coordinate transformation

Tb(x, y) � R(β)

(

x + y(c0x + c1x
2/2)

y − yoff − c0x
2/2 − c1x

3/6

)
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Approximation C: As B, plus further approximations

In the last few approximation steps, we ignore all curve-effects in the x̃-
coordinate, i.e., x̃ = x

Tb(x, y) ≈ R(β)

(

x
y − yoff − c0x

2/2 − c1x
3/6

)

≈

≈
(

1 −β
β 1

) (

x
y − yoff − c0x

2/2 − c1x
3/6

)

=

=

(

x − β(y − yoff − c0x
2/2 − c1x

3/6)
βx + y − yoff − c0x

2/2 − c1x
3/6

)

≈

≈
(

x
y − yoff + βx − c0x

2/2 − c1x
3/6

)

� Tc(x, y)

5.2.4 State space model

To be able to use a Kalman filter, we will build three state space models,
based on the approximations from the previous section. The states for the
host vehicle are shown in Figure 5.3. Note that we have β = −Ψrel. We
need c1 as state in all three filters for dynamic reasons. Observed vehicles
will have the states xi, ẋi and yi, where i runs through all detected objects.

Measurement equations

The measurements for the host vehicle are Ψm
rel, cm

0 , Lm and Rm where the
last two are the distances to the left and right lane marking. Superscript m
denotes measured quantities. For other vehicles we measure the position,
x̃m and ỹm. These relate to the states as

Lm
t =−Wt/2 − yoff,t + e1,t

Rm
t =Wt/2 − yoff,t + e2,t

Ψm
rel,t=Ψrel,t + e3,t

cm
0,t=c0,t + e4,t

(5.6a)

(

x̃i,m
t

ỹi,m
t

)

= T (xi
t, y

i
t) +

(

e5,t

e6,t

)i

(5.6b)

where T can be replaced with any of the approximations. Of course, T
depends on all the host vehicle states as well. The variables (e1, . . . , e6) are
some stochastic measurement noise.
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yoff

Ψrel

W

radius = c  + c x
1

0

Ψabs

x

x~

y

~y

1

H

Figure 5.3: W , yoff, Ψrel, c0 and c1 are the host vehicle states. The mapping
T transforms from the coordinate system (x, y) to the coordinate system
(x̃, ỹ).

Motion models

Since x and y are the curved road coordinates, the motion model of other
vehicles can be greatly simplified. For example, it allows us to use the
equation ẏi = 0 which simply means that we assume that other vehicles
will follow their own lanes. In the longitudinal direction we will use ẍi =
0 − ahost cos Ψrel, ahost being the measured acceleration of the host vehicle
so that we get the motion equations:

ẋi = vi

v̇i = ahost,t cos Ψrel,t (5.7a)

ẏi = 0

where vi is the longitudinal velocity of object i, i.e., the time derivative of
xi. For the road geometry parameters we first clarify that Ψrel is the angle
offset to the lane and Ψabs is the angle to some fix reference. We can obtain
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a relationship between the two by taking the time derivative of Ψrel

Ψrel = Ψabs + γ ⇒
Ψ̇rel = Ψ̇abs + γ̇ = Ψ̇abs +

v

r
= Ψ̇abs + c0v

where r is the current road radius, v the velocity and γ denotes the angle
between the lane and some fix reference. Ψ̇abs can typically be measured
with a yaw rate sensor. We also have

ẏoff = sin(Ψrel)v ≈ Ψrelv

Using Ẇ = 0 and ċ1 = 0 we can write the time continuous motion equations
for the host vehicle states:

Ẇ = 0

ẏoff = vΨrel

Ψ̇rel = vc0 + Ψ̇abs

ċ0 = vc1

ċ1 = 0

The discrete time motion dynamics can then be computed using the formu-
las

A = exp(AcTs)

B =

∫ T

0

exp(Acs)Bcds

from [14] where Ts is the sample time and (A,B) and (Ac, Bc) refers to
the discrete time and continuous time system matrices, respectively. Also
adding stochastic process noise, the discrete time system dynamics becomes

xi
t+1 = xi

t + Tsẋ
i
t + ahost,t cos Ψrel,tT

2
s /2 + w1,t

vi
t+1 = ẋi

t + ahost,t cos Ψrel,tTs + w2,t (5.7b)

yi
t+1 = yi

t + w3,t

and for the host vehicle states

Wt+1 = Wt + w4,t

yoff,t+1 = yoff,t + vTsΨrel,t + v2T 2
s c0,t/2 + v3T 3

s c1,t/6 + vT 2Ψ̇abs,t/2 + w5,t

Ψrel,t+1 = Ψrel,t + vTsc0,t + v2T 2
s c1,t/2 + TsΨ̇abs,t + w6,t (5.7c)

c0,t+1 = c0,t + vTsc1,t + w7,t

c1,t+1 = c1,t + w8,t

The variables (w1, . . . , w8) are stochastic process noise.
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5.3 Applying the Extended Kalman Filter

We can now construct an observer based on this model. We define the
matrices

Ahost =













1 0 0 0 0
0 1 vTs v2T 2

s /2 v3T 3
s /6

0 0 1 vTs v2T 2
s /2

0 0 0 1 vTs

0 0 0 0 1













Aobj =





1 Ts 0
0 1 0
0 0 1





A =

(

Ahost 0
0 IN ⊕ Aobj

)

Bhost =













0 0
vT 2/2 0

Ts 0
0 0
0 0













Bobj =





0 T 2
s /2

0 Ts

0 0



 B =











Bhost

Bobj

...
Bobj











Chost =









−1/2 −1 0 0 0
1/2 −1 0 0 0
0 0 1 0 0
0 0 0 1 0









where N is the number of objects, and the vectors

xhost,t =













W
yoff

Ψrel

c0

c1













t

xi
obj,t =





xi

vi

yi





t

xt =











xhost

x1
obj

...
xN

obj











t

yhost,t =









Lm

Rm

Ψm
rel

cm
0









t

yi
obj,t =

(

x̃m
i

ỹm
i

)

t

yt =











yhost

y1
obj

...
yN

obj











t

ut =

(

Ψ̇abs,t

ahost,t cos Ψrel,t

)
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We also introduce

h(xt) =











Chostxhost,t

T (x1
obj,t)
...

T (xN
obj,t)











The Kalman filter will also require the process and measurement noise co-
variance matrices which we define as

Q =

(

Qhost 0
0 IN ⊕ Qobj

)

R =

(

Rhost 0
0 IN ⊕ Robj

)

where Qhost and Qobj are the process noise covariance matrices for the host
and object states and Rhost and Robj are the measurement noise covariance
matrices for the host and object measurements. The measurement equations
(5.6) and motion equations (5.7) can now be rewritten as

xt+1 = Axt + But + wt

yt = h(xt) + et

In the remainder of this chapter we shall often use the term ”track”. A
track simply refers to a set of states and a covariance matrix corresponding
to one object.

5.3.1 Data association

For data association, a standard method that can be found in for exam-
ple [6], is used. It should be mentioned that only a suboptimal solution
to the assignment problem is used. The statically optimal solution is de-
fined as the solution that minimizes the sum of the distances between the
assigned tracks and measurements. There do exist algorithms that find the
optimal solution, they are however rather complicated. Here, a faster and
less complex algorithm has been used, but no problems related to the data
association have been noticed.

The algorithm starts with computing the distance between all possible
track-to-measurement pairs. The distance can be the Euclidian distance
but also some other distance measure based on probability. The distances
are put in a matrix called the assignment matrix and the algorithm then
uses the following two steps:

1. Search the assignment matrix for the closest (minimum distance)
track-to-measurement pair and make the indicated assignment.



5.3 Applying the Extended Kalman Filter 47

M1 M2 M3 M4
T1 9 3 17 5
T2 7 9 4 8
T3 2 11 13 14

M1 M2 M3 M4
T1 9 3 17 5
T2 7 9 4 8
T3 [2] 11 13 14

M1 M2 M3 M4
T1 9 [3] 17 5
T2 7 9 4 8
T3 [2] 11 13 14

M1 M2 M3 M4
T1 9 [3] 17 5
T2 7 9 [4] 8
T3 [2] 11 13 14

Table 5.1: Example of the data association algorithm. T1 - T3 are the
tracks and M1 - M4 are the measurements. The distance matrix is shown in
the upper left table. The result of the first iteration is shown in the upper
right table and the remaining two iterations in the lower two tables. The
shaded numbers indicate that the numbers are removed according to step 2
of the algorithm.

2. Remove the observation-to-track pair identified above from the assign-
ment matrix and repeat step 1 for the reduced matrix.

An example is shown in Table 5.1.
Based on the results from the data association at time t, two permutation

matrices, Xt and Yt, will be formed. The matrix Xt will remove targets
that were not associated. The matrix Yt will rearrange the measurements
to match the targets and remove measurements that were not associated.
The matrices will also feed through the host states and measurements.

If the measurement equation of a model is

yt = h(xt) + et

then a ”new” h can be formed as Xth and the new innovation can be written

εt = Ytyt − Xth(x̂t)

Also, if the covariance matrix of et is R, then the covariance of Ytet is
YtRYT

t .

5.3.2 Filter equations

In this section we build a recursive one step predictor with the structure

x̂t+1|t = A(x̂t|t−1 + K̃t[yt − h(x̂t|t−1)]) + But
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as an observer to the combined target/geometry system

xt+1 = Axt + But + wt

yt = h(xt) + et

The Extended Kalman Filter (EKF) will provide us with a feedback K. See
[14, 19, 20, 21] for details on the Kalman Filter and the Extended Kalman
Filter. These are the EKF equations for a non-linear measurement equation:

Ct = Dxh(x̂t|t−1) (5.8a)

Kt = Pt−1C
T
t (CtPt−1C

T
t + R)−1 (5.8b)

Pt = APt−1A
T + Q − AKtCtPt−1A

T (5.8c)

where

[Dxh]ij =
∂hi

∂xj

Next we modify (5.8) by applying the data association matrices derived in
Section 5.3.1. The EKF then looks like:

Ct = XtDxh(x̂t|t−1) (5.9a)

Kt = Pt−1C
T
t (CtPt−1C

T
t + YtRYT

t )−1 (5.9b)

Pt = APt−1A
T + Q − AKtCtPt−1A

T (5.9c)

x̂t+1|t = A(x̂t|t−1 + Kt[Ytyt − Xth(x̂t|t−1)]) + But (5.9d)

Note that it is important to include tracks that were not associated in
the measurement update. All tracks are interacting via the road geome-
try model, and thus all tracks will be affected by the measurement update,
even though some of them might not have been associated with any mea-
surements.

The derivatives of the measurement equation that are needed in the
Extended Kalman Filter are stated in Appendix 5.B.

5.3.3 Creation/Destruction of tracks

In this section the method for creating and destroying tracks that have
been used is explained. After the data association algorithm has been run
we are left with a set of measurements that were not associated to any
tracks. These measurements will be used to generate new tracks. The
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states corresponding to one object is added to the state vector. In order to
initiate the states, the inverse of the measurement equation has to be used.
Inverses of the different geometric models are derived in Appendix 5.C.

A counter is associated with each track, and for each time a measure-
ment is associated with the track the counter is increased one step, and for
each time the track is not associated to any measurement, the counter is
decreased one step. Once a counter reaches zero, the track which it corre-
sponds to will be removed.

This is to make sure single false measurements do not result in persisting
tracks, and also to make sure tracks are not deleted due to a single missed
measurement. A saturation of the counter should be used and the satu-
ration level is a tuning variable that has to be adjusted to reach the best
performance.

5.3.4 Change detection

Lane change: other vehicles

One of the main features of the tracking system we have derived in this chap-
ter is that it allows us to improve the road geometry estimate by studying
the motion of leading vehicles. This is achieved using the assumption that
other vehicles stay in their lanes most of the time. So what happens when
leading vehicles actually do not follow their lanes, for example during a lane
change?

If this issue is not treated explicitly, there is a good chance we will be
misled if relying too much on leading vehicles following their lanes. There
is, of course, always room for lateral motion of tracked vehicles. The third
line of the motion equations (5.7b) certainly has an additive noise term.
The Kalman filter, however, expects this noise to be white, which is why it
is not ideally suited for typical lane change manoeuvres.

We could simply ignore this problem, trying to tune the lateral process
noise of vehicle tracks so that it fits approximately in both cases. If we do
get an overall improvement in the lane geometry estimate, we are still doing
something good.

Another way of dealing with the problem could be some sort of change
detection algorithm. Such an algorithm would try to detect a lane change,
by for example doing a whiteness test on the corresponding innovations.
If a commenced lane change was detected, the lateral process noise could
temporarily be increased in order to rely less on the assumption that this
particular vehicle will follow its lane. Many such tests are proposed in [14].

A slightly different approach is suggested in [27]. Here, a concept called
Interacting Multiple Models (IMM) is used to incorporate lane changes.
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Several filters based on models with different dynamics are run in parallel
and the output from these are weighed together with a statistical method
based on the innovations from the different filters.

Lateral change detection for leading vehicles has not yet been imple-
mented in the demonstrator, but it would certainly be interesting to in-
vestigate the potential increase in performance of the different methods,
in particular when using them together with the road-aligned coordinate
system.

Lane change: host vehicle

Host vehicle lane changes also need to be detected. The vision system will
report an abrupt change in the distances to the two lane markings. It is
important not to regard this as an innovation, instead it should be used
to detect the lane change. Then simply add or subtract, depending on the
direction of the lane change, the distance of one lane width to the lateral
position estimate of the host vehicle.

5.4 Evaluation

5.4.1 Geometric comparison

From [1] we get the following guidelines for road construction. For a 50
km/h road, the minimum radius is 140 meters and for a 90 km/h road it
is 550 meters. The recommended maximum clothoid parameters for these
curves are given by the formula

c1 =
k

v3

where k = 0.45 m/s3 which is the maximum ”jerk” and v the velocity, giving
the clothoid 1.7 ·10−4 and 2.9 ·10−5 1/m2 for the 50 km/h and the 90 km/h
curve respectively. In Figure 5.4 we have compared the approximations with
the exact transformation for a clothoid curve. Note that if we would have
analyzed a curve with c1 = 0, i.e., a straight line or a pure circle segment,
Ta would have coincided with the exact transformation.

It can be seen that all three approximations clearly deviates from the
exact transformation. Also note the artifact x̃ = x in Approximation C,
seen as a horizontal edge.
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Figure 5.4: Illustration of the different approximations. A road with edges
at y = −5 and y = 5 has been transformed with the three approximations
and with the true transformation, based on typical a 50 km/h curve. The
true curve was obtained from numeric integration.

5.4.2 Accuracy of the curvature estimate

To analyze the different models further, the extended Kalman filter from the
previous section was used. The filter was implemented with the different
geometric approximations. The accuracy of the lane geometry was then
evaluated during a test drive. A vehicle equipped with a camera and a
radar was used to record data. Lane geometry measurements were given
by the camera and measurements of other vehicles were given both from
the camera and the radar. Some additional data from the vehicle, such
as velocity and yaw rate, were also collected. The true values of the lane
geometry were obtained from a detailed map.

Four filters were then run on the same data, the three approximations
that was derived in Section 5.2.3, plus a completely decoupled model, i.e.,
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Host Obstacles
Process noise 5 3

Measurement noise 4 2

Table 5.2: Number of tuning parameters

tracking of obstacles and lane geometry done separately.

Filter tuning

Filter tuning is the process of adjusting the entries in the ”Q” and ”R”
matrices, which are often interpreted as process and measurement noise
covariance. If we constrain these to be diagonal, we have 14 parameters to
tune, as shown in Table 5.2.

The tuning was started by first using ”physical” intuition trying to judge
errors in measurements and changes in different states. This was then used
as a starting point for hours of manual tuning in order to get acceptable
performance from the three filters.

After that, a more systematic approach was used. A scaling parameter
was applied to selected filter parameters. For example, if the host states
process noise covariance matrix is called Qhost, the filters was run with
this matrix replaced with λQhost, where λ for example ranges from 10−2 to
102. Then the mean error in some parameter, usually the curvature c0, was
computed. This procedure was then applied to different combinations of
parameters or single parameters. This is of course only a sub-optimization
in the 14 dimensional parameter space.

Results

Figure 5.5 and Figure 5.6 show some preliminary results of the performance
of the different filters. The three approximations have been compared to
a decoupled linear filter, where lane geometry and obstacles were tracked
separately. Figure 5.5 shows a data sequence recorded during bad visibility.
It shows that the performance can be improved by using a combined filter,
which has also been demonstrated in for example [29] and [12]. Figure 5.6
shows a data set recorded during good visibility. In this case, there is only
a small improvement by using integrated filtering.

To make the experiment more interesting, we have only allowed the
process noise of the road measurements to vary between the two cases, all
other parameters are kept constant. It can be seen in Figures 5.5 and 5.6
that the optimal performance is reached at higher measurement noise for
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Figure 5.5: Curvature error during bad visibility. The measurement
noise of the road measurements has been scaled from 10−2 to 104. The plot
shows the error in the curvature estimate for the different filters. This also
includes a decoupled filter where the road geometry and the obstacles are
treated separately. Note that Approximation A becomes unstable for high
measurement noise values.

the bad visibility case than the good visibility case. This is intuitive, if bad
visibility was detected by for example the vision system, you would typically
increase the process noise of road measurements in the Kalman filter in order
to rely more on other measurements and on the motion model.

It should be noted that the data in Figure 5.5 and Figure 5.6 are from
different roads and during different traffic conditions. Therefore, care should
be taken before comparing the performance in the two experiments.

Also, even though the curvature is important in many applications, it
is just one of many parameters. A more thorough evaluation of the perfor-
mance could be done if the particular application of the filter was known.

In the next section we examine a property that is important in many
collision avoidance applications.
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Figure 5.6: Curvature error during good visibility. The measurement
noise of the road measurements has been scaled from 10−2 to 104. The plot
shows the error in the curvature estimate for the different filters.

5.4.3 Lane assignment

Lane assignment is the problem of deciding in which lanes the tracked ve-
hicles are currently driving. This is where the quality of the lane geometry
estimate becomes utterly important, even the slightest error in heading an-
gle or curvature will result in a significant lateral error for vehicles at a long
distance, say 70 - 100 meters.

All three model approximations from Section 5.2.3 were run on the same
data, again together with a decoupled filter. Doing lane assignment when
using these filters becomes trivial due to the curved coordinate system.
We only need to consider the lateral position of each estimate, i.e., the yi

t

states, and the current lane width, Wt. We will refer to this quantity as the
estimated lane index, χ̂i

t. It is defined as

χ̂i
t �











−1 yi
t < −Wt/2

0 −Wt/2 < yi
t < Wt/2

+1 Wt/2 < yi
t
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Filter Bad visibility Good visibility
Approximation A 0.84 0.94
Approximation B 0.84 0.88
Approximation C 0.78 0.74

Decoupled 0.12 0.81

Table 5.3: Lane assignment accuracy

This value then needs to be compared to the true value, χi
t. This was

obtained by placing the measured position of other vehicles on the true map.
This method is based on the assumption that the error in the position of
the obstacles is small compared to the error in the lane geometry.

We then compute the accuracy of the lane assignment as the ratio of the
correct number of assignments and the sum of the total number of obstacles
summed over the entire data set, i.e., if ntot,t is the total number of obstacles
for time step t and ncorrect,t is the number of correct assignments, we define

Lane assignment accuracy �

∑

t ncorrect,t
∑

t ntot,t

Results

The lane assignment accuracy of the different approximations from Sec-
tion 5.2.3 are shown in Table 5.3. It shows that the improvement achieved
by integrated filtering during the bad visibility case is significant. In the
case of good visibility, there is some improvement for Approximation A and
B.

5.5 Conclusions

It is clear that combined lane prediction and target tracking can give better
estimates and improve the accuracy of state estimates and improve the
performance of applications such as lane assignment. The integrated filter
bring equations which need to be approximated, and it has been shown
that there might be better alternatives than linearizing the trigonometric
functions, which is often done.

Tuning the different filters is a very difficult task. The performance
of all three filters can probably be improved if a more systematic tuning
procedure is used. There are also stability issues, all three filters tend to
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diverge for certain, badly chosen, sets of tuning parameters. Stability of the
extended Kalman filter can never be guaranteed.

Despite this, the improvement in performance shown in these experi-
ments cannot be overlooked, no matter which approximation is used. In
the development of ELA, we have chosen Approximation A due to its high
accuracy in lane assignment. The instable behavior shown in Figure 5.5 is
not a problem since we can simply choose a measurement noise matrix in
the stable region.
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5.A Proof of (5.1)

In this section we show that the equation

exp(R(−π

2
)

∫ x

0

c(τ)dτ)t̂0 = R(−
∫ x

0

c(τ)dτ)t̂0 (5.10)

from page 39 holds. The expression holds if, for any scalar function φ(x)

exp(R(−π

2
)φ(x)) = R(−φ(x)) (5.11)

In order to evaluate the left hand side we use diagonalization of the argu-
ment:

R(−π

2
)φ(x) =

(

0 1
−1 0

)

φ(x) = V Dφ(x)V ∗

where

V =
1√
2

(

1 1
i −i

)

and D =

(

i 0
0 −i

)

Then, since V is orthonormal we have that V −1 = V ∗ and thus

exp(V Dφ(x)V ∗) = V exp(Dφ(x))V ∗ = V

(

exp(iφ(x)) 0
0 exp(−iφ(x))

)

V ∗

Now, we multiply these three matrices and get

exp(R(−π

2
)φ(x)) = exp(V Dφ(x)V ∗) =

=
1

2

(

exp(iφ(x)) + exp(−iφ(x)) − exp(iφ(x)) + exp(−iφ(x))
exp(iφ(x)) − exp(−iφ(x)) exp(iφ(x)) + exp(−iφ(x))

)

=

=

(

cos φ(x) sin φ(x)
− sin φ(x) cos φ(x)

)

= R(−φ(x))

This is the same expression as (5.11) and thus (5.10) holds.
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5.B Measurement equation derivatives

In this chapter the derivatives of the different measurement equations that
are needed in the Extended Kalman Filter are stated. We need

Dxh =











∂yhost/∂xhost ∂yhost/∂x1
obj · · · ∂yhost/∂xN

obj

∂y1
obj/∂xhost ∂y1

obj/∂x1
obj · · · ∂yobj1/∂xN

obj

...
...

. . .
...

∂yN
obj/∂xhost ∂yN

obj/∂x1
obj · · · ∂yobjN /∂xN

obj











where

∂yhost

∂xhost

= Chost

∂yhost

∂xi
obj

= 0 ∀ i

∂yi
obj

∂xj
obj

=

{

∂T (xi
obj)/∂xi

obj i = j

0 i 
= j

∂yi
obj

∂xhost

= ∂T (xi
obj)/∂xhost

Approximation A

The derivatives are:

∂T

∂W
= 0

∂T

∂yoff

= R(−Ψrel)

(

0
−1

)

∂T

∂Ψrel

= −R′(−Ψrel)

[(

(1 + c0y
i) sin(c0x

i)
(1 + c0y

i) cos(c0x
i) − 1

)

1

c0

−
(

0
yoff

)]

∂T

∂c0

= R(−Ψrel)

(

(c0x
i + c2

0x
iyi) cos(c0x

i) − sin(c0x
i)

1 − (c0x
i + c2

0x
iyi) sin(c0x

i) − cos(c0x
i)

)

1

c2
0
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∂T

∂xi
= R(−Ψrel)

(

(1 + c0y
i) cos(c0x

i)
(−1 − c0y

i) sin(c0x
i)

)

∂T

∂yi
= R(−Ψrel)

(

sin(c0x
i)

cos(c0x
i)

)

Approximation B

The derivatives are:

∂Tb

∂x
= R(−Ψrel)

(

1 + y(c0 + c1x)
−c0x − c12/2

)

∂Tb

∂y
= R(−Ψrel)

(

c0x + c1x
2/2

1

)

∂Tb

∂W
= R(−Ψrel)

(

0
0

)

∂Tb

∂yoff

= R(−Ψrel)

(

0
−1

)

∂Tb

∂Ψrel

= −R′(−Ψrel)

(

x + y(c0x + c1x
2/2)

y − yoff − c0x
2/2 − c1x

3/6

)

∂Tb

∂c0

= R(−Ψrel)

(

yx
−x2/2

)

∂Tb

∂c1

= R(−Ψrel)

(

yx2/2
−x3/6

)

Approximation C

The derivatives are:

∂ϕi

∂W
= 0

∂ϕi

∂yoff

= − 1

xi

∂ϕi

∂Ψrel

= −1

∂ϕi

∂c0

= −1

2
xi ∂ϕi

∂c1

= −1

6
(xi)2

∂ϕi

∂xi
= −yi − yoff

(xi)2
− 1

2
c0 −

1

3
c1x

i ∂ϕi

∂yi
=

1

xi
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Polar coordinates

If we instead were to measure angle and range, we use the transformation

zobj =

(

ϕ
r

)

=

(

arctan(ỹ/x̃)
√

x̃2 + ỹ2

)

with

dzobj

dyobj

=

(

−ỹ/r2 x̃/r2

x̃/r ỹ/r

)
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5.C Measurement equation inverse

In order to initiate new tracks we need to compute the inverse of the mea-
surement equation. i.e., for a given set of (W, yoff,Ψrel, c0) we need to find
the mapping T−1 : (x̃, ỹ) → (x, y).

Approximation A

Defining

(

ξ
η

)

= R−1(Ψrel)

(

x̃
ỹ

)

+

(

0
yoff

)

=

(

(1 + c0y) sin(c0x)
(1 + c0y) cos(c0x) − 1

)

1

c0

(5.15)

we first note that

lim
c0→0

(

ξ
η

)

=

(

x
y

)

On the other hand, if c0 
= 0 we get from row one of equation 5.15, assuming
also that x > 0

(1 + c0y) =
c0ξ

sin(c0x)

which, used in the second row of equation 5.15, yields

η = (c0ξ
cos(c0x)

sin(c0x)
− 1)

1

c0

=
ξ

tan(c0x)
− 1

c0

i.e.,

x =
1

c0

arctan
ξ

η + 1/c0

We can then use this in row one of equation 5.15 and get

y =
1

c0

(
c0ξ

sin(c0x)
− 1) =

ξ

sin(c0x)
− 1

c0

We have thus constructed the mapping (x̃, ỹ) → (ξ, η) → (x, y).

Approximation B

No explicit inverse of approximation B exists, since it involves finding the
roots of a polynomial of order five [4]. Instead, it can be approximated with
one of the other two.
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Approximation C

Since we have x̃ = x we can plug this directly into row two of equation 5.2.3
and get

ỹ = y − yoff + βx̃ − c0x̃
2/2 − c1x̃

3/6

and thus

y = ỹ + yoff − βx̃ + c0x̃
2/2 + c1x̃

3/6



Chapter 6

Decision and intervention

This chapter will explain the decision and intervention unit, see Figure 3.2
on page 27.

6.1 Decision strategy

The decision algorithm will be based on the observer that was derived in
Chapter 5. As a reminder, the states for the host vehicle and lane geometry
are

W - Lane width
yoff - Host vehicle lateral position in lane

Ψrel - Heading angle: Angle between host vehicle and lane
c0 - Lane curvature parameter
c1 - Lane clothoid parameter

and for each observed object they are

xi - Longitudinal coordinate of object i
ẋi - Time derivative of xi

yi - Lateral coordinate of object i

Two external signals are also available:

v - Host vehicle velocity

Ψ̇abs - Host vehicle yaw rate
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6.1.1 Time to lane crossing

An essential part of the decision algorithm will be a measure called Time
to Lane Crossing (TLC) and will here refer to the predicted time until one
of the front tires intersects the lane boundaries. The article [26] suggests
different ways to compute this estimate. The simplest one, which we have
used here, is simply based on the lateral position and the lateral velocity.
Two values are computed, TLC1, the time to reach the first lane marking,
and TLC2, the time to reach the second lane marking, i.e., the time to exit
the adjacent lane again on the other side. The following expressions assume
ẏoff > 0, the other case is treated similarly.

TLC1 =
W/2 − Wveh/2 − yoff

ẏoff

≈ W/2 − Wveh/2 − yoff

Ψrelv

TLC2 =
3W/2 + Wveh/2 − yoff

ẏoff

≈ 3W/2 + Wveh/2 − yoff

Ψrelv

Here, Wveh refers to the host vehicle width. So far, the performance of these
measures has been satisfactory, but if problems are detected in the future,
more advanced versions will be investigated.

6.1.2 Decision algorithm

The goal of the decision strategy, according to Chapter 3, is to detect when
a commenced lane change manoeuvre will result in a dangerous situation.
This is done in the following steps:

1. TLC1 and TLC2 are calculated using the method described in the
previous section.

2. A region is defined in the adjacent lane (region C in Figure 6.1), where
the length is the sum of the host vehicle length, the threat vehicle
length and an extra safety buffer zone.

3. The position of the threat vehicle at the time between TLC1 and
TLC2 is predicted. In Figure 6.1, xTLC1 and xTLC2 are the posi-
tions of the tracked vehicle at times TLC1 and TLC2. If the line
between these two points intersects region C, the lane change ma-
noeuvre would result in a collision and is considered dangerous with
respect to this particular vehicle, otherwise not. If so, a flag is raised
and the time to collision for this particular object is calculated. Note
that no distinction needs to be made between vehicles coming from
different directions.
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4. Step 3 is then repeated for all tracked objects.

5. An important final step is to then check for objects in front of the
host vehicle. If it is detected that there is a risk of collision with a
leading vehicle, ELA will interpret any lane departure manoeuver as
evasive action and therefore not intervene.

Furthermore, if the sensors have the capability of detecting solid lane
markings, road barriers or even road edges this too could be incorporated
into the algorithm, i.e., if a lane change manoeuvre is commenced in the
direction of a solid lane marking ELA could also be activated and give a
steering wheel torque, trying to prevent lane departure.

Next, if a flag was raised for any of the tested objects, the minimum
time to collision for those objects together with an ELA warning flag is sent
to the intervention module.

One appealing property of the road aligned coordinate system is that
this kind of decision algorithms can be specified without having to regard
the curvature of the road. If the road coordinate system was not used,
we would have to, for each observed obstacle, judge its lane position based
on its (φ, r)-coordinates. It also makes the accuracy of predicted positions
xTLC1 and xTLC2 higher, since the assumption is that they will follow their
lane, not their current tangent.

6.2 Intervention strategy

When a dangerous commenced lane change manoeuvre has been detected,
we would like to apply some sort of steering wheel torque in order to inter-
rupt/prevent lane departure. There are many alternative ways to do this.
First of all, the duration of the intervention has to be chosen. There are
basically two choices. The first is to apply a torque only a short time and
in one direction, i.e., to simply steer away, in order to take the vehicle out
of the imminent dangerous situation. A shorter intervention will minimize
the interference with the driver, which is always desirable. The problem is
that if the driver is not in control of the vehicle, it could end up in a new
dangerous situation on the other side of the road.

The second choice is a longer intervention in order to first steer back into
the safe lane and then place the vehicle straight ahead in the center of the
lane. While this approach certainly involves a greater deal of interference
with the driver, it will not leave the vehicle in a new dangerous situation. It
will also contribute to a general feeling of safety and control of the system.
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Figure 6.1: TLC1 and TLC2 are the times to cross lane A and lane B
respectively, and xTLC1 and xTLC2 are the positions of the tracked vehicle
at these times. A lane change manoeuvre is considered dangerous if another
vehicle is predicted to enter region C during this time interval. The same
strategy can be applied to vehicles in both directions.

6.2.1 Activation

The main activation signal is of course the ELA warning from the algorithm
in Section 6.1. But we will also require some additional conditions to be
satisfied. Since we are going to interfere with the steering of the vehicle, we
have to be sure that the lane markings we see are not false ones. We will
therefore require the road model confidence level to be high.

Next we put a requirement on the lateral position. If we have a positive
lateral velocity we also require the lateral position to be higher than some
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threshold. This is to make sure we are actually on our way to leave the lane.
Finally we also want the time to collision to be lower than some threshold.
This is to make sure that the system will not intervene to early when there
is still plenty of time for the driver to avoid the accident in a safe manner.
Summarizing these conditions:

• ELA warning flag active

• Road geometry estimate confidence high

• Lateral offset threshold: If Ψrel > 0 we also require yoff > yact
off . Simi-

larly, if Ψrel < 0 we also require yoff < −yact
off

• Time to collision: TC < TCact

6.2.2 Deactivation

Note that we do not deactivate when the threat disappears, instead, to
make sure the vehicle is in a safe state when we deactivate the controller,
we will put some requirements on the position of the vehicle in the lane.
First of all, the magnitude of the lateral position is required to be small,
this is to ensure the vehicle is in the center of the lane. Secondly, we require
the heading angle to be small, which will guarantee a small lateral velocity.
Summarizing these two requirements:

• |yoff| < ydeact
off

• |Ψrel| < Ψdeact
rel

There will also be a time limit on the intervention; the intervention is always
deactivated after a certain time, even if the requirements above are not
satisfied.

6.2.3 Driver interpretation

It was mentioned earlier that we try to detect if the driver is taking evasive
action by searching for objects in the own lane in front of the host vehicle.
What we really would like to know, is if the driver is still in control of
the vehicle or not. For example, if the driver is steering resolutely in any
direction, the intervention should be deactivated immediately. Also, if for
example the indicators are activated or if the vehicle is accelerating hard
could also be cues on that the driver is in charge of the situation.

In such cases the system should never intervene, since it is likely to be
more distracting than supporting.
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A typical case where we always want intervention is when the driver has
released the steering wheel with both hands. A method for detecting this
was proposed in [24].

6.2.4 Lateral control system

The system we are trying to control is approximately a quadruple integrator.
We apply a steering column torque which is integrated to a steering wheel
angular velocity which is integrated to a steering wheel angle. The steering
wheel angle is then integrated to a vehicle heading angle which is again
integrated to become a lateral position. Of course, this is a simplification,
there is additional dynamics in all these steps, but the system is highly
unstable.

Building a lateral controller for a vehicle is a well studied problem and
lane following vehicles have been presented in the past [7, 24, 16, 15].

Volvo has experience, both with model based H∞ control design and
with simpler PID lateral control systems, and since the performance of an
existing PD controller was satisfactory, we chose this concept for our control
design.

To be able to use the low complexity controller, we have used the fact
that the vehicle is equipped with a steering wheel angle sensor. This way
we can split the controller into two nested loops. We first build a steering
wheel angle controller, which can be tuned and verified separately. Then
we build an outer control loop for the lateral position which is connected
to the steering wheel loop. This method is based on the work presented in
[24]. Two simple PD controllers can now be used to stabilize the system.
Figure 6.2 shows the layout of the control system.

The control gains from [24] was used as a starting point, and then the
controller was tuned to suit the ELA avoidance manoeuvres. All tuning of
the lateral controller has been done manually so far. It would certainly be
interesting to use a more systematic approach.

In addition to this, the outer loop is modified in order to take the time-
to-collision value from the ELA algorithm in Section 6.1 into account. The
time-to-collision enters as a ramp for the controller, i.e., the control gains
starts at zero and are then increased linearly with time until they reach
their final value. A short time to collision will make the gains increase fast
while a slower increase rate will be used for a higher time-to-collision value.
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Figure 6.2: Layout of the lateral control system. There are no reference
signals on the outer loop, we always use zero as control goal.

6.3 Host vehicle lane change hysteresis

In this section we will address a problem related to lane changes of the host
vehicle. When changing lane, the lateral position reported by the signal
processing unit will jump just as the center of the vehicle crosses the lane
marking. For example, on a road of width 3 m, the lateral position would
jump from 1.5 m to -1.5 m when changing lanes to the left. Now imagine the
controller is active when this occurs. The controller will then suddenly start
to steer towards the center of the ”new” lane. This will not only generate
an uncomfortable jerk, but the result is also that the vehicle will now steer
towards the threat it was just trying to avoid, a behavior that could end in
a disaster.

An additional problem with this is that the decision algorithm will also
record a lane change, and will start looking for threats in the adjacent lanes
with respect to the ”new” lane, i.e., not in the lane the vehicle is currently
moving into.

A third aspect relates to the definition of ELA. According to the func-
tion description in Chapter 3, ELA should not intervene if the vehicle has
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changed lane completely, instead we expect some sort of forward collision
warning, mitigation or avoidance systems such as [17, 23] to deal with such
situations. So the question is, when do we consider the vehicle to have
changed lane. Typically, if we only require the center of the vehicle to have
passed the lane marking, ELA will be disabled in many cases where the
collision could have been avoided with a very undramatic steering interven-
tion.

These issues can be resolved by introducing a sort of hysteresis on the
lateral position. When crossing the lane marking, we keep measuring the
lateral position from the ”old” lane a little while longer, see Figure 6.3. We
could for example require that all four wheels cross the lane marking before
we start measuring from the new lane.

y

Figure 6.3: The y position is measured from the ”original”, old lane instead
of the new lane.

For example, for a 1.6 m wide vehicle, the lateral position would increase
to 1.5 + 1.6/2 m = 2.3 m and then jump to -1.5 + 1.6/2 m = -0.7 m.

6.4 Evaluation

6.4.1 Test scenario

This chapter will explain and give some results from the field tests that was
carried out during the last phase of the project.

Figure 6.4 shows the test track that was used to tune and verify the ELA
algorithm. A straight track of length 300 meters with two lanes of width
3.2 meters each was used.
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Figure 6.4: The test track and the inflatable dummy vehicle that was used
in the ELA development.

An inflatable dummy vehicle was used to trig the intervention, also
shown in Figure 6.4. It is the same type of test object that was used in
for example the testing of the Collision Mitigation by Braking system de-
scribed in [17]. The dummy is designed to resemble a real car, at least in
the eyes of the sensors, but at the same time not damage the host vehicle
in a collision.

The main restriction is of course that it is stationary which has limited
the variation of test cases so far.

During a typical test, the dummy is representing a threat in the adjacent
lane, for example an oncoming vehicle. The host vehicle is driving in the
other lane, and as it approaches the dummy, a slow lane change manoeuver
towards the threat is commenced.

Variations

The test case may seem simple, but there are still many ways the test can
be varied. The most important parameters that can be changed are the
following:

Host vehicle velocity The host vehicle velocity affects many aspects of
the test. First of all, for higher speeds we need the sensors to pick up
the obstacle at a much longer distance. The velocity also put different
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demands on the intervention module. At a high velocity, the torque
that needs to be applied to the steering wheel in order to carry out
the avoidance manoeuver is much lower.

Heading angle The heading angle, denoted by Ψrel in previous chapters,
refers to the angle between the host vehicle and the lane and is highly
connected to lateral velocity. If the magnitude of the heading angle
is large, then the torque and time required to change the direction of
the lateral velocity will be increased. Also, the time it takes to get
back to the safe lane will be much longer.

Lateral displacement While the lateral displacement also affects the time
it takes to get the vehicle back into the safe lane, it is also related to the
lane change problem discussed in Section 6.3. If the vehicle gets to far
into the other lane, according to the function description in Chapter 3,
ELA is not supposed to intervene at all. Instead we expect some sort
of forward collision system to be activated in such cases.

6.4.2 Test results

The system was tested and the different parameters from the previous sec-
tion, velocity, heading angle and lateral displacement, was varied as sys-
tematically as possible. The general impression is that, for most cases, the
system performance is satisfying. As long as the sensors detect the obstacle
and the vehicle is on collision course, the decision algorithm always detects
the threat and raises the ELA warning flag. In such cases the lateral con-
trol system is activated and has in this simple test scenario so far never
failed to steer away from the threat unless the driver wishes to override the
intervention by forcing the steering wheel in the other direction.

Furthermore, in almost all cases, the system is also able to align the
vehicle straight ahead in the center of the original, safe lane again, before
it lets go. Figure 6.5 shows a successful ELA avoidance manoeuver.

Many people have driven the system and most reactions are very posi-
tive. Many of the drivers felt that the intervention is very soft and not at all
dramatic. Even drivers who before the test drive was afraid the intervention
would be very dramatic agreed on this. Also, since the system brings the
car back into the safe lane and leaves it in a safe position, it generally gave
the drivers a positive feeling of security.

Many of the people who tested the system also believed in the usefulness
of ELA as a safety system and could relate to incidents they had experienced
themselves or knew someone who have had accidents that a system like this
might have prevented.
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Figure 6.5: Demonstration of a typical ELA intervention.

They also felt that the system fits well in maintaining the safety profile
of the Volvo Car Corporation.

Where ELA needs improvement

Two main technical problems with ELA have been discovered so far. The
first is in the intervention module. If the heading angle is to steep when
the intervention is activated, the avoidance manoeuver requires a high yaw
rate in order to reach the safe lane in time. During such high dynamic
manoeuvres, we have learned that the vision system consequently loses track
of the lane markings. So for a short period of time, perhaps 0.5 - 1 seconds,
just when the control algorithm is active, we have no measurements of the
lane markings. We have tried to solve this by just making time updates in
the Kalman filter. The idea was that, for this short time, we could keep track
of the heading angle and the lateral position, both used in the controller, just
by studying the yaw rate sensor signal and the velocity. For some reason,
though, this does not work, the signals drift away in no time. The result is
that, in cases where the heading angle is too high, the vehicle is still able to
avoid the obstacle, but it overshoots on the way back, ending up exiting the
safe lane again on the other side. This needs further investigation, perhaps
the bandwidth of the yaw rate sensor is not high enough, or we are using
the signal incorrectly in some other way.

The second problem is also related to the sensors. Sometimes targets are
detected too late or not at all, resulting in a collision with the dummy. This
is most common during bad weather conditions such as rain, but can also
happen in good visibility. Also note that late detection is an even greater
problem for higher relative velocities, for example if the threat vehicle was
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an oncoming vehicle. If both vehicles are doing 90 km/h, a detection at 50
meters would only give one second for the system to respond which is too
late in most cases.

People who succeeded in provoking the first error during a test drive
generally felt very negative about this. However, in order to obtain such
a high heading angle, a rather resolute and late lane change towards the
threat has to be carried out. In such cases, perhaps the system should be
totally disabled due to the fact that the driver is actually in control of the
situation, as it was discussed in Section 6.2.3. Some people also experienced
the second problem and actually collided with the dummy, naturally a rather
unpleasant experience.

Another quite common reaction was that people wanted the system to
steer back even though they had almost completed the lane change, which
would actually disagree with the function description. After receiving that
explanation, a majority of them did agree that activating some sort of for-
ward collision system such as Collision Mitigation by Braking would be a
better alternative. Some people, but actually surprisingly few, are naturally
very skeptical towards systems that interfere with the driver, particularly
the steering. They are also worried that it would be virtually impossible to
test all possible scenarios required before a system like this could be put in
production.



Chapter 7

Simulation environment

7.1 Introduction

Much of the development and verification of the different ELA components
have been done in a dedicated simulation environment, which will be pre-
sented in this chapter. The development environment is a Matlab software
package which was developed during the initial phase of the project. The
main purpose has been to speed up the development of ELA and allow for
easier tuning of different parameters, both in the tracking system and in
the decision algorithm.

The development environment has also made it easy to compare and
evaluate different concepts, for example when it came to choosing geometric
model in Section 5.4 or when evaluating the decision algorithm described in
Section 6.1.

7.2 The software

7.2.1 Overview

The main idea of the development environment is to present the result of
the different algorithms in a way that is easy to comprehend. As input,
the software uses sensor signals. Then it runs the algorithm and records the
output, both from the tracking system and from the decision algorithm. The
result is then presented in a graphical user interface (GUI), together with the
sensor signals and, if available, true positions of vehicles and lane markings.
The software can also be run in batch mode, the output is then stored in
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a file instead of displayed in the GUI. The structure of the development
environment is shown in Figure 7.1.

log data format 1

simulated data

log data format 2

...

data

parser

data

parser

data converter

data converter ELA simulink

ELA matlab

file output analysis tools

screen output

Figure 7.1: Structure of the ELA development software.

7.2.2 Data sources

The development environment accepts data from several different sources.
There are for example different logging equipments which store data col-
lected from the vehicle in different formats. To the left in Figure 7.1, the
input data parser is illustrated. It also accepts input from a simulation tool
that is used to generate artificial scenarios and sensor signals.

7.2.3 The simulation tool

An important part of the development environment is a simulation tool
which can be used to customize and replay different scenarios. A basic
script language is used to generate objects with different trajectories and
also to generate the path of the host vehicle. All sensor signals can be dis-
torted, for example missed measurements or false targets can be simulated,
or measurement noise of some sort can be added. The simulation tool was
very useful when developing the decision algorithm, but also during the ini-
tial development of the tracking system, before any real sensor data was
available.
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7.3 Matlab-Simulink connection

Most of the development has been done using Matlab code. The main
reason for this is that the time it takes to implement an idea or to make
changes is very short compared other alternatives. When run on a normal
PC, the processing speed of the algorithm has also been very good, always
faster than real time.

In order to use the code in a vehicle, the Matlab component Real Time
Workshop was used. This implied that the code had to be implemented
in Simulink. A separate Simulink interface was built to be able to run
the Simulink version in the same development environment, see the shaded
area in Figure 7.1. This way, the Simulink version could easily be verified
by comparing the outputs.

7.4 Software operation

7.4.1 Graphical User Interface

The graphical user interface is shown in Figure 7.2. It can be used to adjust
various settings, for example to select data sources or to select geometric
model to be used in the Extended Kalman Filter.

The GUI then, as the algorithm runs, displays measurements of vehicles
and lane geometry together with the output from the filter and the decision
modules. It also displays the true values of these parameters if they are
available. In Figure 7.2, the brighter lines and markings show the measured
quantities while the darker figures show the output from the filter.

Much of the tuning of the filter and the algorithms has been done by
simply studying the behavior of the output visually in the GUI.

7.4.2 Batch mode

The software can also be run in batch mode. This is convenient if a more
systematic analysis is required. For example, batch mode makes it easy to
run the algorithm on a data set many times while changing some tuning
parameter a little bit between each run. The batch mode also makes it easy
to carry out Monte Carlo simulations.

All settings are made in a script file where the desired tests are specified.
When run in batch mode, the development software generates data files as
outputs instead of displaying the results graphically. These data files can
then be analyzed with a small set of data analysis tools that have also been
developed.
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Figure 7.2: The graphical user interface that is connected to the develop-
ment environment.

The batch mode was used, for example, to generate the tuning plots in
Section 5.4.2.



Chapter 8

Concluding Remarks

8.1 Conclusions

In this thesis, the development of an automotive active safety function has
been presented.

First, an evaluation method for such functions was developed. The
method tries to estimate the function’s impact on road traffic accident statis-
tics and also component and development cost and then gives a score to each
function based on the results. Functions with a high potential impact on the
statistics and low component and development cost receives a high score.
The method does not claim to be exact, but it can provide a help when
trying to judge different active safety functions.

The evaluation method indicated that a function called ”Emergency
Lane Assist” should be developed. Emergency Lane Assist (ELA) is an
active safety function which tries to prevent dangerous lane departure ma-
neuvers by monitoring threats in adjacent lanes.

At an early stage it was noticed that the road geometry estimate, the
curvature in particular, was not accurate enough. In the thesis, it has been
shown that this estimate can be improved by using a centralized filter which
also incorporates the motion of other vehicles. It was also shown that there
might exist better alternatives than the established methods for doing this.

The centralized filter is based on a road aligned coordinate system, which
also brings other advantages when it comes to modelling, prediction and
developing applications.

A demonstrator was also built to evaluate the ELA concept and to test
the performance of the tracking and decision modules. The variation of test
scenarios has so far been quite small, but the performance of the demon-
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strator is promising. People who have been driving the system has generally
felt very positive, although some drivers, but actually surprisingly few, were
worried about liability questions.

ELA could potentially be associated with less liability problems than
conventional lane guidance systems since the number of false alarms is re-
duced.

8.2 Future work

The first step is to start varying the test scenarios. So far, only one simple
scenario has been tested and many other remain. Some examples are given
here:

Moving objects Working with moving objects will the first step towards
more realistic scenarios. The algorithm has of course been developed
for movable objects, but it will certainly be a tougher challenge for
the decision algorithm.

Multiple objects Running the system in a dense traffic environment will
also be required, most of all to verify that the system does not give
false alarms, especially during ”active” driving with tight lane changes.

Curves First of all, curves are important for testing the performance of
the lateral controller. Curvature information needs to be fed forward
to the controller in order to avoid a stationary lateral control error,
see [24]. Curves will also be required to see how the lane assignment
accuracy described in Section 5.4.3 affects the performance of ELA.

Another thing that might be interesting to investigate is a more ”physics
based” decision algorithm. Inspired by the work in [17] where Jansson tries
to find a state of unavoidable collision, a similar strategy could be studied
in the ELA case. The difference is that ELA needs to intervene just before

the collision unavoidable state. It would also be interesting to include and
test some sort of algorithm to detect lane changes of leading vehicles.
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