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Nature’s molecular machines are amongst the most complex of all functional molecules and lie at the heart of 

virtually every biological process.
1
 A number of synthetic small-molecule machines have been developed 

previously,
2
 including molecular muscles,

3, 4
 synthesizers,

5, 6
 pumps,

7–9
 walkers,

10 
transporters

11
 and light

12–16
 

and electrically
17, 18

 driven rotary motors. However, although biological molecular motors are powered by 

chemical gradients or the hydrolysis of adenosine triphosphate (ATP),
1
 to date there are no synthetic small-

molecule motors that can operate autonomously using chemical energy (i.e. the components move directionally 

as long as a chemical fuel is present).
19

 Here we describe a system in which a small macrocycle is continuously 

transported directionally around a cyclic track when powered by irreversible reactions of a chemical fuel, 

fluorenylmethoxycarbonyl chloride (Fmoc-Cl). Key to the design is that the rate of reaction of Fmoc-Cl with 

reactive sites on the cyclic track is faster when the macrocycle is far from the reactive site than when it is close. 

We find that a bulky pyridine-based catalyst promotes carbonate-forming reactions that ratchet the 

displacement of the macrocycle away from the reactive sites on the track. Under reaction conditions where 

both attachment and cleavage of the Fmoc groups occur through different processes, and the cleavage reaction 

occurs at a rate independent of macrocycle location, net directional rotation of the molecular motor continues 

for as long as unreacted fuel remains. We anticipate that autonomous chemically-fuelled molecular motors 

will find application as engines for molecular nanotechnology.
2, 19, 20 

The design of nanoscale motors in which the components incessantly rotate with net directionality has tantalized 

scientists since Feynman’s celebrated discussion of the physics of a theoretical tiny ratchet-and-pawl.
21 

In the 1990s 

Kelly’s group produced a series of molecular analogues of a ratchet-and-pawl, confirming the lack of directional bias 
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in the movement of the components at equilibrium.
22

 Their designs culminated in a system that employed chemical 

reactions to bias a 120 degree rotation of a triptycene residue in one direction,
23

 but attempts to extend this approach 

to repetitive 360 degree directional rotation proved unsuccessful.
24

 Light-driven rotary molecular motors based on 

overcrowded alkenes
12, 13

 and imines
14, 16

 have been developed by the groups of Feringa and Lehn, while our group
25, 

26
 and others

27–29
 have made molecules in which the components can be rotated directionally step-wise by repetitively 

carrying out several chemical reactions in sequence. The latter systems all operate through Brownian ratchet 

mechanisms, differentiating the rates of random thermal motion of the components in each direction by the 

manipulation of kinetic (mainly steric) barriers.
20

 Autonomous operation requires the ratchet mechanism to operate 

continuously, meaning that the barriers must be repeatedly raised and lowered under the same set of reaction 

conditions and coupled to the consumption of a chemical species in order to avoid falling foul of the Second Law of 

Thermodynamics.
30

  

 

Figure 1 | Operation of a chemically-fuelled [2]catenane rotary motor. The benzylic amide macrocycle (blue) binds to one or other of the 

two fumaramide sites (green) of the cyclic track. Bulky groups (red) sterically block passage of the small blue ring and trap it in one 

compartment or the other (the right or left hand side of the track as shown). Cleavage of one of the bulky groups through a chemical reaction 
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(loss of orange ball) allows the small ring to shuttle back-and-forth between the two fumaramide sites on the track via Brownian motion along 

the unblocked pathway. Attachment of another bulky group (addition of red ball) through another chemical reaction (under the same 

conditions) locks in any change of location of the small ring (i.e. if the ring has changed compartment it is prevented from returning to the 

original one). If the kinetics for blocking group attachment are faster when the small ring is far from the reactive site (kfar-attach>kclose-attach; for 

example, for steric reasons), but the cleavage reaction occurs at a rate independent of the small ring position (kfar-cleave=kclose-cleave), then the 

small ring will directionally rotate around the larger one. One of the fumaramide groups is deuterium labelled to distinguish the compartments 

and allow the location of the small ring to be determined by 
1
H NMR spectroscopy. Compound 1 is the catenane with two Fmoc groups 

attached. Compound 2 is the catenane with one Fmoc group attached close to the labelled fumaramide group. Compound 2′ is the catenane with 

one Fmoc group attached close to the unlabelled fumaramide group. The italicised prefix (FumH2- or FumD2-) refers to the location of the 

benzylic amide macrocycle in 1, 2 or 2′. Bold arrows indicate the major pathway of a reaction, dashed arrows the minor pathway and non-

bolded arrows pathways that occur at similar rates. The blue arrow indicates the direction of net transport of the benzylic amide macrocycle 

when kfar-attach>kclose-attach and kfar-cleave=kclose-cleave. 

 

The structure and mechanism of operation of a rotary molecular motor (1) that continuously rotates its components 

with net directionality when driven by chemical energy is shown in Fig. 1. The molecule is a [2]catenane featuring 

two interlocked molecular rings of different sizes. Fumaramide residues (shown in green) on the larger ring (the 

‘track’) serve as binding sites for a smaller benzylic amide macrocycle (blue). Removable bulky groups (red) block 

the passage of the small ring and, when both blocking groups are attached, trap it in one or other compartment of the 

cyclic track. As previously demonstrated,
31, 32 

the macrocycle can be directionally transported between adjacent 

compartments of a rotaxane thread using the acylation of hydroxyl groups as the energy input. We reasoned that the 

issue of repeatedly raising and lowering the kinetic barriers to transport under a single set of reaction conditions 

could be achieved by using a blocking group that attaches and detaches through dissimilar reaction mechanisms: one 

reaction (e.g. attachment) proceeding at rates that vary according to the position of the small macrocycle, the other 

(e.g. cleavage) occurring at a rate independent of the small macrocycle position (an ‘information ratchet’ 

mechanism
7, 20, 31, 32

). 

In [2]catenane 2/2′, in which one Fmoc group of 1 has been cleaved, there is a significant difference between the 

distances of the small-ring binding sites (fumaramide groups) and the revealed hydroxyl group; one is very close, 

where the presence of the ring should inhibit nucleophilic attack by the OH group on a large electrophile, and one too 

far away for a bound ring to significantly influence rates of reaction. This should result in dissimilar reaction rates for 

when the macrocycle occupies the fumaramide unit near (kclose-attach) or far from (kfar-attach) the hydroxyl group. We 

carried out model studies on a number of potential chemical fuels, eventually concentrating on 9-

fluorenylmethoxycarbonyl chloride (Fmoc-Cl) as its mechanism of attachment to the molecular motor is significantly 

different to that of cleavage of the resulting fluorenylmethoxycarbonate group (shown for the rotaxane model system 
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in Fig. 2). The former occurs by nucleophilic attack of a hydroxyl group directly on the C=O of the chloroformate 

residue, where the presence or absence of the bulky benzylic amide macrocycle on the adjacent fumaramide group 

would be expected to influence the reaction rate (kfar-attach≠kclose-attach). In contrast, the detachment reaction occurs by a 

reaction cascade (eliminating CO2 and dibenzofulvene) initiated by base abstraction of a proton from the fluorenyl 

methine group. This is five bonds remote from the site of attachment to the [2]catenane and so the influence of the 

position of the macrocycle on the detachment reaction rate should be minimal (kfar-cleave≈kclose-cleave). The reactions that 

lead to the attachment and to the cleavage of the Fmoc group can both be promoted under basic conditions.  

Starting from the mono-hydroxyl species (2 and 2′) Fmoc attachment to 2 should favour formation of FumD2-1 

(carbonate formation preferentially occurring distant to the small ring) and likewise Fmoc attachment to 2′ should 

preferentially form FumH2-1, each reaction causing net transport of the benzylic amide macrocycle in a clockwise 

direction. The cleavage of either Fmoc group of 1 then occurs (to form 2 or 2′ in equal amounts) setting the stage for 

another Fmoc attachment step to occur, again proceeding with net directional movement of the small ring. To 

maximize the efficiency of the process sufficient Fmoc-Cl needs to be present for the attachment reaction to proceed 

rapidly whenever a hydroxyl group is unmasked. This prevents accumulation of the catenane diol, in which both 

Fmoc groups have been cleaved, leaving the small ring free to shuttle around the track without directional bias. A 

fuller discussion of the kinetics
33

 of the information ratchet mechanism, including deriving the net directionality of 

ring rotation from the rate equations, is given in the Supplementary Information, Section S6. 

 

We first developed the chemistry necessary for the operation of 1 on a simpler [2]rotaxane (a ring threaded on a 

dumbbell-shaped axle) system, 3 (Fig. 2). [2]Rotaxane 3 was prepared from (R)-3-amino-1,2-propanediol (see 

Supplementary Information, Section S1.2.1 and S1.3.1). When rotaxane 3 was treated with Fmoc-Cl in the presence 

of a bulky carbonate-forming catalyst, (R)-5 (Fig. 2a), the macrocycle was predominantly trapped in the FumD2 

compartment (up to 17:83 FumH2-4:FumD2-4, as evidenced by 
1
H NMR, Fig. 2b. Other reaction conditions led to 

poorer discrimination between the compartments). This result confirms that catalyst (R)-5, in its acylated 

intermediate form (Fig. 2a), can distinguish between the two positional isomers of the rotaxane that interconvert 

through the macrocycle shuttling between the two fumaramide residues, and preferentially reacts with the hydroxyl 

group when the macrocycle is on the FumD2 group, i.e. kfar-attach>kclose-attach. Although a chiral catalyst (and chiral 
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motor) was used, mainly for synthetic convenience, the positional bias of the Fmoc addition is almost independent of 

catalyst handedness (see Supplementary Information, Section S5) and stems from one macrocycle binding site being 

close to the site of reaction on the axle, the other far away.  

With a directional bias established for the Fmoc addition step we next investigated the Fmoc cleavage reaction. A 

solution of 20:80 FumH2-4:FumD2-4, in dichloromethane (CH2Cl2) was treated with triethylamine (NEt3) (Fig. 2c). 

The reaction was sampled at various times and before all the rotaxane Fmoc groups had been cleaved 
1
H NMR 

analysis of the recovered rotaxane 4 showed the ratio of FumH2:FumD2 to be unchanged from the starting ratio (e.g. 

rotaxane 4 after 67 % formation of 3, Fig. 2d). Thus the Fmoc groups are cleaved from FumH2-4 and FumD2-4 at the 

same rate; the position of the macrocycle in rotaxane 4 does not influence the rate of Fmoc cleavage, i.e. kfar-

cleave=kclose-cleave. 

 

Figure 2 | [2]Rotaxane model system to demonstrate directional bias for Fmoc addition and position-independent Fmoc cleavage. a 

Positional bias of the macrocycle in Fmoc attachment to rotaxane 3. Reaction conditions: Fmoc-Cl (5 eq.), (R)-5 (5 eq.), CH2Cl2, r.t., 18 h. b 

Partial 
1
H NMR spectra (600 MHz, CD3OD:CDCl3 3:1, 300 K) of (i) 100:0 FumH2-4:FumD2-4 (obtained from an unambiguous synthetic 

route); (ii) 17:83 FumH2-4:FumD2-4 formed using (R)-5 as the carbonate-forming catalyst. Residual solvent peaks are shown in grey. The 

lettering corresponds to the proton labelling in Figure 2a. Full spectral assignments are given in Supplementary Information, Section S1.3. In 

spectrum 2bii regions 6.3-6.6 and 5.4-6.0 ppm are scaled vertically 3× compared to region 8.0-8.6 ppm. c Lack of macrocycle positional bias 

for Fmoc cleavage from rotaxane 4. Reaction conditions: NEt3 (5 eq.), CH2Cl2, r.t., 2 h, 67 %. d Partial 
1
H NMR spectra (600 MHz, 
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CD3OD:CDCl3 3:1, 300 K) of (i) 20:80 FumH2-4:FumD2-4, (ii) FumH2-4:FumD2-4 recovered after cleavage of about two-thirds of the Fmoc 

groups. Residual solvent peaks are shown in grey. The lettering corresponds to the proton labelling in Fig. 2a. Regions 6.3-6.6 and 5.4-6.0 ppm 

are scaled vertically 3× compared to region 8.0-8.6 ppm. 

Next, conditions were established under which both the Fmoc attachment and cleavage reactions take place in the 

same reaction mixture (see Supplementary Information, Section S2). In a typical procedure the rotaxane (3 or 4) and 

(R)-5 were dissolved in CH2Cl2 and KHCO3 added (to regenerate NEt3 from hydrochloride salts formed by the 

cleavage reaction). Solutions of the Fmoc-Cl fuel and Et3N in CH2Cl2 were mixed together initially and then more 

Fmoc-Cl slowly and continuously added using a syringe pump for as long as the motor was required to run. 

Subjecting rotaxane 4 with an initial macrocycle distribution of 100:0 FumH2:FumD2 to these operation conditions 

resulted in 4 with a distribution of 17:83 FumH2:FumD2 at the steady state (Supplementary Figs. S3 & S4). That the 

Fmoc formation and cleavage reactions run concurrently was further confirmed by showing that a deuterium-labelled 

Fmoc group on the rotaxane could be exchanged for an unlabelled one under these operating conditions. Treatment of 

D2-(33:67 FumH2:FumD2)-4 with unlabelled Fmoc-Cl under the operating conditions formed (17:83 FumH2:FumD2)-

4 with a loss of D2-label from 63 % to 10 % incorporation after 18 h, as evidenced by mass spectrometry. Switching 

the chemical fuel being added to the deuterium-labelled version (D2-Fmoc-Cl) then fully restored the labelled form of 

D2-(17:83 FumH2:FumD2)-4 after 66 h (see Supplementary Fig. S4).  

We note that these results indicate that a macrocycle on a polymer consisting of repeat units of 4 without the terminal 

stopper groups should inexorably be transported towards one end of the polymer chain by treatment with the Fmoc-

Cl fuel under these reaction conditions. In other words, rotaxane 4 is a functioning engine system for a chemically-

fuelled linear molecular motor. 

We applied the same principles to the synthesis and operation of a chemically-fuelled [2]catenane rotary molecular 

motor. [2]Catenane 2′ was prepared from (R)-3-amino-1,2-propanediol (see Supplementary Information, Sections 

S1.2.2. and S1.3.2). The benzylic amide macrocycle distribution between the two fumaramide sites in 2′ is 

approximately 40:60 FumH2:FumD2 (estimated from the 
1
H NMR shielding of the FumH2 protons in 2′ compared to 

FumH2-1 and consistent with the results of carbonate formation promoted by pyridine, a small catalyst 

(Supplementary Table S2)). The energy barrier for macrocycle exchange between the fumaramide sites in related 

rotaxanes is ~16 kcal mol
-1 

in CDCl3,
25

 suggesting that macrocycle shuttling in 2′ occurs hundreds of times a second 

under the motor operating conditions. 
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The Fmoc attachment-cleavage chemistry of 2 (Supplementary Information, Section S3) mirrored that of rotaxane 3. 

When catenane 2′ was treated with Fmoc-Cl in the presence of catalyst (R)-5, the macrocycle was predominantly 

trapped in the FumH2 compartment (80:20 FumH2-1:FumD2-1, Supplementary Figs. S5a and b), i.e. kfar-attach>kclose-

attach. A model catenane was also prepared (see Supplementary Figs. S5c and d), replacing one Fmoc carbonate group 

of 1 with an analogous Fmoc-methinyl ester. The substitution of an oxygen atom for a carbon atom ensures that 

cleavage of this group cannot occur under the motor operating conditions. This enabled the Fmoc cleavage reaction 

to be studied in a catenane possessing only one detachable group. As with the rotaxane model, the control experiment 

demonstrated that the rate of Fmoc cleavage is not affected by the position of the macrocycle in the catenane 

(Supplementary Figs. 5d), i.e. kfar-cleave=kclose-cleave. 

To confirm that both the Fmoc addition and cleavage reactions take place with catenane 1, we first demonstrated that 

the reactions can occur sequentially (Fig. 3). Catenane 1 was treated with NEt3 (8 equiv.) and after 6 h 57 % of the 

catenanes had lost one Fmoc group (forming 2/2′; Fig. 3, cycle 1) with a further 11 % of catenanes having had both 

Fmoc groups cleaved. At this point deuterium-labelled fuel, D2-Fmoc-Cl, activated with (R)-5 was added, leading to 

almost complete derivatisation of the catenane hydroxyl groups after 24 h (94 % 1). At the end of this cleavage-

addition cycle (Fig. 3, cycle 1) electrospray mass spectrometry confirmed that the D2-labelled Fmoc groups had been 

incorporated from the fuel into the catenane motor (Fig. 3, cycle 1). The resulting mixture was then treated with a 

second cycle of NEt3, leading after 5 h to 55 % of the catenane with only one Fmoc group, 2/2′ (Fig. 3, cycle 2). 

Subsequent addition of unlabelled Fmoc-Cl regenerated 1 with a majority of the Fmoc groups without deuterium 

labels (Fig. 3, cycle 2). Thus over two complete operational cycles, the catenane molecules are shown to sequentially 

cleave and then add an Fmoc group from the fuel being supplied during that cycle, then cleave and add another Fmoc 

group from a second batch of fuel.  
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Cycles Time (h) 

   Composition  
Percentage of D2-labelled  
Fmoc incorporated

a 

1        2/2′  1 D2-1  
 0 100 0  100 0  

1 { 
i      6 32 57  - -  
ii   24    94 6  39 61  

2 { 
i    29 34 55  - -  
ii   32 100 0  68 32  

 

Figure 3 | Exchange of Fmoc groups during stepwise operation of catenane 1. Reaction conditions: (i) NEt3 (8 eq.), (ii) D2-Fmoc-Cl (16 

eq.), (R)-5 (16 eq.), (iii) NEt3 (10 eq.), (iv) Fmoc-Cl (16 eq.), (R)-5 (16 eq.). Diol (up to 11 %) is also formed during the Fmoc-cleavage steps 

under these conditions (10 eq. NEt3), see Supplementary Information, Table S1. 
a
 Determined by relative intensity of the [M+Na]

+
 signal in 

electrospray mass spectrometry. 

In order to monitor the catenane rotary motor during autonomous operation, catenane 1 with 80 % of the small rings 

on the unlabelled fumaramide binding site (80:20 FumH2:FumD2-1) was treated with Fmoc-Cl, (R)-5, Et3N and 

KHCO3 in CH2Cl2 (Fig. 4). For autonomous operation we used conditions under which the Fmoc groups are added by 

the Fmoc-Cl fuel and cleaved with no discernible accumulation of diol (i.e. 1.5 equivalents Et3N instead of the 8-10 

equivalents employed in the sequential operations) and the distribution of the catenane positional isomers was 

measured over time by 
1
H NMR spectroscopy (Fig. 4). Under these conditions the initial macrocycle distribution 

changed from 80:20 FumH2:FumD2 to 55:45 (Fig. 4b). Shortly after the supply of Fmoc-Cl fuel is cut off, no further 

change in the distribution of the rings between the compartments occurs (i.e. the motor stops working). However, 

cleavage of the Fmoc groups slowly continues, unless the basic reaction medium is quenched, forming 2/2′ and 

eventually catenane diol.   

The ratio of the distribution of the rings between the compartments falls towards 1:1 as a direct consequence of the 

functioning of the motor as each Fmoc-cleavage reaction serves to equilibrate the distribution of rings between the 

compartments. Although the Fmoc attachment reaction biases clockwise rotation of the small ring around the track, it 

does not bias its average position on the track. This is because Fmoc attachment to catenane 2′ biases the small ring 

to the left hand compartment whereas Fmoc attachment to catenane 2 biases the small ring to the right hand 

compartment. As was demonstrated for rotaxane 4 (Fig. 2), the change in the macrocycle distribution that occurs with 

catenane 1 under the operating conditions (Fig. 4) shows that the Fmoc groups are being cleaved, allowing the small 
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ring to move between compartments by Brownian motion, and the transiently generated hydroxyl groups are being 

derivatised under consumption of the Fmoc-Cl fuel, i.e. confirming that the catenane rotary motor operates 

autonomously as long as unspent chemical fuel is present.  

 

Figure 4 | Directional transport of the macrocycle monitored by 
1
H NMR spectroscopy. a. Reaction conditions: (i) (R)-5 (5 eq.), KHCO3 

(20 eq.), CH2Cl2, r.t., Fmoc-Cl, CH2Cl2, added via syringe pump at 2.4 eq./h, then NEt3 (1.5 eq.) after 1 hour of Fmoc-Cl addition. b. Partial 
1
H 

NMR spectra (500 MHz, CD2Cl2:CD3OD: 1:1, 300 K) of 80:20 FumH2-1:FumD2-1 and after operation for 4 h, 24 h and 48 h. The region 5.7-

6.3 ppm is scaled vertically 6× compared to region 8.3-8.8 ppm. The two macrocycle positional isomers of catenane 1 each exist as four tertiary 
amide rotamers. 

 

Proving directional rotation in molecular motors is challenging, not least because each rotational cycle returns the 

motor components to their starting positions. Evidence for directionality in step-wise operated small-molecule motors 

has previously been provided by determining the position of the components at multiple points in a motor’s cycle and 

determining the rates of different pathways to those positions.
12, 25

 However, in a continuously operating motor with 

only two minimum energy positions of the components, such as 1, this approach is not possible. Nevertheless, fuel-

driven directional rotation in 1 could be unequivocally established through a series of individually provable premises, 

a form of deductive logic commonly used in mathematical proofs. If all of the premises are experimentally 

demonstrated to be correct, and the terms linking the premises to the conclusion are valid, then the conclusion 

reached is necessarily true. Net directional rotation of the chemically-fuelled rotary motor 1 through an information 

ratchet mechanism (see Supplementary Information, Section S6, for an explanation of how directionality intrinsically 

follows from the rate equations) is demonstrated through experimental verification of each of three premises:  
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(1) Under the motor operating conditions the Fmoc attachment reaction to the catenane (from Fmoc-Cl) and the 

Fmoc cleavage reaction from the catenane (forming CO2 and dibenzofulvene) both occur. 

This is shown by the experiments that demonstrate that D2-Fmoc groups add to the catenane when using D2-Fmoc 

fuel and are then replaced by unlabelled Fmoc groups upon switching to unlabelled fuel (Fig. 3). Fmoc-Cl is not 

simply being destroyed in the reaction, it is being continuously added and cleaved from the catenane under the 

operating conditions.  

(2) Under the motor operating conditions Fmoc attachment to the catenane hydroxyl group (2 or 2′) results in a 

bias in the distribution of the macrocycle between the compartments in the resulting di-Fmoc catenane (1) (i.e. kfar-

attach≠kclose-attach). 

This is shown by the positional bias in the Fmoc attachment to 2′ experiments (Supplementary Figs. 5a and b), 

analogous to that shown for rotaxane 3 in Fig. 2a.  

(3) Under the motor operating conditions cleavage of one Fmoc group from catenane 1 occurs at a rate 

independent of the position of the macrocycle (i.e. kfar-cleave=kclose-cleave). 

This is proven by the catenane Fmoc cleavage experiments (Supplementary Figs. 5c and d), analogous to that shown 

for rotaxane 20:80 FumH2:FumD2-4 in Fig. 2c.  

The effects of the net-directional movement of the rings around the catenane track are directly observed in the 

experiment shown in Fig. 4. The catenane ring distribution can only change through the benzylic amide macrocycles 

shuttling between the fumaramide sites when an Fmoc group is transiently cleaved, and the directional bias of the 

ring movement under these conditions is that experimentally determined in proving premises (2) and (3). 

Chirality is not necessary for directional rotation: the wheels of a bicycle travelling down a road rotate clockwise 

with respect to an observer of one side of the road and counter-clockwise with respect to an observer on the other.
25

 

However, the chiral centres of 1 differentiate the two faces of the track, defining the direction of the ring rotation in 1 

as clockwise with respect to the (R,R)-stereochemistry of the molecular motor. 
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Just as motor proteins are catalysts for the hydrolysis of ATP, the catenane (1) and rotaxane (4) motors are catalysts 

for the conversion of Fmoc-Cl and Et3N into dibenzofulvalene, CO2 and Et3NHCl. For both the biological and 

synthetic motors it is the free energy released by the motor-catalysed exergonic reactions that drives the directional 

displacement of the motor components. In principle two molecules of Fmoc-Cl are required to power one 360 degree 

clockwise ratcheted rotation of the benzylic amide macrocycle around the catenane track of 1. In practice the 

directionality of the fuelled rotation is good: the 80:20 positional bias observed in the Fmoc-attachment reaction 

means that for every ten molecules of Fmoc-Cl that react with the track the benzylic amide macrocycle makes on 

average three net directional full rotations about the track. However, unlike motor proteins,
20

 rotaxane 3 and catenane 

2/2′ are poor catalysts for the destruction of their chemical fuel, and 1 and 4 only react with base to form CO2 and 

dibenzofulvene a few times faster than the background base-promoted decomposition of Fmoc-Cl.  

From the rate at which the ratio of the macrocycle distribution between the compartments in the catenane falls to 

unity, the speed of net-directional rotation in the experiment shown in Fig 4b can be calculated to be ~12 hours for 

each 360 degree rotation. This might be increased by raising the temperature and/or increasing the concentration 

and/or rate of addition of the fuel, but changes in these parameters might also affect the net-directionality of rotation. 

An investigation of these factors is ongoing in our laboratory.  

Synthetic chemically fuelled molecular motors 1 and 4 join light-driven molecular rotary motors as engines with the 

potential to power tasks in molecular nanotechnology.
19

 Finding ways to link the position of the ring to more 

effective catalytic decomposition of the fuel should allow for the development of faster and more efficient small-

molecule motors powered by chemical fuels.   

Methods 

General method for autonomous operation of rotary catenane motor 1. To a solution of 1 (5 mg, 2.6 µmol) in 

CH2Cl2 (0.3 mL) was added (R)-5 (5 eq., 8.2 mg, 13.0 µmol) and KHCO3 (20 eq., 5.2 mg, 52 µmol). A solution of 

Fmoc-Cl (240 mg, 0.93 mmol) in CH2Cl2 (1.0 mL) was added at a rate of 6.7 µL/h. After 1 hour NEt3 (1.5 eq., 0.55 

µL, 3.9 µmol) was added and Fmoc-Cl addition continued at a rate of 6.7 µL/h (6.2 µmol/h Fmoc-Cl for 2.6 µmol 1) 

for as long as the motor was required to run. After full consumption of the chemical fuel (Fmoc-Cl) the catenane 

motor was recovered by addition of 1 M HCl (aq.) (10 ml) and the aqueous layer extracted with CH2Cl2 (3 x 20 ml). 
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The combined organic layers were washed with brine, dried over Na2SO4 and concentrated under reduced pressure. 

Purification by preparative TLC (SiO2, CH2Cl2:EtOH 95:5) gave pristine 1. 
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