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Abstract Traffic classification is an important aspect in network operation
and management, but challenging from a research perspective. During the last
decade, several works have proposed different methods for traffic classification.
Although most proposed methods achieve high accuracy, they present several
practical limitations that hinder their actual deployment in production net-
works. For example, existing methods often require a costly training phase or
expensive hardware, while their results have relatively low completeness. In
this paper, we address these practical limitations by proposing an autonomic
traffic classification system for large networks. Our system combines multiple
classification techniques to leverage their advantages and minimize the limi-
tations they present when used alone. Our system can operate with Sampled
NetFlow data making it easier to deploy in production networks to assist net-
work operation and management tasks. The main novelty of our system is
that it can automatically retrain itself in order to sustain a high classification
accuracy along time. We evaluate our solution using a 14-day trace from a
large production network and show that our system can sustain an accuracy
greater than 96%, even in presence of sampling, during long periods of time.
The proposed system has been deployed in production in the Catalan Research
and Education network and it is currently being used by network managers of
more than 90 institutions connected to this network.
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1 Introduction

Over the last years, the accurate classification of network traffic has become a
key issue for network operation and management. New network applications
(e.g., YouTube, Skype), have heavily modified conventional Internet usage.
The traditional classification techniques, based on the well-known ports reg-
istered by the IANA [1], are no longer valid due to the inaccuracy and in-
completeness of their classification results [2,3]. As a consequence, researchers
have proposed a wide range of traffic classification solutions, as shown by the
large number of works existing in the literature [2–20]. Although most pro-
posals achieve high accuracy, there is no universal method that is suitable for
every possible network scenario. In addition, their deployment in production
networks presents practical constraints that proposed methods do not com-
pletely address. For example, most Machine Learning (ML) techniques [21,6,
11] usually rely on a costly training phase that requires human intervention.
As shown by Li et al. in [16], these techniques usually require periodic updates
in order to adapt to new traffic or new networks. This not only implies the
involvement of the network operator, but also a specific knowledge for carrying
out the task. Deep Packet Inspection (DPI) techniques need expensive hard-
ware in order to cope with the high data rates of nowadays networks [2,22–24].
Similarly to ML-based techniques, DPI-based techniques also require periodic
updates of the signature base used for the classification. On the other hand,
host-behavior-based [4,19,20] and IP-based [10,7] techniques cannot classify
a large portion of traffic (i.e., they have low completeness). The IP-based
techniques delimit its completeness to the IP addresses seen before. Also, the
increment of the Content Delivery Networks has decreased the power of the IP-
based techniques. The host-behavior-based techniques usually highly depend
on the monitoring point [21] because they need to have a complete perspective
of the network in order to find out the behaviors of the different hosts. This
hinders their deployment in production networks, with a large number of users
and connections. As a result, proposed techniques have enjoyed limited success
among network operators and managers, as can be observed by the fact that
popular network monitoring systems still use traditional techniques based on
port numbers [25,26].

Unlike the rest of the literature, in this paper we address the traffic classi-
fication problem from a practical point of view and propose a realistic solution
for network operation and management that can be easily deployed and main-
tained. First, we develop a traffic classification solution that relies on Sampled
NetFlow, a widely extended protocol developed by Cisco to export IP flow
information from routers and switches [27]. This complicates the classifica-
tion [5,11] but significantly reduces the cost of the solution and allows its
rapid deployment in production networks given that most network devices al-
ready support NetFlow or one of its variants (e.g., J-Flow, IPFIX). Second,
we propose a classification method that combines the advantages of multiple
methods, while minimizing the limitations discussed above. Third, we propose
an autonomic retraining system that can sustain a high classification accu-
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Fig. 1 Application Identifier and Autonomic Retraining System Architecture

racy during long periods of time. To the best of our knowledge, this is the
first solution for traffic classification to provide this feature, which is central
for network operation and management, because removes the need of human
intervention of previous solutions, which makes the system easier to maintain.
Finally, we evaluate the performance of our method using large traffic traces
from a production network.

Although some works have also proposed the combination of different clas-
sification techniques [9,12], previous solutions do not support sampling, require
packet-level data and cannot automatically adapt the classification model to
the changing conditions of the network traffic and applications.

The rest of this paper is organized as follows. The proposed classification
technique and the autonomic retraining system are described in Section 2.
Section 3 presents a performance evaluation of our method and analyzes the
impact of different retraining policies on its accuracy. Finally, Section 4 con-
cludes the paper.

2 Traffic Classification System

This section describes our traffic classification method for Sampled NetFlow
and its autonomic retraining system. Figure 1 illustrates the architecture of the
complete traffic classification system, which is divided into two different parts.
Above in Fig. 1, the classification path is in charge of classifying the traffic
online. In order to achieve this goal we implement a classifier module, called
Application Identifier. This module (described later in Section 2.1) is loaded
as a dynamic library in the monitoring tool and it is only fed with NetFlow
v5 data. Given that it only needs the information provided by NetFlow, either
sampled or not, and does not have to track the flows, the system is swift and
lightweight enough to be deployed in large production networks. As a use-
case, we integrated this module in the SMARTxAC system [28] and evaluated
it with data from a large production university network, as we describe later
in Section 3.
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Below in Fig. 1, the training path carries flow-sampled raw traffic to the
Autonomic Retraining System. This element has two important goals. First, it
will provide online information about the current accuracy of the Application
Identifier that is classifying the traffic online in parallel, as will be described
later in Section 2.2. Second, it will generate a new classification model when
this accuracy falls below a threshold, as we describe in Section 2.2. Given that
the Application Identifier is loaded dynamically it could be reloaded at any
time. This capability along with the Autonomic Retraining System makes our
system resilient to traffic variations as, when the accuracy falls, the system
will be automatically retrained and the classification model updated.

2.1 The Application Identifier

The Application Identifier is the module in charge of the online classification.
As aforementioned, it combines different techniques for the sake of exploit-
ing their advantages and reducing their practical limitations. For the reason
discussed before, we only consider use methods capable of dealing with Sam-
pled NetFlow data. Furthermore, we need fast classification techniques and
methods with a lightweight training phase. Although these constraints com-
plicate the classification, this makes the system easier to deploy and maintain,
which are crucial features for network operation and management. The final
choice consists of the combination of three techniques of different nature with
some improvements especially made to increase their accuracy with Sampled
NetFlow data.

Firstly, we use an IP-based technique based on the proposal presented by
Mori et al. in [10]. Basically, this technique tracks down in an offline phase the
IP addresses belonging to famous web sites (e.g., Google, Megavideo). This
technique is very accurate, however its completeness has been significantly
degraded given the migration of some applications to Content Delivery Net-
works. This has relegated its use in our system as a technique to be combined
with other more complex and accurate techniques.

The second method used by the Application Identifier is an adaptation of
the Service-based classifier described by Yoon et al. in [7]. A service is defined
as the triplet <IP, Port, Protocol> assigned to a specific application. The list
of services is also created in an offline phase using a dataset of labeled flows
as follows. In our system, we aggregate all the available flows by their triplet
and then, a service is created when a triplet has a minimum number of flows
(n) and there is a predominant label (> m%). Unlike in [7], we do not use a
time threshold but we require a higher number of flows (n ≥ 5). We studied
offline an efficient configuration of those parameters in order to increase the
completeness of the technique while keeping high accuracy. The results have
determined that a proper configuration in our setting is selecting n = 10 and
m > 95%.

The last method used in the Application Identifier is a ML technique,
namely, the C5.0 decision tree, an optimized successor of the well-known C4.5
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presented by Quinlan in [29]. To the best of our knowledge, this is the first
paper in the field of traffic classification that uses this variant. Nevertheless,
several papers have previously highlighted the advantages of its predecessor.
Kim et al. in [21] and Williams et al. in [14] compared different classification
techniques showing that C4.5 achieves very high accuracy and classification
speed due to its inherent feature discretization [30]. Furthermore, the C5.0
is characterized by having shorter training times compared with its predeces-
sor [31] and with other well-known ML techniques as Support Vectors Ma-
chines or Neural Networks [21]. This ability is a key point in our proposal
given its importance in the Autonomic Retraining System. Because of this we
have not applied in our evaluation any improving technique as boosting or
bagging. The accuracy obtained by the C5.0 with the default configuration
is already very high and the improvement obtained by these techniques was
negligible compared with the critical increase of training time. Another impor-
tant feature of our ML-based technique is its full completeness. As mentioned
above, the IP and Service-based techniques have limited completeness given
that they rely on IP addresses. However, the ML-based technique allows the
Application Identifier to classify all the traffic.

It is important to recall that a requirement of our system is that the Ap-
plication Identifier has to work only with Sampled NetFlow traffic. The IP
and Service based techniques work properly with Sampled NetFlow because
the triplet <IP, Port, Protocol> is not affected by the sampling. However, the
ML technique is substantially affected by this constraint, given that NetFlow
v5 reduces the amount of features available for the classification and applying
sampling considerably impacts on the computation of the features [5,11]. In
order to address this limitation we have implemented the C5.0 ML technique
following the recommendations proposed in [11] to improve the classification
under Sampled NetFlow, which basically consists of applying sampling to the
training phase.

In order to combine the power of the three techniques we combine their
classification in a final decision. We give priority to the IP-based technique
given the IP addresses have been manually checked. However, given its low
completeness, most of the traffic is classified by the Service and ML-based
techniques. The distribution of the traffic classified by each technique changes
with each retraining, however their contributions are usually around 10% for
the IP-based, 60% for the Service-based and 30% for the ML-based technique.
Those techniques give their classification decision with a confidence value. The
classification decision with highest confidence is selected.

Table 1 presents the features used by each technique, all of them obtained
from NetFlow v5 data. This is very important because it allows the Application
Identifier to be very lightweight and easy to deploy given that it works at flow-
level and does not have to compute the features for the classification.
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Table 1 Features used by each classification technique

Technique Features

IP-based IP addresses
Service-based IP, Port and Protocol

NetFlow v5 features +
ML-based average packet size + flow time

+ flow rate + inter-arrival time

2.2 The Autonomic Retraining System

A common limitation of previous proposals presented in the literature, includ-
ing the ML techniques proposed in [11] in which our Application Identifier is
based on, is that they usually require an expensive training phase, which in-
volves manual inspection of a potentially very large number of connections. In
order to automate this training phase, we developed a retraining system that
does not rely on human supervision. This property together with the ability
to classify Sampled NetFlow data, makes our proposal a realistic solution for
network operators and managers.

Unlike the Application Identifier, the Autonomic Retraining System pre-
sented in Fig. 1 uses packet-level data as input. This data is labeled with
DPI-based techniques and later used to build the base-truth for future re-
trainings. Applying those techniques online is unfeasible given the high re-
source consumption. However, our system is able to retrain itself and sustain
high accuracy rates along time with very few data. This allows us to apply
an aggressive flow sampling rate to the Autonomic Retraining System input
keeping the system very lightweight and economically feasible for the operation
and management of large production networks.

The Autonomic Retraining System is divided in three phases. The first
one corresponds to the labelling and feature extraction, the second checks the
accuracy and stores the base-truth data and, finally, the last phase retrains
and reloads the classifier when it is necessary.

In the labelling and feature extraction phases, the input data is processed
in two different ways. On the one hand, while aggregating the data per flow,
a feature extraction is applied to obtain the NetFlow v5 features that would
be obtained in the classification path. On the other hand, to obtain a reliable
base-truth, we use a set of DPI techniques, including PACE, a commercial DPI
library provided by ipoque [24]. PACE is known to have high accuracy with
low false positive ratio. Moreover, to increase the completeness of the DPI
classification we added two extra libraries, OpenDPI [23] and L7-filter [22].
In addition, our system is extensible and allows the addition of new labeling
techniques to increase the completeness and accuracy. Based on their relative
accuracy, we have given the highest priority to PACE and the lowest priority to
L7-Filter. The final label of each flow is selected from the DPI technique with
highest priority. An evaluation of the impact of the different DPI techniques
used in the Autonomic Retraining System is presented in Section 3.1.
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Table 2 Application groups and traffic mix

Group Applications # Flows
UPC-II CESCA

web HTTP 678 863 17 198 845
dd E.g., Megaupload, MediaFire 2 168 40 239

multimedia E.g., Flash, Spotify, Sopcast 20 228 1 126 742
p2p E.g., Bittorrent, Edonkey 877 383 4 851 103
mail E.g., IMAP, POP3 19 829 753 075
bulk E.g., FTP, AFTP 1 798 27 265
voip E.g., Skype, Viber 411 083 3 385 206
dns DNS 287 437 15 863 799
chat E.g., Jabber, MSN Messenger 12 304 196 731

games E.g., Steam, WoW 2 880 14 437
encryption E.g., SSL, OpenVPN 71 491 3 440 667

others E.g., Citrix, VNC 55 829 2 437 664

In the second phase, the retraining manager (see Fig. 1) receives the labeled
flows together with their NetFlow v5 features. Those that are not labeled as
unknown are stored for future retrainings. In parallel, the retraining manager
sends the flows together with their NetFlow v5 features to the Application
Identifier. This Application Identifier is identical to the one that is currently
running in the monitoring tool. The Application Identifier classifies the flow by
obtaining a second label. This label is the same label that the monitoring tool
would obtain. By comparing both labels we can compute the actual accuracy
of the system. When the accuracy falls under a threshold, we create a new
trainer in order to build a new classification model. The accuracy in our system
is computed from the last flows seen (e.g., 50K in our evaluation). Although
the classification is done at the application level, the accuracy is computed
aggregating the results at the group level as described in Table 2. Table 2 also
presents the traffic mix of the traces used in the evaluation. These traces that
are further described in Section 3, although collected in a research/university
network, are compounded by a heterogeneous mixture of applications.

A trainer runs as a separate thread and, using the base-truth dumped in
the previous phase, retrains the ML-based and Service-based techniques. The
generation of the training dataset is a key point of the retraining system given
the important impact it has on the perdurability and accuracy of the models.
This process is described in detail in Section 2.3. Once the new classification
models are built, the new classification library is compiled and dynamically
loaded in the Application Identifiers that are running on the monitoring tool
and the Autonomic Retraining System itself. An evaluation of the cost of this
process is presented in Section 3.2.

2.3 Training Dataset Generation

The proper selection of the instances that compose the training dataset will
considerably impact on the quality and perdurability of the new classification
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models created. This way, we have studied two features to build the training
dataset: the retraining policy and the training size of the dataset.

The training size is the number of instances (i.e., labeled flows together
with their NetFlow v5 features) that compose the training dataset. We refer
to the training size as X. The training size substantially impacts on the training
times and the quality of the models. On the one hand, selecting a small training
size would produce a system highly reactive to accuracy falls given that the
retraining time is shorter. However, the classification models built would be
less accurate as they have less information (i.e., instances) to build it. On
the other hand, a bigger training size would increase the training times but
produce more accurate models.

Regarding the retraining policy we implemented two different policies to
perform the retraining. The first approach takes into account the last X la-
beled flows. However, this approach could be biased to the last traffic received.
We refer to it as the naive retraining policy. The second approach uses ran-
dom flows from the last Y days, as follows called long-term retraining policy.
Although it is totally configurable, for the sake of a fair comparison, we also
select a total of X flows proportionally distributed in Y days, where Xi is the
number of flows for the day i:

Xi = X · 2(Y−i)

2Y − 1

Thus, it creates a training data set in which recent days have more weight
(i.e., more instances) than older ones.

Section 3.2 evaluates the impact of those features presenting sound con-
clusions about the best trade-off between accuracy and performance to obtain
proper datasets to maintain an accurate online traffic classifier for a network
management tool.

3 Evaluation

In this section, we first evaluate the contribution and impact of the different
DPI techniques used in the Autonomic Retraining System. Then, we evaluate
the impact of the policies presented in Section 2.3 on the generation of the
training dataset. The obtained results are then used to select a proper con-
figuration for the training dataset. Afterwards, we analyze the impact of the
Autonomic Retraining System on the Application Identifier. This evaluation
is performed for both sampled and unsampled scenarios. The results show the
effectiveness of our system as an autonomous and accurate traffic classifier for
large networks.

3.1 Evaluation of labeling DPI-based techniques

DPI-based techniques are scarcely used for online classification given their
high resources consumption. However, these techniques are commonly used as
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Fig. 2 DPI labelling contribution

an automatic ground-truth generator [21,8,11]. In our system, the Autonomic
Retraining System uses three DPI-based techniques (i.e., PACE, OpenDPI
and L7-Filter) to generate the ground-truth online. This is feasible given that
the Autonomic Retraining System only needs a small sample of the traffic to
maintain the Application Identifier updated. Samples are selected by applying
a high flow sampling rate to the training path. This extremely reduces the
amount of traffic to be analyzed compared with the whole traffic received by
the classification path. This type of sampling preserves the entire payload of
the flows, allowing DPI-based techniques work properly.

The experiments in this section use the trace CESCA. The CESCA trace
is a fourteen-days packet trace collected on February 2011 in the 10-Gigabit
access link of the Anella Cient́ıfica, which connects the Catalan Research and
Education Network with the Spanish Research and Education Network. As de-
scribed in Section 2.2, the Autonomic Retraining System only requires a small
sample of the traffic to achieve its goal. For this reason, similarly to the flow
sampling applied to the training path, we applied a 1/400 flow sampling rate.
Although the Autonomic Retraining System can handle higher flow sampling
rates, we applied this one because it was the lowest that allowed us to collect
the trace without packet loss in our hardware.

Figure 2(a) and 2(b) shows the contribution of the different DPI techniques
in the base-truth generation. The major contributor in the labelling process
is PACE. As Fig. 2(a) shows, the contribution of OpenDPI and L7-Filter are
very low, 0.22% (0.18% + 0.04%) and 2.24% respectively. This is because
most of the labels of these techniques match with the labels of PACE and
PACE has higher priority (Sec. 2.2). Figure 2(b) shows that OpenDPI and
L7-Filter miss some application labels but match them at group level. This
can be seen in the decrease of the PACE percentage. These results also help
us to understand the completeness our system would achieve in case we have
no access to a commercial labeling tool.

In order to guide the network operator in the selection of an appropriate
flow sampling rate for their network, Table 3 presents the consumption of the
DPIs techniques by profiling the Autonomic Retraining System running in a
3GHz machine with 4GB of RAM. Table 3 shows that the average consump-
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Table 3 DPI techniques consumption

Metric DPI techniques
L7-Filter OpenDPI PACE

Avg.(µs/flow) 34.54 25.92 32.36
Flow Std. Dev.(µs/flow) 41.29 1 419.10 1 721.86

Max (µs) 13 118 1 369 695 1 558 510

Avg.(µs/packet) 1.74 1.29 1.66
Packet Std. Dev.(µs/packet) 10.49 4.31 4.87

Max (µs) 13 118 13 168 12 979

tion of the different DPI techniques has the same order of magnitude. However,
looking at the standard deviation and the maximum (Max) by flow, L7-Filter
behaves totally different than PACE and OpenDPI. This is because L7-Filter
has been limited to the first packets and bytes of each flow in order to reduce
the false positive ratio [11]. On the other hand, OpenDPI and PACE perform a
more thorough examination in order to find out the application label. In more
restrictive scenarios, OpenDPI and L7-Filter could be deactivated to improve
the performance of the system. However, given that OpenDPI and L7-Filter
detects some applications that PACE does not, we have included both DPI
techniques in the system. For instance, the 14-days CESCA trace contains 71
million flows (with 1/400 flow sampling applied). Without sampling, 42 µs
would be needed in average to process each flow without packet loss (14 days
/ (71 million flows x 400) = 42 µs/flow). Table 3 shows that only the DPI
libraries require 92 µs per flow in average. This shows that a traffic classifi-
cation system based solely on DPI would not be sustainable in our network
scenario and it does not scale well to higher link speeds.

3.2 Training Dataset Evaluation

In this section, we evaluate the impact of the policies presented in Sec. 2.3 in
the generation of the training dataset used by the Autonomic Retraining Sys-
tem. In all experiments, we use the trace UPC-II for the initial offline training
and the trace CESCA for the evaluation. The trace UPC-II is a fifteen-minutes
full-payload trace with more than 3 millions of flows. This trace was collected
on December 2008 at the Gigabit access link of the UPC BarcelonaTech, which
connects about 25 faculties and 40 departments (geographically distributed in
10 campuses) to the Internet through the Spanish Research and Education
network (RedIRIS). This link provides Internet access to about 50000 users.
This trace has been also used in [11]. We used different traces for the training
and the evaluation in order to show the ability of our system to automatically
adapt itself to new scenarios.

In order to asses the quality of the system the Autonomic Retraining Sys-
tem uses the accuracy metric. As already mentioned in Sec. 2.2, the Autonomic
Retraining System computes the accuracy by calculating the number of cor-
rectly classified flows from the last flows seen (i.e., 50K in our evaluation). The
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exact definition of the accuracy metric would be:

Accuracy =

∑N
i=1(TP )∑N

i=1(TP ) +
∑N

i=1(FP )

where:

– N: number of categories (i.e., groups of applications).
– TP (True Positives): The number of correctly identified flows for a specific

category.
– FP (False Positives): The number of falsely identified flows for a specific

category.

Although the accuracy is the most popular metric used in the network
traffic classification literature it has some limitations. In order to confirm the
quality of the Autonomic Retraining System we also compute the Kappa co-
efficient. This metric is considered to be more robust because it takes into ac-
count the correct classifications occurring by chance. We computed the Kappa
coefficient as explained by Cohen in [32]:

k =
Po− Pe
1− Pe

being:

Po =

∑N
i=1(TP )∑N

i=1(TP ) +
∑N

i=1(FP )

Pe =

N∑
i=1

(Pi1 × Pi2)

where:

– Pi1: proportion of apparition of the category i for the observer 1.
– Pi2: proportion of apparition of the category i for the observer 2.

The Kappa coefficient takes values close to 0 if the classification is mainly
due to chance agreement. On the other hand, if the classification is due the
discriminative power of the classification technique then the values are close
to 1.

In order to evaluate the impact of the different retraining policies on the
Autonomic Retraining System we have performed a study of the impact of
the parameter Y in the long-term retraining policy. The study evaluates the
performance of different values of Y (i.e., 5, 7, 9, 11) with a fixed accuracy
threshold (i.e., 98%) and a fixed training size (i.e.,X =500K). The results of
this evaluation, presented in Table 4, show that this parameter has not critic
impact on the Autonomic Retraining System. However, the values Y = 7 and Y
= 11 achieve the highest accuracies, being Y = 7 faster in the training process.
As a result, we selected Y = 7 for the long-term retraining policy. This way,
the retraining is performed with flows processed during the last seven days,
allowing the system to cover the traffic of an entire week.
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Table 4 Long-Term Policy Evaluation

Metric Training Policy
5 days 7 days 9 days 11 days

Avg. Accuracy 98.04% 98.12% 98.07% 98.12%
Min. Accuracy 95.64% 95.44% 95.44% 95.42%
# Retrainings 126 125 125 125

Avg. Training Time 229 s 232 s 234 s 242 s
Cohen’s Kappa (k) 0.9635 0.9634 0.9634 0.9633

Table 5 presents the results of the evaluation using three different train-
ing sizes (i.e., X ={100K, 500K, 1M}) and two retraining policies (i.e., naive
retraining policy and long-term retraining policy). The evaluation has been
performed using a high retraining threshold (i.e., the Application Identifier is
retrained if the accuracy goes below 98%) in order to stress the system to per-
form multiple retrainings by highlighting the differences between the different
configurations. Unlike we initially expected, Table 5 shows that the long-term
retraining policy performs slightly worst than the naive retraining policy in
terms of accuracy. Moreover, the average training time is shorter for the naive
retraining policy. This is mainly due the creation of the dataset that, although
it could be optimized for the long-term retraining policy, it will be always
longer than the naive retraining policy. Regarding the training sizes, the op-
tion X=100K achieves lower average accuracy than the other training sizes.
However, the X=100K training size obtains the highest minimum accuracy
and the lowest average training time. This could be interesting if the network
demands a fast-recovery system to an accuracy fall. The results comparing
X=500K, 1M and the naive retraining policy show that these configurations
obtain similar average accuracy. However, we have decided to choose X=500K
and naive retraining policy as the optimum configuration given that it offers
slightly better results. Regarding the impact of this policy on the system, the
training with a 98% accuracy threshold only requires 3.93h compared to the
336h (14 days) of duration of the whole experiment, which represents only
13% of the total trace time. If the threshold is lowered up to 96%, the training
time is reduced to 0.54h (1.8% of the total trace time).

Although the Autonomic Retraining System bases its decisions on the ac-
curacy metric, we have also computed the Kappa coefficient. Table 5 shows
that the values of the Kappa coefficient are very close to 1. This result confirms
the actual classification power of the Autonomic Retraining System showing
that its classification is not just due to chance agreement.

3.3 Retraining Evaluation

So far, we have separately studied the performance of the labelling techniques
and the impact of the different policies on the training dataset generation.
Based on these results, we selected a final configuration: the Autonomic Re-
training System uses the three DPI-based techniques (i.e., PACE, OpenDPI
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Table 5 Training Dataset Evaluation

Training Metric Training Policy
Size Long-Term policy Naive policy

Avg. Accuracy 97.57% 98.00%
100K Min. Accuracy 95.95% 97.01%

# Retrainings 688 525
Avg. Training Time 88 s 25 s
Cohen’s Kappa (k) 0.9622 0.9567

Avg. Accuracy 98.12% 98.26%
500K Min. Accuracy 95.44% 95.70%

# Retrainings 125 108
Avg. Training Time 232 s 131 s
Cohen’s Kappa (k) 0.9634 0.9652

Avg. Accuracy 98.18% 98.26%
1M Min. Accuracy 94.78% 94.89%

# Retrainings 61 67
Avg. Training Time 485 s 262 s
Cohen’s Kappa (k) 0.9640 0.9650

and L7-Filter) for the labelling process (Sec. 3.1), 500K flows as training size
(i.e., X = 500K) and the naive retraining policy (Sec. 3.2). In this section, we
evaluate the Application Identifier and the impact of the Autonomic Retrain-
ing System on its accuracy with both sampled and unsampled traffic.

As discussed in Sec. 3.2, we use in all experiments the trace UPC-II for the
initial training and the trace CESCA for the evaluation. It is important to note
that the trace UPC-II was collected in December 2008 while the trace CESCA
was collected in February 2011. As a result, the system usually performs an
initial retraining to update the initial outdated model. This decision has been
taken in order to show the impact of the spatial obsolescence, showing that in
order to obtain the most accurate classification model it is crucial to train the
system with the traffic of the scenario that it is going to be monitored.

Figure 3(a) presents the evaluation of the Application Identifier when no
packet sampling is applied to the traffic. We tested different accuracy thresh-
olds in order to show the behavior of the system depending on the preferences
of the network operator. The system maintains the accuracy of 94% by per-
forming five retrainings during the 14 days. With the 96% threshold it is able
to sustain the accuracy during long periods of time with only 15 retrainings.
Using the highest threshold, our method achieves better average accuracy
than previous thresholds. However, it is not capable to continuously maintain
the 98% accuracy. Because of this, the Autonomic Retraining System is almost
continuously updating the classifier. Nevertheless, these continuous retrainings
have not any impact on the Application Identifier giving that this procedure
is done completely apart. Figure 3(a) also shows the effectiveness of the re-
trainings, pointed out with cross symbols, that usually produce a substantial
increment of accuracy. An interesting result seen by the 94% threshold is the
ability of the system to automatically find a proper classification model. As can
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(b) Retraining with 1/1000 sampling rate

Fig. 3 Impact of the Autonomic Retraining System on the Application Identifier with the
selected configuration (i.e., naive training policy with 500K)

be seen at the left part of the Fig. 3(a), the system performs three retrainings
but finally builds a model that remains stable for about a week.

We have also evaluated the performance of our system when packet sam-
pling is applied in the classification path. We perform the experiments with
a common sampling rate of 1/1000 using the configuration before described.
Figure 3(b) shows the impact of the retraining in the presence of sampling.
The initial low performance showed in Fig. 3(b) is derived from the fact that
we build the initial classification library with the unsampled UPC-II trace.
As a consequence, the system needs to perform an initial retraining to build
a representative model of the current sampled scenario. As aforementioned,
this also shows the importance of the spatial obsolescence and justifies the
importance of the Autonomic Retraining System. Surprisingly, after the initial
retraining, the system is able to sustain the same accuracy as the unsampled
scenario. The greater decrease of information produced by packet sampling [11]
is only reflected in a slight increment in the number of retrainings given that,
as described in Sec. 2.1, our techniques has been adapted to deal with it.

Finally, in order to completely understand the influence of the Autonomic
Retraining System, we have performed two additional experiments that con-
firm its necessity. The first experiment creates a model with data from one
network to classify traffic from another network (i.e., use the trace UPC-II to
classify CESCA). The second experiment creates the model with the traffic of
the own network but does not retrain it (i.e., use the CESCA trace to train and
classify). Giving both trainings can be performed offline we used 3M of flows
for both experiments, instead of the 500K of our solution, trying to build the
models as accurate and representative as possible. Even so, Figs. 4 show that
our solution outperforms these experiments. Fig. 4(a), that presents the re-
sults when no sampling is applied, shows two main outcomes. First, the origin
from the data used in the training impacts on the accuracy of the classification
(i.e., spatial obsolescence). Even both traces carry traffic from a similar sce-
nario (i.e., educational/research network) there is a substantial difference of
accuracy as can be seen in the left part of the figure. The second outcome arises
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(b) Comparative with 1/1000 sampling rate

Fig. 4 Comparative of the Autonomic Retraining System with other solutions

in the right part of the figure where both experiments obtain similar accuracy
and this accuracy is gradually decreasing as long as times goes by (i.e., tem-
poral obsolescence). On the other hand, our solution keeps stable during the
whole evaluation. Figure 4(b), that presents the results when 1/1000 sampling
rate is applied, emphasizes the outcomes previously mentioned. Here, the ap-
plication of sampling totally deprecates the classification model created with
the unsampled traffic of UPC-II producing a very inaccurate classification. In
both scenarios, the experiments that use CESCA for training and classification
start with a very high accuracy given that they are classifying the same flows
used for the training. Because of that, after the first 3M of flows the accuracy
decreases even below than 86%. However, our solution with its continuous re-
training is able to deal with both temporal and spatial obsolescence achieving
a stable accuracy beyond 98%.

3.4 Retraining Evaluation by Institution

As described in Sec. 3.1, the CESCA trace was collected in the 10-Gigabit
access link of the Anella Cient́ıfica, which connects the Catalan Research and
Education Network with the Spanish Research and Education Network. This
link provides connection to Internet to more than 90 institutions. So far, the
evaluation has been performed using the complete traffic of the link. This
section presents the results of the performance of the Autonomic Retraining
System with the disaggregated traffic by institution.

Similarly to the previous evaluation we have used 500K flows as training
size (i.e., X = 500K), the naive retraining policy (Sec. 3.2) and the highest
accuracy threshold (i.e., 98%). Two different approaches are used in order to
study the performance by institution. First, the Autonomic Retraining Sys-
tem uses its normal operation (i.e., using all the traffic and performing the
retrainings based on the total accuracy). However, only the accuracy related
to the specific institution is presented. Second, the operation of the Autonomic
Retraining System is changed and, instead of using all the traffic, it only uses
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(c) Institution C

Fig. 5 Comparative of the Autonomic Retraining System by institution

the traffic related to the specific institution. Also, the decision of retraining is
carried out based on the particular accuracy of the institution and not with
the total one. Figure 5 presents the results of this evaluation for three differ-
ent institutions. The results show the reliability of the Autonomic Retraining
System for achieving high accuracies with different institutions and scenarios.
Although the accuracy is very similar between the three institutions, three
different behaviors can be observed. Institution A plotted in Fig. 5(a) has a
very volatile accuracy. Even when the model is trained with its own traffic
the accuracy is sharply changing, although almost always keeping an accuracy
higher than 92%. On the other side, Institution C plotted in Fig. 5(c) has a
more stable accuracy. This is translated into a smaller number of trainings
compared with Institution A. Finally, the behavior of Institution B would be
among the other two. These three behaviors plotted in Figure 5 are the result
of different grades of heterogeneity (i.e., Institution A) and homogeneity (i.e.,
Institution C ) in the the traffic of the institutions.

Another interesting output from this evaluation is the impact of the origin
of the training data on the accuracy. Figure 5(a) shows that Institution A
achieves higher accuracy performing the retrainings with data from the com-
plete link. However, Fig. 5(c) shows that Institution C achieves higher accuracy
when the classification model is created with its own data. It is important to
note that the amount of retrainings is not comparable between the two ap-
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proaches. Although the configuration is the same between them, the amount
of data available for each approach is different. These two different results
regarding the two approaches could be also related to the grade of hetero-
geneity of the traffic. Training the classification model with traffic from others
institutions can help to classify unexpected traffic (e.g., new applications) in
networks with heterogeneous traffic.

All these results confirm that the combination of the three techniques and
the ability to automatically update the classification model outperform the so-
lutions proposed in the literature for Sampled NetFlow traffic classification [5,
11]. The proposed system has been deployed in production in the Catalan
Research and Education network and it is currently being used by network
managers of more than 90 institutions connected to this network.

4 Conclusions

In this paper, we presented a realistic solution for traffic classification for
network operation and management. Our classification system combines the
advantages of three different techniques (i.e., IP-based, Service-based and ML-
based) along with an autonomic retraining system that allows it to sustain a
high classification accuracy during long periods of time. The retraining system
combines multiple DPI techniques and only requires a small sample of the
whole traffic to keep the classification system updated.

Our experimental results using a long traffic trace from a large operational
network shows that our system can sustain a high accuracy (>96%) and com-
pleteness during weeks even with Sampled NetFlow data. We also evaluated
different training policies and studied their impact on the traffic classification
technique. From these results we can draw several conclusions:

– The classification models obtained suffer from temporal and spatial obso-
lescence. Our results in Sec. 3.3 confirm this problem which was already
pointed out by Li et al. in [16]. Our system addressed this problem by im-
plementing the Autonomic Retraining System that is able to automatically
update the classification models without human supervision.

– The life of the classification models is not fixed. As indicated by the results
in Sec. 3.4, we show that the frequency of retrainings partially depends on
the grade of heterogeneity and volatility of the traffic in the network.

– Although several classification techniques have been proposed by the re-
search community, there is no one suitable for all the types of traffic and
scenarios. We truly believe that the combination of different techniques is
the best approach for properly classifying all the different types of traffic.
Our approach, based on three different techniques, is able to achieve very
high accuracy and completeness, something that would not be possible if
they were not combined.

In summary, we presented a traffic classification system with several fea-
tures that are particularly appealing for network management: (i) high clas-
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sification accuracy and completeness, (ii) support for NetFlow data, (iii) au-
tomatic model retraining, and (iv) resilience to sampling. These features al-
together result in a significant reduction in the cost of deployment, operation
and maintenance compared to previous methods based on packet traces and
manually-made classification models. The proposed system has been deployed
in production in the Catalan Research and Education network and it is cur-
rently being used by network managers of more than 90 institutions connected
to this network.

Although this work is mostly completed and our system has been already
deployed in a production network (CESCA), there are three lines of future
work we plan to study. First, the increasing importance of Content Delivery
Networks has decremented the power of IP-based classification techniques.
Consequently, it would be interesting to study the inclusion of more classifi-
cation techniques as those based on host-behaviors [4,19,20]. Second, we plan
to include new techniques [33–35] to reduce the amount of unknown traffic
and improve the generation of the ground truth. Finally, we plan to study the
viability of using stream-oriented Machine Learning techniques, given that its
streaming operation seems more suitable for processing the network traffic.
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the Universitat Politècnica de Catalunya (UPC) in 2007 and a M.Sc. degree
in Computer Architecture, Networks and Systems from UPC in 2009. He is
currently a Ph.D. student at the Computer Architecture Department from
the UPC. His research interests are in the field of traffic analysis and network
measurement, focusing on the identification of applications in network traffic.

Pere Barlet-Ros received the M.Sc. and Ph.D. degrees in Computer Science
from the Universitat Politcnica de Catalunya (UPC) in 2003 and 2008, respec-
tively. He is currently an associate professor with the Computer Architecture
Department of UPC and co-founder of Talaia Networks, a University spin-off
that develops innovative network monitoring products. His research interests
are in the fields of network monitoring, traffic classification and anomaly de-
tection.

Oriol Mula-Valls received a B.Sc. degree in Computer Science from the Uni-
versitat Autnoma de Barcelona (UAB) in 2008 and a M.Sc. degree in Computer
Architecture, Networks and Systems from Universitat Politcnica de Catalunya
(UPC) in 2011. He was one of the developers of the SMARTxAC monitoring
system currently deployed on CESCA. His research interests are in the field
of network management and administration.
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