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Abstract—This paper describes a vision-based control system
for a tracked mobile robot (an excavator). The system includes
several controllers that collaborate to move the mobile vehicle
from a starting position to a goal position. First, the path planner
designs an optimum path using a predefined elevation map of
the work space. Second, a fuzzy logic path-tracking controller
estimates the rotational and translational velocities for the vehicle
to move along the pre-designed path. Third, a cross-coupling
controller corrects the possible orientation error that may occur
when moving along the path. A motor controller then converts the
track velocities to the corresponding rotational wheel velocities.
Fourth, a vision-based motion tracking system is implemented to
find the 3D motion of the vehicle as it moves in the work space.
Finally, a specially-designed slippage controller detects slippage
by comparing the motion through reading of flowmeters and
the vision system. If slippage has occurred, the remaining path
is corrected within the path tracking controller to stop at the
goal position. Experiments are conducted to test and verify the
presented control system. An analysis of the results shows that
improvement is achieved in both path-tracking accuracy and
slippage control problems.

Index Terms—Robot vision, visual motion control, trajectory
control, path planner, track slippage, vehicle position sensing,
excavator control, motor control, vision-based trajectory estima-
tion.

I. INTRODUCTION

T
RACKED vehicles, such as excavator-type machines, are

widely used in industries such as forestry, construction

and mining. These machines are used for a variety of tasks,

such as lifting and carrying loads, digging and ground level-

ing. Autonomous controls for driving or assisting humans in

operating these machines can potentially improve the opera-

tional safety and efficiency. Much research has gone toward

controlling vehicle movement to reduce human interaction

when the vehicle is performing a task [1] [2]. Removing the

operator for direct control of the machine has been achieved

in teleoperation [3] [4] [5]. Achieving this goal in natural

environments requires planning every movement, to avoid any

obstacles and to locate the vehicle at each time with respect to

a global coordinate system. With the application of an effective

control scheme, human error can be minimized or completely

removed, and more consistent operation of the vehicle can be

achieved to increase efficiency.

Many methods for outdoor path planning have been de-

veloped to find feasible paths from start to end loca-

tions [6] [7] [8]. Some of these methods rely on a prior map of

the environment, to be provided by an operator. Since a static

map is not sufficient, due to outdoor changes, other methods

use sensory devices such as laser range finders and stereo

cameras to create and update their own neighborhood maps

as the vehicle navigates.

Numerous methods have also been developed to track tra-

jectories and paths outdoors [9]–[15]. Some of these methods

implement non-linear trajectory control algorithms using the

difference between the actual and virtual reference positions.

Others accomplish the task by generating error vectors from

the lateral displacement and heading errors. Path tracking

has also been performed using feedforward compensation for

the steering mechanism to provide anticipatory control of the

steering lag.

Many sensors have been developed and applied to robot

localization. Wheel sensors such as encoders and resolvers

suffer from wheel-slip. Estimating position using angular rate

sensors and accelerometers suffers from integration error due

to the effects of noise. Sonar, a low resolution system, is

sensitive to environmental disturbances (wind, temperature,

foliage motion and machine noises), Laser range scanning

is expensive and has a low image update rate. Even GPS,

can suffer from occlusion of line-of-sight to satellites, low

accuracy, and low update rate. Since solid-state cameras and

computers are rapidly improving in quality and speed driven

by a consumer market, they are an tempting platform on which

to build a robot localization system.

The main long-term goal of this work is to move a tracked

vehicle from a starting point to a target point in an unstructured

outdoor environment. This paper describes the design and

implementation of a complete system for a Takeuchi TB035

excavator that contains all of the subsystems necessary for

this task. In particular, path planning, path tracking control,

excavator track control, and visual motion tracking were

selected as necessary building blocks. To make the overall

development feasible in a reasonable time and to allow for

real-time performance, some constraints were applied. The

system was constrained to plan and execute straight line

segments and small-radius turns, and that the vision system

would be angled down to avoid sun, and thus be protected from

raindrop accumulation - limiting the scene to a local region

only. A unique aspect of this work, enabled by the vision

system, is to detect and correct track slippage. Excessive track

slippage can take place on slopes in various ground conditions,

and can lead to soil erosion. The proposed path planner can

be tuned to find paths that will reduce the possibilities of

excessive slippage.

II. MOTION CONTROL SYSTEM OVERVIEW

A block diagram of the semi-autonomous vehicle motion

control system is shown in Figure 1. The human operator
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stays at the top level of the entire control system. The

operator chooses between manual or autonomous control of

the vehicle. If manual control is desired, the operator can drive

the vehicle and the autonomous controller becomes disabled. If

autonomous control is chosen, the operator selects a desired

goal posture ; here and represent the

location and and show the orientation and the path

speed for the vehicle. This position, along with a map of

the environment, is passed to a path planner unit. The path-

planner designs a collision free optimal path from the current

posture of the vehicle, , to the desired goal posture, [16].

The optimal path is generated based on several cost functions,

derived from the slope steepness and type of terrain. These

cost functions try to minimize the environmental impact of

the vehicle.

Once the path is chosen, the path tracking controller is

responsible for keeping the vehicle moving along that path.

Due to the nonlinearities of the tracked excavator and the

existing uncertainties in a natural environment, a fuzzy logic

scheme was used for the tracking controller. In using this

approach not only are the control rules expressed easily in

linguistic statements but also the allow a more flexible design

with respect to the existing uncertainties in natural environ-

ments. At each time, the current path segment is passed to the

path tracking controller. By comparing the current position of

the vehicle (obtained incrementally from the flowrate sensors)

with the path to be followed, the reference translational and

rotational velocities for the mobile robot are computed. The

vehicle is either commanded to continue driving along the

path, when on the desired path, or made to converge back to

the desired path if it has strayed. When the vehicle reaches the

end of a current requested segment, the path tracking controller

requests the next path segment from the path planner. The

corresponding left and right track reference speeds, and

, are then obtained by the application of the inverse

kinematics equations of motion. The reference speeds can be

adjusted using a coefficient factor, , determined based on the

occurrence of excessive slippage.

The cross-coupling motion controller (CCMC) controls the

heading error [17] directly, using the left and right track

reference speeds, as well as the accumulated distance error

between the two tracks. The distance error is estimated by

subtracting the distances traveled by the left and right tracks,

obtained by integrating the flowmeters readings. The output

of the CCMC are the individual track speeds, , ,

used in the track controller. The cross-coupling controller has

been used for the excavator since it corrects for orientation

error by integrating flowmeter information for left and right

tracks.

The track control and motor subsystem block was experi-

mentally modeled as a first-order transfer function with delay.

The two track control and motor blocks operate independently

of each other to produce the rotational velocities of the track

and .

The sensors on the vehicle, rate flowmeters in the hydraulic

lines provide the track motor rotational velocities used for

dead-reckoning position estimation. The readings of these

sensors along with the odometery equations are used to update

the current location of the mobile robot.

The vision-based tracking system includes a camera head

with three on-board CCD cameras, which can be mounted

anywhere on the vehicle. The system processes consecutive

trinocular stereo sets of images to detect and track corre-

spondences to the most stable points in the environment.

Using stereo cameras and measuring the displacements of

similar image features in different frames, the trajectory

of the camera, and hence, the vehicle is estimated. The

integration of an individual scene-independent vision-based

tracking system delivers an independent control, at a higher

level, for identification and correction of the track slippage

problem.

If track motion calculated by the dead-reckoning sensors

sufficiently exceeds the track motion calculated by the vision

system, for the same time period, a slippage value is calculated

for the slippage controller. The slippage controller uses the

slippage value to compute a scaling factor, , to reduce the

left or right track reference speeds, and . Once the

slippage is eliminated, the scaling factor is reset to unity and

the reduction in the track reference speeds is removed.

Each one of the introduced components is presented in more

detail in the following sections. The paper is organized as

follows. The path planner is briefly explained in Section III.

The design and implementation of the path tracking con-

troller is described in Section IV. The cross-coupling motion

controller is studied in Section V. The motor controller is

addressed in Section VI. Section VII represents the vision

based motion tracking system. The slippage controller is

discussed in Section VIII. Experimental results are represented

in Section IX. Conclusions and future work are outlined in

Section X.

III. PATH PLANNING CONTROLLER

Autonomous navigation in outdoor environments requires a

path planning system that can identify a feasible path quickly

and effectively. This section describes path planning system

that finds an efficient and safe path for autonomous navigation

in small or medium size outdoor environments.

There are two main objectives associated with the design of

the path planner. First, it must find an obstacle free path, from

a starting point to a goal point. Second, it has to minimize

soil disturbance, in forestry applications for example, while

operating heavy machinery outdoors. The inputs to the system

are the elevation map of the work space, as well as cost

constraints. The obstacles are defined as either objects that

block a specific path, or as terrain that is not traversable

due to mechanical constraints of the machine (for example

steep slopes). In terms of efficiency, the shortest path length

is considered here to be the main criterion.

Figure 2 represents the flowchart of the implemented path

planner. First, the resolution of the environment grid and the

type of cost functions are determined in the set up process.

Next, the goal position is decided by the operator. Then, using

the input map and cost functions, a cost map is created. A

search routine then finds the optimized solution path. Finally,

special cases where a feasible solution cannot be found are
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Fig. 2. The flowchart of the path planning algorithm.

re-investigated. The details of each block are explained later

in this section.

A. User’s Set Up

The first user’s setup parameter is the resolution of the

map grid, , which shows the number of existing nodes

across the entire workspace. The second input to the system

is the elevation map of the work space, produced either from

satellite images or airborne sensors and transformed into a

graph using the area’s grid map. Stereo camera-based images

from aircraft are commonly used to create surface elevation

maps. Radarsat and aerial laser range finders have also been

used to create elevation maps. Currently digital elevation maps

of the 7,027 map sheets, covering the province of British

Columbia, Canada, at a scale of 1:20 000 are produced by the

TRIM program (Terrain Resource Information Management

Program) [18]. The digital mesh that is used in TRIM has

a 20 meter interval spacing with an accuracy in spacing of

10 meters and in altitude of 5 meters. Since a denser map

would be more desirable and would result in a more precise

path planning, through all of the presented experiments, the

elevation map is created in a finer grid. It is expected that

commercial resolution will improve over time.

B. Cost Map Generation

As explained earlier, one of the requirements of the path

planner is to optimize the found path, based on several

conditions such as length, slope and soil disturbance. However,

employing a multiple objective search can significantly impact

the required memory and increase running time dramatically.

Also, some of the constraints in the cost functions may be

mutually conflicting. For these reasons, for every existing path

a cost value is associated with a weighted sum of individual

constraints [19]. A maximum number of six weight coefficient

combinations is allowed in the design. This number permits

a wide range of choices likely to be suitable in different

situations.

The cost function associated with every traversable arc in

the map is a scalar calculated from:

(1)

(2)

(3)

In Equation 1, reflects the objective of

traveling on the shortest possible path. The term

allows the algorithm to

find a path that will have a small elevation change (by going

around a hill, for example, to avoid an elevation change) but

have a longer path length. In case it is necessary to climb

a slope, due to the fact that the second term is optimizing

the ratio of the elevation to the length, the cost function

will favor the path that reaches the goal by climbing a hill

in a spiral fashion. If the slope is not a rounded hill but a

width-limited inclined slope, the path turns out to be a zigzag

path. The local angles available are 0 , 45 , and 90 due to
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the fact that the local movement of the vehicle is limited to

the neighboring nodes in the graph. The influence of the two

terms of the cost function is balanced by two parameters

and . The relationship between coefficients and can

be expressed by:

(4)

(5)

A value of , for instance, is the solution for the

classical shortest path optimization. There are a maximum of

six different combinations for and which are predefined.

These combinations are shown in Table I.

TABLE I

PREDEFINED VALUE COMBINATIONS FOR ( , ).

N ( , )

1 (1,0)

2 (1,0), (0,1)

3 (1,0), (0.5,0.5), (0,1)

4 (1,0), (2/3,1/3), (1/3,2/3), (0,1)

5 (1,0), (3/4,1/4), (0.5,0.5), (1/4,3/4), (0,1)

6 (1,0), (4/5,1/5), (3/5,2/5), (2/5,3/5), (1/5,4/5), (0,1)

Here, N determines how many searches will be performed.

The purpose of having different choices for this combination is

to reduce the computation time in cases where suitable weight

combinations can be predicted given the conditions. The goal

is to see whether there is a possible path among six candidates.

In general, it is more likely that a superior path will be found

for larger values of N. In this implementation however N is

limited to 6, which represents an engineering trade off between

the number of choices and the execution time.

C. Search for the Best Solution

The accuracy and efficiency of the path planning controller

is mainly dependent on the search method’s convergence

and computational complexity. Among the numerous existing

search algorithms, the A* approach was chosen for its robust-

ness in off-road route planning [20] [21]. This method has a

simple yet robust structure that allows specific constraints to

be incorporated easily [22] [23].

The algorithm begins at a start node and then iteratively

checks surrounding nodes for their accessibility. When a

traversable node is visited for the first time, a backpointer

to the previous node, as well as the cost of the path traveled

so far, is estimated and assigned to the node. Each time a

traversable node is accessed from one of its neighbors, the

new path cost is compared with the previous best; if it is

less, the backpointer is redirected, Figure 3.The cost function

associated with a path to node is expressed by:

(6)

where is the sum of costs associated with the arc leading

from the start to the node . Function is a heuristic

estimate of the cost from node to the goal node. The

A* algorithm guarantees finding the cheapest solution path

if one exists; otherwise it reports a failure. The original A*

approach is a single objective. However, the system reported

here requires the discovery of an optimized path with multiple

objectives. This problem is overcome by introducing one cost

function for each objective, and combining the cost functions

into a single objective function.
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Fig. 3. The search algorithm block diagram.

The grid map of the workspace confines the angle changes

with respect to the previous arc to , , , and .

Sharp angle changes, for instance , can cause undesirable

disruption of delicate forest soil. To avoid this, two strategies

are considered.

First, rotation angles ) are banned. This requirement

has the highest priority. For this purpose the search process

is performed in three consecutive steps. On the first try, the

angles of and are banned. Whenever a new optimal

path is discovered, it is checked for any banned angles with

the two node’s predecessors. If any banned angle exists, then

an obstacle is reported and the backpointer is not switched.

This constraint, however, reduces the connectivity of the graph

and may spoil the A* indigenous convergence. For instance,

it is possible to declare a failure though a path actually exists.

This happens where there is a narrow (one node wide) channel
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containing banned angles on every possible path. If the first

search attempt fails, the constraint set bans turns of only.

If a path is again not found, a search is performed with no

constraints. In this way, when a solution is found then the

algorithm convergence remains unaffected.

The second strategy minimizes the number of turns in

general. This is enforced by employing one more test when

a new path is discovered. In the original A* algorithm, if

the cost of a new path is the same as the previous best, the

backpointer is not switched, even if one of these paths contains

more direction changes. This cost is modified by comparing

the number of turns and switching to a neighboring node with

fewer turns. This feature does not effect convergence, since it

does not involve recalculation of the cost function. If the paths

(backpointer nodes) are switched, the procedure continues as

usual.

D. Handling Critical Situations

One of the safety features included in the system is imple-

mented by expanding the edges of found obstacles through

grid node displacement. This safety feature is paid for by

the possibility of not finding a solution even when one may

exist. To overcome any system failure due to obstacle border

expansion, a second search is conducted after the obstacles’

borders shrink back to their original positions. If the system

still cannot find a solution, then a failure is announced.

E. Path Planner Evaluation

To evaluate the functionality and efficiency of the imple-

mented path planner, several different terrain types are tested.

The test subjects include flat terrains, inclined planes, and nar-

row hills with significant or severe slopes. Some of the results

are presented here. Figure 4 represents the implementation

results for slopes.
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Fig. 4. Path planning outputs for wide slopes.

Figures 4-a and 4-b show paths designed for traveling

between two points. The constraints for these two paths are

designed as ( = , = ) and ( = , = ). These two

conditions do not, by themselves, satisfy the system require-

ments. This is because the first solution is neither satisfactory

regarding the soil disturbance, nor safe, due to rapid elevation

change. The second solution includes more safety considera-

tions, but it is long and soil disturbance remains a problem.

Figure 4-c shows an acceptable path. Since the traversable area

for this path is wide, there are only two turns.
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Fig. 5. Path planning outputs for narrow slopes with and without obstacles.

Figure 5 shows the output for a narrow slope with and

without obstacles. The path planner follows the same prin-

ciples of not climbing directly upward, and to minimize the

number of turns. At the beginning of its route, it makes more

turns (Figure 5-b), since the path arcs are narrower when the

obstacle occupies some of the free space. The path planner

gradually increases the path arcs and reduces the number

of turns as the obstacle is passed and the unoccupied area

becomes wider. Figure 6 represents a set of solution paths
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Fig. 6. Path planning outputs for a hilly surface with obstacles.

for a severely hilly configuration space with three obstacles,

found by the system using different combinations of and

(defined in row 6 Table I). Table II defines the corresponding

and for each path based on its number on Figure 6.
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TABLE II

COMBINATIONS OF ( , ) FOR PATHS FOUND IN FIGURE 6.

Path number ( , )

1 (1,0)

2 (0.6, 0.4)

3 (0.4, 0.6)

4 (0.8, 0.2)

5 (0.2, 0.8)

6 (0,1)

Path 1 has the shortest length while path 6 represents the

solution with minimum elevation change. From these results,

it can be seen that in paths 2 to 5 fewer turns have been taken

while still avoiding slopes when possible. On the contrary,

solution 6 can create unnecessary long paths because with a

flat area all arcs have the same cost (0).

In summary, the path planner generates multiple solution

paths using different weight combinations in the cost function.

For each path, 6 different solutions are created and one is either

selected based on total cost and number of turns, or all can

be offered to an operator to choose from. The wide range of

existing factors in an industrial or outdoor work space (soil

type, saturation of a terrain, etc.) make the approach suitable

for such environments. It is interesting to note that some parts

of the algorithm need to be performed only once for all 6

paths and that the software design is easy to implement on

a parallel CPU which would cut the execution time to very

close to that of the single choice algorithm.

After a path solution is found, it gets segmented and

passed to the path tracking controller upon its request. In the

next section, the principles of the path-tracking controller is

discussed.

IV. PATH TRACKING CONTROLLER

Figure 7 represents the block diagram of the path tracking

controller. The duty of this controller is to maintain the mobile

vehicle on a desired path.

The inputs to this controller are the current position and

orientation of the vehicle, and the information relating to the

desired path segments. Using these two pieces of information,

the controller estimates the motion needed to reach the end

of the desired path segment. Upon reaching the end of the

desired path segment, the path tracking controller transmits

a path segment request to the path planner for the next path

segment to be traversed.

The outputs of this controller are the desired left and right

track velocities. Details regarding the role of each component

in this controller, and its relationship with other controllers are

explained in the following sections.

A. Trajectory Error Generation

The trajectory error generation block generates an error

vector, ( ), in the vehicle frame using the de-

sired destination, ( ), and the current position,

( ), (Figure 8). The desired destination is pro-

vided by the path planner, while the current trajectory is

estimated through the readings of the flowmeters. The gener-
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Fig. 7. Block diagram of the Path Tracking Controller.
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Fig. 8. Trajectory error generation in the path tracking controller.

ated trajectory error, output of the Trajectory Error Generation

block in Figure 8, can be expressed by:

(7)

Equation 7 represents the position error vector as the rotated

difference of the and coordinates of the current and desired

locations by the desired orientation. This error represents the

positional correction required before reaching to the end of

the current path segment.

B. Trajectory Vector Update

The trajectory vector update, Figure 7, is responsible for

requesting a new segment from the path planner when the end

of the current segment is reached. This is achieved when the

value of approaches zero. The trajectory vector update

also derives the error changes of , and that

are used in the trajectory controller where is the sampling

interval.

C. Trajectory Controller

The translational and rotational speeds of the vehicle,

, are controlled by this controller. The translational

control is performed by determining the desired translational

speed of the vehicle from the changes in and . The

orientation control is performed by using and and
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their derivatives to derive the desired rotational velocity of the

vehicle. The goal is to converge the inputs to zero:

(8)

(9)

1) Translational Speed Controller: Regardless of the posi-

tion and orientation, this controller is responsible for maintain-

ing a desired acceleration during the starting time and speed

change when converging to a desired translational speed. It

is also responsible for stopping at an exact, user specified

position with a desired deceleration. Here, the sum of changes

in and of the vehicle are measured to estimate the actual

speed of the vehicle. The control rules for converging to, or

maintaining, a desired action can be expressed as:

if

if
(10)

where (11)

These equations state that the desired velocity of the excavator

is increased (decreased) if the excavator Euclidean velocity

required to eliminate the error in one time step is less than

(greater than) the velocity specified by the path planner

(where is bounded by the maximum permitted excavator

speed).

At each turning point the translational speed has to be

decreased to prevent the vehicle from overshooting when

converging to a new path. In order to ensure a stop at an exact

stop position with a specific deceleration , the following

rules [24] are adopted:

sign (12)

if

if

if

(13)

The performance of the translational controller was tested on a

1/14.2 scale mechanical tracked excavator [25] originally used

to develop the trajectory controller. More tests are reported in

Section IX in conjunction with the final full scale system.

Figure 9 shows the results of one of these experiments.

This experiment evaluates the controller’s ability to accelerate

smoothly from a start position, and to stop the vehicle at an

exact position with a certain deceleration on a long

path. Figure 9-a denotes the traversed path and Figure 10-b

depicts the generated translational velocity by the designed

controller.

2) Rotational Speed Controller: This controller forces the

vehicle to move on a desired path by controlling the rotational

speed, . For this purpose, two fuzzy PD-regulators, one for

and its derivative and another for and its derivative,

are implemented.

The input space of the fuzzy-PD controllers are , ,

and . Variables and are divided into five
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Fig. 9. The output of the translational velocity controller.

membership functions (MFs) and and into three.

Figure 10 describes the partitions and the naming conventions

for and . The span of each MF is described by a triangular

shape. For variable the overall span is extended between

and , (Figure 11-a). The span around zero, ,

is defined to be very narrow, to , since even a small

angle error is not acceptable when attempting to navigate on

an exact path. and , small positive and

small negative errors, MFs are designed for situations in which

the vehicle is close to the right direction and consequently, the

velocity has to be restrained to avoid an overshoot occurrence.

The ranges of these two groups are defined in and

. Finally, the medium positive and negative MFs,

and , describe the rest of the input by

and .
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Fig. 10. Fuzzy logic rotational velocity controller input space.

Similarly the universe of , and are parti-

tioned. Figures 11-b to 11-d show the span and range of the

input variables. It can be seen that partitions of and
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are designed to describe the directions in which the

and move.
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Fig. 11. Fuzzy logic input space membership functions.

The output space for this controller is defined by variable

with a defuzzication of the centroid-based method [26].

In order to have smooth output changes, the membership

functions are equally distributed as shown in Figure 12-a. The

output space mapping function rules that describe the behavior

of the system under different input conditions, are represented

in Figure 12-b. This Figure describes the traditional PD-

controller responses in linguistic terms. Since the behaviors

of the two rule sets (one with inputs ( , ) and the

other with inputs ( , )) governing are very

similar, they are summarized in one description table.
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Fig. 12. Fuzzy logic rotational velocity control output space.

D. PTS Inverse Kinematics

The Powered Track Steering (PTS) Inverse Kinematics for

the conversion from the trajectory controller output, [ ,

], to the desired translational velocities of the right and

left tracks, [ , ], are defined by:

(14)

where is the distance between the tracks. In this

formulation is the slippage coefficient (a constant) that is

set to in the system. and hold either one or zero,

representing slippage or non-slippage situations. The slippage

mechanism is explained in detail in Section VIII.

E. Path Tracking Experimental Results

Figures 13-b, -c and -d show the result of the trajectory error

generation for a typical path segment change on the 1/14.2

scale excavator. In this experiment the vehicle reaches the end

of a segment at time seconds, location A( = ,

= ). As soon as the controller receives the next path

segment, with an ending point at location B( = ,

= ), a large amount of error in , and occurs.

During the next 16 seconds the controller reduces these values

to zero, meeting the desired end point at B.
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Fig. 13. Trajectory error vector generation during a path segment change. a)
Excavator position; b) Position error in x; c) Position error in y; d) Orientation
error.

V. CROSS-COUPLING MOTION CONTROL

A tracked vehicle, such as an excavator moves by the

rotation of two steel or rubber tracks that are driven and

controlled by two independent motors. The steering action

for such a vehicle is accomplished by the difference in speed

of the two tracks. The velocities for such a vehicle can be
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expressed by [27]:

(15)

(16)

(17)

where , and show the position and the heading of

the vehicle in the world coordinates, and describe the

translational velocities, and represents the angular velocity.

The linear velocities of the left and right tracks are represented

by and and shows the distance between the

two tracks (for our full scale excavator, a Takeuchi TB035, it

measures as 1.275m).

Several external and internal sources can affect the accuracy

of the vehicle’s motion. Overall motion error can originate

from orientation and tracking errors. The heading error de-

scribes the robot’s orientation error, while the tracking error

shows the distance between the actual and desired vehicle

positions. The heading error is the most disturbing, since it can

increase the tracking error over time. Also, since each track

works in an individual loop and receives no information about

the other, when a disturbance happens in one loop and causes

an error in the motion of the vehicle, it is corrected only in its

own loop, while the other loop carries on as before. This lack

of coordination can increase the heading error, and therefore,

the overall translational accuracy of the resultant path. The

cross-coupling controller regulates the orientation error of

the vehicle by exchanging feedback information between the

two control loops [17].
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Fig. 14. The block diagram of the Cross-Coupling Motion Controller.

The idea of cross-coupling control is based on calculation

of the actual error, multiplying that by a controller gain, and

feeding this error back to the individual loops [28] [29], shown

in Figure 14. In this figure, each of the integrator blocks

calculates the linear track position in meters (taking care of

unit conversions from the flowmeters). The difference in left

and right track position is then calculated and passed to a PI

controller. This controller ensures that the machine has zero

steady-state orientation angle error assuming straight line track

segments.

VI. TRACK CONTROL AND MOTOR

In the Takeuchi excavator, track motor speed can be man-

ually controlled by foot-pedal-actuated hydraulic pilot valves.

In order to permit either manual or computer control of

these valves, electrohydraulic pilot valves and small hydraulic

cylinders were added to the foot pedal linkage. The added

pilot valves and cylinders, Takeuchi pilot valves, and track

motors were considered as separate subsystems (Left and

Right Track Control and Motor blocks) and a transfer function

was experimentally obtained for each block. A first order

transfer function (between input speed in degrees per second

and output speed in degrees per second) with a pure delay was

obtained for each block by fitting the subsystem experimental

step response. The transfer function for left and right tracks

were found to be:

(18)

(19)

For units compatibility with Figure 1 and Figure 14, an

additional multiplicative constant is required to convert the

reference inputs in m/sec to /sec into each of the above

transfer functions.

VII. VISION-BASED MOTION TRACKING

In related work, a vision based 3D trajectory tracking

system suitable for an autonomous robot vehicle [30] is under

development here. The system includes a camera head with

three on-board CCD cameras, which can be mounted anywhere

on the mobile vehicle. For this work, the camera looks down

and straight ahead of the excavator. By processing consecutive

trinocular sets of precisely aligned and rectified images, the

local 3D trajectory of the vehicle in an unstructured environ-

ment can be tracked. The system does not rely on any prior

knowledge of the environment or any specific landmark in

the scene. Further, the scene is mostly constructed of rigid

objects, although if there are a few small moving objects

the system still relies on static information. The motion of

the robot is also assumed to be limited in acceleration. This

allows the feature search techniques to work on a small and

predictable range of possible matches. The system consists of

the following components:

1) Feature Extraction: meaningful features from the scene

that can be tracked over a sequence of frames are

detected.

2) Stereo Vision: a 3D representation of the extracted

features within the scene is obtained from a trinocular

set of stereo images.

3) Feature Tracking: the features are matched using a multi-

stage matching process.

4) Motion Estimation: the relative motion of the camera is

estimated in an absolute reference frame.

5) Position Refinement: the 3D world feature locations are

refined by combining all previous geometric measure-

ments of the same features.

Each one of these components is considered in more detail

below.
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Fig. 15. A typical ground image with corners shown with bright crosses.

1) Feature Extraction: Although globally all the points in

a scene convey some information about the motion, locally

not all the pixel correspondences in the scene image carry

valuable motion information. For example, edges, occlusions

or areas of uniform intensity, can at best locally convey

partial information about the motion. Also processing the

entire existing image pixels is a time consuming process

and includes ambiguity. For these reasons, it was decided to

work with discrete points, interest points, of the scene with

maximum information content that are invariant with respect

to scale, rotation and point of view. Many different interest

point detectors exist in the literature. However the performance

of each of these methods differs from the others based on the

quality of the localization, robustness with respect to noise

and illumination changes, and the detection efficiency. Schmid

and Mohr [31] compare and evaluate several interest point

detectors based on their repeatability and information content.

They show that Harris and Stephens corner detector [32]

outperforms other methods with a higher geometric stability

and a larger independency from imaging conditions.

Therefore, Harris and Stephens’ corner detector is imple-

mented that involves shifting a circular patch of the image in

different directions. If the patch includes a corner, then shifting

along all directions results in large changes. Therefore a corner

can be detected when a minimum number of changes produced

by any of the shifts is large enough:

(20)

presents the image intensity value at point and

and introduce the shift amount of the circular window

(21)

Here is a smoothing factor and it affects the quality of the

corners found. Each corner’s quality is measured from a corner

response ,

(22)

Where,

and

(23)

Figure 15 shows corner detection results for a sample image.

2) Stereo Vision: The 3D world coordinates (X,Y,Z), rela-

tive to the camera for each corner are computed using a stereo

algorithm. The camera system captures a set of three images

which are precisely aligned horizontally and vertically [33].

Candidate feature correspondences for the overlapping regions

in the three stereo images are found and the measure of

Normalized Sum of Square Differences are computed for each

pair of match candidates. Then, the best match candidate

is found by disparity sum minimization using the multiple-

baseline algorithm [34]. In addition to the epipolar constraint,

agreement between the horizontal and vertical disparities is

employed. This constraint eliminates unstable features, partic-

ularly those due to shadow effect. For areas of the reference

image that are common in either the horizontal or vertical

stereo images, the Fua [35] method is employed. Although

construction of the depth is possible with just two stereo

images, the use of three images enhances the accuracy of the

depth and the estimated motion by eliminating invalid match

candidates. The X and Y coordinates are estimated using the

corresponding disparities, horizontal for X and vertical for Y.

The Z value is computed using the average values of the two

similar horizontal and vertical disparities, as shown in 24.

(24)

In this equation, and are corresponding horizontal and

vertical disparities, represents the separation between the

stereo cameras and is the focal length of the cameras.

3) Feature Tracking: In this section, corresponding

features are tracked from one frame (at time= ) to the next (at

time= ). There is no assumption or prediction about the

value or direction of the motion. Systems with extra knowledge

of the motion [36] from other sensors have the advantage of

being able to search over smaller neighborhoods for match

correspondences. Systems with more complicated features or

landmarks usually track landmarks through different frames,

since detecting the landmark or model from scratch may

take more time. In this approach it is not possible to track

identical corners from frame to frame without detecting them

in each set of new images. Therefore, for each corner a

simple search routine is applied in order to find all possible

match candidates in the vicinity of the predicted position

in the next image frame. Accordingly, a similarity metric

function, the Normalized Sum of Squared Differences (NSSD),

is implemented to measure the similarity of each pair of match

candidates [35].

(25)

where and present the image intensities with the average

values of and . The two corners within corresponding

image search regions with the highest similarity metric, ,

are considered to be identical features. In order to cover
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all motions, a wide search scope is required, due to two

factors. The displacement of the features between frames

is affected by the feature to camera distance, the rotation

and/or the translation that may have occured. This wide search

scope increases the number of match candidates, elevating the

possibility of false matches and influences the accuracy of the

motion estimation. In order to prevent false correspondence

matching, a large NSSD window of 27 27 is used.

4) Motion Estimation: Having a set of corresponding cor-

ners between each two consecutive images, motion estimation

becomes the problem of optimizing a 3D transformation that

projects the world corners, constructed from the first image,

onto the second image [37]. Although the 3D construction of

2D features is a non-linear function, the problem of motion

estimation is still well-behaved. This is because any 3D motion

includes rotations and translations.

Rotations are functions of the cosine of the rotation

angles.

Translation toward or away from the camera introduces a

perspective distortion as a function of the inverse of the

distance from the camera.

Translation parallel to the image plane is almost linear.

Therefore, the problem of 3D motion estimation is a promising

candidate for the application of Newton’s method, which is

based on the assumption that the function is locally linear.

To minimize the probability of converging to a false local

minimum, the outliers are found and eliminated during the

iteration process.

With this method, at each iteration a correction vector is

computed that is subtracted from the current estimate, resulting

in a new estimate. If is the vector of image coordinates

for iteration , then

(26)

Given a vector of error measurements between the world

features and their projections, the is found that eliminates

(minimizes) this error.

The effect of each element of the correction vector

on error measurement is the multiplication of the partial

derivative of the error with respect to that parameter to the

same correction vector; this is done by considering the main

assumption, local linearity of the function

Where (27)

is the Jacobian matrix and presents the error between

the predicted location of the object and actual position of the

match found in image coordinates. Each row of this matrix

equation states that one measured error, , should be equal to

the sum of all changes in that error resulting from parameter

correction [38]. Since Equation 28 is usually over-determined,

and therefore, no unique solution exists, a vector is found

that minimizes the -norm of the residual.

(28)

Equation 28 has the same solution as the normal equation,

(29)

Therefore, in each iteration of Newton’s method, the normal

Equation 29 for using decomposition [39] is solved.

To minimize the probability of converging to a false local

minimum, outliers are eliminated during the iteration process,

based on their positional error.

The most computationally expensive aspect of implement-

ing the Newton method is the calculation of the partial

derivatives, or the Jacobian matrix. The partial derivatives with

respect to the translation parameters can be most easily calcu-

lated by first reparametrizing the projection equations [37]. If

the vector of motion parameters is ,

then the new location of projected point in the

subsequent image is

(30)

, and show the incremental distances ( ) and ,

and are rotational increments about the , and .

The partial derivatives in the Jacobian matrix, Equation 27,

are calculated from

(31)

(32)

(33)

(34)

The partial derivatives of , and with respect to coun-

terclockwise rotation parameters (in radians) can be found

in Table III. This table shows how easily and efficiently the

TABLE III

THE PARTIAL DERIVATIVES TABLE.

Jacobian matrix elements in Equation 27 are computed.

5) Position Refinement: Several parameters can affect sys-

tem accuracy. Sensor noise and quantization associated with

the image can each introduce slight displacements at feature

locations within the image. Furthermore, such inaccuracies

can lead to faulty match correspondences between frames.

As the mobile robot navigates in its environment, most of

the features fall into the camera field of view for a period of

several frames. Detection of a feature in each frame by itself

provides additional information about that feature. Also, as the

camera becomes closer to a feature, or as the features move

from the image sides to its center, the 3D accuracy of the

feature can improve dramatically. The second improvement is

due to the fact that camera images are more distorted near the

corners of an image than at the center. Therefore, combining

the measurement for a feature with all its previous associated

information reduces the uncertainty of that feature.
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In this system, each frame, within which a feature is

detected, gives an additional measurement for the location

of that feature. Therefore, a positional covariance is also

associated with each observed feature using a Kalman filter

generation. Each filter is updated using new information for

the same feature over time. The Kalman filter provides a means

to combine these noisy measurements to form a continuous

estimate of the current location of the feature. Each point

in the world space is associated with a Kalman filter, and

updated using new motion information. This process increases

the accuracy of location information of the feature points in

the world space. A Kalman filter is implemented in a similar

fashion to Shapiro’s method [40].

This formulation is recursive and the least squares estimate

of the world feature position , and its covariance , are given

recursively by

(35)

(36)

(37)

In these equations represents the frame number. is the

uncertainty in the estimation of corresponding to frame ,

denotes the filter gain, indicates the current measurement of

the feature, represents the covariance matrix of the errors

and is the identity matrix. To prevent bias from distant

features, working in the disparity space with axes that are

the current image plane coordinates and the corresponding

feature disparity [41] is implemented. Tracking of features

are maintained for a while, even if they move out of the

camera’s field of view. However, if a feature is not seen in

the last 6 consecutive frames it will be retired. Obviously, the

error vector for any given measurement relies on the relative

accuracy of that measurement. The corner detector’s accuracy,

which is related to the accuracy of the stereo system, originally

2 pixels, is improved by fitting a sub-sample estimator [42]. It

is a simple quadratic estimator that locates the corner within a

pixel. The method uses neighboring intensity values and fits a

second order curve on the corner and its two neighbors. Since

the depth construction is very sensitive to noise, this estimator

improves the accuracy of the depth construction significantly.

6) Experimental Results: It is important to point out that

in this system the vision sub-system is used for finding the

relative motion between each two consecutive frames and not

the overall trajectory of the vehicle in the global coordinate

system. The Kalman filter helps to reduce the error in the

vehicle’s trajectory over time and if the vehicle traverses

around in a bounded environment, it helps to reduce the

positional error of world features as they may be viewed

several times from different distances. The more accurate 3D

positional information of world features, the more accurate

motion estimation between every two frames.

The performance of the vision system was examined by

comparing the actual position of the moving camera platform

and the camera-estimated position, Figure 16. Here motion

is determined while the vision system moves from a starting

point A to a point D. The corresponding points (A - D) in

the actual and the estimated trajectory are marked with stars.

The vision system estimates all 6 variables of the 3D motion,

although the physical experiment requires only 3 variables ( ,

and the vertical axis orientation ).
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Fig. 16. The actual and estimated path using the vision system.

From this experiment, it was concluded that translational

error in the worst case, is less than for a typical rotational

error is limited to a value of less than for a 30 rotation.

Although this error is large, it is important to note that the

accuracy of the slippage detection system is only dependent on

the accuracy of the estimated local motion between every two

consecutive frames. The translational and orientational errors

for two consecutive frames are within a few percent, , of

the motion.

The improvement obtained by using a Kalman filter was

next examined. In this experiment 75 sequential frames were

processed with and without Kalman filtering. As can be seen

from Figure 17, the Kalman filter significantly improves the

accuracy.

For this application, the frame-to-frame accuracy is most

important as that is what is used to determine slip. The camera

was not used to measure world position at this time.

VIII. SLIPPAGE CONTROLLER

One major problem with tracked robots such as excavators

is the track slippage during sudden starts or stops, and over

various types of surfaces. Slippage usually occurs when one

or both tracks lose traction with the ground surface, which

makes the readings of the dead-reckoning position odometer

erroneous. Moreover, when different amounts of slippage oc-

cur between left and right tracks, the tracked vehicle does not

follow the appropriate curvature of the desired path. Therefore

a path tracking error, and/or a position estimation error, again

occurs.

With the use of only local, dead-reckoning sensors, the

interaction between machine tracks and the ground, and thus

slippage, cannot be detected. To overcome this problem, a

novel, vision-based 3D motion tracking system is integrated

with the existing excavator sensors.

Slippage is now detected by comparing the track distance

traveled in a specified time period, as measured by the track
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Fig. 17. Motion estimation error improvement with Kalman filtering scheme.

flow sensors, with that estimated by the vision system. Instead

of relying on the dead-reckoning sensor for measuring the

traveled distance, a flowmeter sensor is used. This sensor is

used because readings of odometers for outdoor uneven and

rough surfaces are often not very reliable.

A. Kinematic Equations of Motion

Figure 18 displays the excavator coordinate system as it

moves around in two consecutive frames and . The

global and world coordinates are shown by the axis. The

local and excavator coordinates are the forward direction

of the mobile robot and the direction perpendicular to this, in

the right hand sense. The heading direction is defined as

the angle between the local axis and the global axis.

and define the change in heading angle and the distance

traveled by the center of the machine between consecutive

sampling times.
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Fig. 18. Euclidean Coordinate System.

At each sampling instant, measures of the incremental

distance traveled by each track in the sample time are obtained

from the flowmeters, as and for the right

and left tracks. The displacement of the center of the machine

and the change in heading angle can be calculated by the

relations

(38)

(39)

where represents the distance between the two tracks.

In order to calculate the location of the excavator at time ,

it is assumed that the speed of the tracks remains constant for

the entire time between each two samples. It is also assumed

that the machine follows a path comprised of an arc of a circle.

Note that a straight line is just an arc with an infinite radius.

The location of the mobile robot at time k can be given by

equations [27]

(40)

(41)

(42)

B. Slippage Detection

The individual track slippage condition is detected by com-

paring the track distance traveled during a time period, as

measured by the track flowmeter sensor, with that calculated

by the vision system. The derivations of the left and right

track distances from the vision-based motion tracking system

estimations, as well as the equation for track slippage, are

presented in this section.

At each time, the vision system provides six motion pa-

rameters that represent the three translations along and three

rotations around axes ( ). In this

work, only and are of interest, since these were

the only motions measurable by the individual track hydraulic

flowmeters. Figure 19 illustrates the motion of the center of the

excavator and the motion of the camera system between two

image frames. In this figure, the center of excavator and the

center of the camera at two consecutive frames, and ,

are given by , ,

and in the world coordinate system.

Assuming that the initial location of the excavator is ,

(43)

(44)

The motion of the excavator and camera from frame to

in the world coordinate system can be represented in terms

of the excavator center and its offset from the camera center

by:

(45)

(46)

(47)

(48)
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The coordinate of the camera center can be expressed by:

(49)

(50)

(51)

(52)

(53)

The motion of the camera can be rewritten as:

(54)

(55)

Changes in the position of the excavator can be expressed by

the estimated motion of the vision system as:

(56)

(57)

With the assumption of a constant speed for the excavator

between two consecutive frames, the vision system’s estimated

parameters, , and , are used to

compute the translational and rotational speed of the excavator.

(58)

(59)

Here represents the time between the two frames, 50ms.

Using the same kinematics equations developed in 38 and 39

for vision, the individual left and right track distances, mea-

sured by the vision system can be estimated by:

(60)

(61)

During a typical instance of slippage, the distance measured

by the respective track hydraulic flowmeter is larger than

that estimated by the vision system. The flowmeter readings

for individual left and right tracks provide and

. The track slippage, therefore, can be defined by:

(62)

Here the subscript can be either or for the right or left

track respectively. As the slippage value varies in magnitude

between to , it represents conditions of zero track

slippage to total track slippage.

if ,

if .
(63)

During a slippage condition, coefficients of and

are non-zero values. Coefficients and are then

set to 1 using Equation 63. and are passed to the path

tracking controller as shown in Figure 7. As soon as a slippage

is detected in the path tracking controller, the destination

speeds of the left and right tracks ( and ) are

reduced as represented in Equation 14, until either the slippage

condition is removed or the vehicle stops. If the vehicle stops,

then the operator is notified for further inspection.

These two values are used as scale factors in the PTS Inverse

Kinematics equation (14) to decrease the corresponding values

of and .

IX. EXPERIMENTAL RESULTS ON TAKEUCHI EXCAVATOR

A Takeuchi TB035 excavator formed the target testbed

machine (Figure 20). The computing platform on the Takeuchi

was comprised of a VME-bus based card cage behind the op-

erator’s seat. The system was powered from the on-board 12V

power supply by a 12V DC to 110V AC inverter. The on-board

CPU was a SPARC 1E CPU running the VxWorks real-time

operating system. Analog data was handled by a multichannel

A/D board, and a D/A board. The on-board computer ran the

path-planner and the machine control software at a control

interval of 50 ms. A remote UNIX host machine (SPARC 5)

was connected to the on-board system through an ethernet

link. This host computer downloaded software initially to the

on-board machine and logged data using the Stethoscope real-

time utility. Stethoscope worked in conjunction with VxWorks

to gather specified data variables in real-time.

Due to the computational limitations of the on-board pro-

cessor, the image processing of the on-board trinocular stereo

camera (Triclops) was carried out by a remote PC-based pro-

cessor reporting position coordinates to the on-board processor

via ethernet.

The ability of the path planner to integrate with the path

tracking controller was first evaluated. This experiment was

carried out on a flat concrete laboratory floor with a 5m by

5m area marked off in 1m by 1m squares. Obstacles were

located in some of the squares and the locations of these were

entered into the path planner. The path planner weight was

set to 0. A human interface allowed the operator to enter a

goal position (x,y) and to observe the paths found by the

planner. The locations of two sets of obstacles and the paths

found are shown in Figure 21. A calibrated camera placed
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Fig. 20. The Takeuchi TB035 tracked excavator.
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Fig. 21. Solution paths for different cases of the configuration space and
goal positions.

in the ceiling of the laboratory measured the location of the

centroid of three lights located on the roof of the excavator

cab to an accuracy of less than 7 cm at any point during the

motion of the machine along the complete path. This camera

was only used for reporting positioning errors. Track odometry

feedback was used in the excavator controller. Table IV shows

the resulting errors as reported by the vision system.

Next, the contribution of the cross-coupling controller was

evaluated. Figure 22 shows the heading angle of the vehicle

with and without the cross-coupling controller [43]. When the

CCMC was disabled, the heading angle, and thus heading

error, constantly increased once the tracks reached their steady

state value. When the CCMC was enabled, the heading angle

reached a steady state value of zero degrees about 4s after

the step change occurred in the track reference speeds. The

divergence of the heading angle for the case the CCMC

was disabled was a direct result of the fact that each of the

individual track controllers acted independently of each other.

Thus, with an unbounded heading angle and heading error,

the path error incurred by the traveling excavator would also

TABLE IV

POSITION ERRORS MEASURED WHILE RUNNING THE SYSTEM.

x y
error[cm] error[cm] error[ ]

Simple path no. 1 4 10 -3

Simple path no. 2 3 7 -1.5

Simple path no. 3 5 10 -3

Complex path no. 1 12 14 -1

Complex path no. 2 12 7 -3

Complex path no. 3 10 15 -4.5
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Fig. 22. Heading error with and without cross coupling controller.

be unbounded as shown in Figure 23. Also, in Figure 23 the
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Fig. 23. Path driven for commanded straight line with and without cross
coupling controller.

correct path when the CCMC was enabled is shown in dotted

line for a 7 meter long path.

The performance of the slippage controller is represented

through the next experiment. A 25 slippage was simulated

in the machine by slowing down the right track by 25

but compensating its flowmeter to keep reporting the original

speed. The track disturbance happens between times

and for a 25 right track slippage. Figure 24



16

represents the computed slippage values in this example. At

time the slippage is detected to be larger than the

threshold, set for the system to . Figures 25 and 26 show
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Fig. 24. Track slippage values during slippage of the right track.

the correction procedures on the left and right tracks.
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Fig. 25. Track speed response of the left track during the slippage of the
right track.

As can be seen in Figure 24 a right track slippage of 37

was detected at . Figure 25 and 26 show that the left

and right track speeds were decreased by a factor of where

. For all subsequent detection times (

and etc.) the slippage value was below the minimum slippage

threshold value of 20 , and the track reference speed scaling

factors were set to and . The frequency of

the slippage detection mechanism is highly dependent on the

speed of the vision system. Therefore a faster vision system

enables the detection and correction of the slippage at an

earlier time, allowing a lower slippage threshold.

X. CONCLUSION

Motivated by environmental considerations in off-road ap-

plications of excavator-based machines, this paper has de-
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Fig. 26. Track speed response of the right track during the slippage of the
right track.

scribed a complete architecture for an semi-autonomous exca-

vator (a Takeuchi TB035) that employs a path planner to find

an obstacle-free path that will trade off path length against

soil damage, a path tracking controller employing fuzzy logic

PD control of heading angle based on lateral track error

and orientation error , a motion controller using cross-

coupling, and the novel coupling of a vision system with a

path tracking controller to detect and correct excessive track

slip.

The system was constrained by certain limitations. The

first is that it only plans and controls piecewise linear path

segments since this simplifies and speeds up the path planning.

Secondly the vison system could not be used to estimate

machine position and orientation due to cumulative error in the

vision system as a result of its limited angle of view. We plan

to resolve these limitations can be resolved in future work.
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