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Abstract 
 

Many problems in real-world applications require searching 
graphs. Understanding the performance of search algorithms 
has been one of the eminent tasks of heuristic search 
research. Despite the importance of graph search algorithms, 
the research of analyzing their performance is limited, and 
most work on search algorithm analysis has been focused on 
tree search algorithms. One of the major obstacles to 
analyzing graph search is that no single graph is an 
appropriate representative of graph search problems. In this 
paper, we propose one possible approach to analyzing graph 
search: Analyzing the performance of graph search 
algorithms on a representative graph of a cluster of 
problems. We specifically consider job-sequencing problems 
in which a set of jobs must be sequenced on a machine such 
that a penalty function is minimized. We analyze the 
performance of A* graph search algorithm on an abstract 
model that closely represents job sequencing problems. It is 
an extension to a model widely used previously for 
analyzing tree search.  One of the main results of our 
analysis is the existence of a gap of computational cost 
between two classes of job sequencing problems, one with 
exponential and the other with polynomial complexity.  We 
provide experimental results showing that real job 
sequencing problems indeed have a huge difference on 
computational costs under different conditions.   

Introduction and Overview  
Graph search has been shown in many cases to be more 
effective and efficient than tree search. There are real-world 
applications where tree search is simply not feasible. For 
example, sequence alignment, an important problem in 
computational biology that can be formulated as a shortest-
path problem in a grid, is only amenable to graph search 
algorithms [Korf and Zhang 2000]. There are also real 
problems that can be solved more efficiently by graph search 
algorithms.  For instance, it was shown in [Sen and Bagchi 
1996] that when the evaluation function is non-order-

preserving ([Pearl 1984], pp. 100-102), graph search for job 
sequencing problems significantly outperforms tree search in 
terms of running time.  Moreover, a graph search usually 
uses much less memory than a tree search [Sen, Bagchi and 
Ramaswamy 1996], making many large problems solvable 
on our current machines. 

Despite its importance in understanding, characterizing 
and solving difficult problems, the performance analysis of 
graph search algorithms is almost an untouched topic.  This 
sharply contrasts to a large amount of effort and literature 
devoted to the topic of performance analysis of tree search 
algorithms [Huyn, Dechter and Pearl 1980, Pearl 1984, 
Bagchi and Sen 1988, Davis 1990, Chenoweth and Davis 
1991, Zhang and Korf 1995, Korf, Reid and Edelkamp 
2001]. To further advance the state-of-the-art on heuristic 
search, especially on performance analysis, it is desirable to 
extend our current research to the performance analysis of 
graph search. 

One major difficulty that has crippled the research on 
the performance analysis of graph search algorithms is 
perhaps that no single graph is an authenticated 
representative of various real search problems.  Therefore, 
general results on the performance of graph search seem to 
be out of reach, which to some extent explains and reflects 
the state-of-the-art on performance analysis of graph search.  
On the other end of the spectrum of possibilities to 
performance analysis, we may consider each individual 
problem that we encounter.  There are numerous important 
graph search problems.  To solve many of them and try to 
generalize the results may be a tedious and difficult task. 

In this research, we consider an alternative to the 
performance analysis of graph search.  We take a middle 
ground between a “general” graph search problem and a 
single problem, i.e., we consider a representative model of a 
set of related problems.  We hope that the results will not 
only shed lights on individual class of problems, but also can 
be combined relatively easily to provide a deep 
understanding of graph search problems and algorithms. 

In this paper, we are particularly interested in a class of 
job sequencing problem, an important topic in Computer 
Science and Operations Research. Job sequencing and 
scheduling problems appear in many real applications in 
manufacturing and production systems as well as in 
information-processing environments [Pinedo 1995].  We 
consider the class of problems in which N jobs must be so 
sequenced on a machine that a penalty function on job 
completion time is minimized.  The penalty function may be 
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in various other different forms, such as to minimize the 
mean job lateness and/or earliness, weighted sum of non-
linear functions of completion times, etc.   

Our analytic model of job sequencing problems is a 
graph that defines a partial ordering of subsets of a set of N 
elements under the set inclusion property. In this graph, there 
are 2N nodes; the set of N elements is the root node at level 0 
and the empty set is the goal node at level N.  Thus it is a 
directed acyclic graph (DAG) with one goal node and allows 
multiple solution paths.   

To make analysis feasible, following [Pearl 1984] it is 
assumed that the normalized errors of heuristic estimates of 
non-goal nodes are independent, identically distributed  
(i.i.d.) random variables.  Using this abstract model, we 
analyze the expected complexity of A* graph search 
algorithm, measured by the number of node expansions 
[Pearl 1984].  We choose A* because it is optimal in terms of 
the number of node expansions among all algorithms that use 
the same heuristic information [Dechter and Pearl 1985].  
Therefore, the results reflect the expected complexity of 
searching the abstract model as well as the underlying 
problems represented by the model. 

We present two main theoretical results in this paper.  
First, we show that under certain weak conditions the 
expected number of distinct nodes expanded by A* increases 
exponentially with the number of jobs N for large N.  This 
result matches the previous experimental results on the single 
machine job sequencing applications [Sen, Bagchi and 
Ramaswamy 1996].  Second, we identify cases of interest 
where the expected number of node expansions of A* is 
polynomial in N for large N.  These two classes of 
complexity indicate that the expected complexity of A* 
graph algorithm on job sequencing problems has two phases, 
one exponential and the other polynomial, showing a huge 
gap similar to a phenomenon of phase transitions.  Indeed, 
our experimental results on single machine job sequencing 
problems support our theoretical analysis.  Specifically, we 
summarize the previous results for the exponential case, and 
provide new test results on the polynomial case. 

The paper is organized as follows. The basic concepts 
and the analytic graph model are introduced in the next 
section.  We then analyze the expected complexity of A* 
using the model.  The proofs to the theorems are included in 
the Appendix.  Then we present our experimental results.  
Concluding remarks are given at the end. 

Basic Concepts 
A search graph (or network) G is a finite directed graph with 
nodes n, n', n1, n2, ... The search always begins at the start (or 
root) node s, and ends at the goal node r. Each directed arc 
(n1,n2) in G has a finite arc cost c(n1,n2) > 0. A path is a 
sequence of directed arcs. A solution path is a path that 
begins at the start node s and ends at the goal node r. The cost 
c(P) of a path P is the sum of the costs of the arcs that make 
up the path. The objective of a search algorithm like A* is to 
find a solution path of minimum cost in G. To find such a 
solution path, A* uses a nonnegative heuristic estimate h(n) 
associated with each nongoal node n in G; h(n) can be 

viewed as an estimate of h*(n), which is the cost of a path of 
least cost from n to the goal node. 
 Let g*(n) be the cost of a path of least cost from the start 
node to node n, and let f*(n) = g*(n)+h*(n). Then f*(n) can 
be viewed as the cost of a solution path of least cost 
constrained to pass through node n. During an execution of 
A*, we use g(n) to represent the cost of the path of least cost 
currently known from s to n. So g(n) can be viewed as the 
current estimate of g*(n), and f(n) = g(n)+h(n) as the current 
estimate of f*(n). As is customary, f*(r) denotes the cost of a 
minimum cost solution path in G. 
 Our networks are directed acyclic graphs. In such 
graphs, introducing more than one goal node adds no extra 
generality because there are many paths from the root to the 
goal node. When A* is run on such a network, a node may 
reenter OPEN from CLOSED; as a result, a node may get 
expanded more than once. Let Zd and Zt denote, respectively, 
the number of distinct nodes expanded by A* and the total 
number of node expansions made by A* when run on a given 
network G. Our primary goal is to determine the expected 
values E(Zd) and E(Zt). 
 In order to assign a probability distribution on the 
heuristic estimates of nongoal nodes in G in a meaningful 
way, we adopt the notion of a normalizing function [Pearl 
1984, pp. 184]. A normalizing function Φ(.) is a total 
function with the set of nonnegative real numbers as domain 
and the set of real numbers > 1 as range. It has the following 
properties: 
(i) Φ(0) = 1; 
(ii) Φ(x) is nondecreasing in x; 
(iii) Φ(x) is unbounded, i.e. the range of Φ has no finite 

upper bound. 
We allow Φ to take one of three functional forms, viz. 
identity, less-than-linear and logarithmic: 
Φ(x) = max {1, x}   identity 
Φ(x) = max {1, xδ } for some δ, 0 < δ < 1, less-than-linear 
Φ(x) = max {1, ln x}   logarithmic 
The normalized error at a nongoal node n is X(n)=(h(n)-
h*(n))/ Φ(h*(n)).  We assume that for all nongoal nodes in G, 
the normalized errors X(n) are i.i.d. random variables. The 
normalizing function Φ determines the accuracy of the 
heuristic estimate function. When Φ is the identity function, 
the magnitude of the error h(n)-h*(n) is proportional to h*(n). 
The purpose of allowing other functions, such as logarithmic 
ones for example, is to enable us to study the consequences 
of limiting the error h(n)-h*(n) to lower order values, 
implying greater accuracy of heuristic estimates.  We use X 
in place of X(n), as the X(n)'s are identically distributed.   Let 
FX(x) = Prob{X ≤ x} be the cumulative probability 
distribution function of X, which is nondecreasing in x. We 
allow FX(x) to have discontinuities; these must be left-
discontinuities, since FX(x) by definition is right-continuous. 
We do not assume any specific functional form for FX(x). 
 A heuristic function h is admissible if for every nongoal 
node n in the network G, h(n) ≤ h*(n). Otherwise h is 
inadmissible. If FX(x) = 1 for x ≥ 0, then all nongoal nodes 
have admissible heuristic estimates with probability 1. Let a1 
= lub {x | FX(x) = 0} and a2 = glb {x | FX(x) = 1}.  For x < a1, 
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FX(x) is identically 0, while for x ≥ a2, FX(x) is identically 1. 
The heuristic estimate function is admissible if a2 ≤ 0; it is 
purely inadmissible if a1 > 0. Note that when Φ(x) is the 
identity function, we must have a1 ≥ -1. From now onwards, 
whenever a normalizing function is under discussion, we 
assume that the corresponding a1 and a2 are finite. 

Minimum Penalty Job Sequencing 
Let SN be the set {1, 2, …, N}. The subsets of SN under the 
partial ordering relation induced by set inclusion form a 
directed acyclic graph Gjs of 2N nodes. In this graph SN is the 
root node at level 0; and the empty set {} is the goal node at 
level N. The immediate successors of a node n are the 
various subsets of SN obtained from n by removing one 
element. Thus a node corresponding to a subset of k elements 
has k immediate successors. Gjs for N = 4 is shown in Figure 
1. Such a graph has the following characteristics: 
i) A node with i elements is at level N-i. 
ii) There are i! distinct paths to a node at level i. 
iii) There are NCi  nodes at level i. 
iv) The total number of paths starting at the root and going 

up to level i is NCi.(i!). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Analytic model Gjs for N=4 

Gjs is representative of the type of search graphs that arise in 
certain single machine job-sequencing problems. These 
search graphs were searched using A* or TCBB [Kaindl et al 
1995]. In the analysis below, we restrict ourselves to the A* 
algorithm due to its optimality in terms of node expansions.  
 Suppose that jobs Ji with processing times Ai > 0, 1 ≤ i ≤ 
N, have been submitted to a one-machine job shop at time 0. 
The jobs are to be processed on the given machine one at a 
time. In this analysis we assume that jobs have no setup 
times. Let the processing of job Ji be completed at time Ti.  
 Penalty functions Hi(.) are supplied such that the penalty 
associated with completing job Ji at time Ti is Hi(Ti) > 0. Hi 
is nondecreasing, and in general nonlinear. The jobs must 
be sequenced on the machine in such a way that the total 
penalty F = Σ{Hi(Ti)| 1 ≤ i ≤ N} is minimized. Nodes in Gjs 
correspond to (unordered) subsets of jobs that remain to be 
processed; the root node corresponds to the set of all N 

jobs, and the goal node to the empty set of jobs. Arc costs 
are assigned as follows. Suppose there is an arc from node 
n1 to node n2, and suppose job Ji is present in the subset of 
jobs associated with n1 but absent from the subset of jobs 
at n2; then c(n1,n2) = Hi(Ti). Here Ti is the time at which the 
processing of job Ji is completed; its value does not depend 
on the order in which jobs prior to job Ji are processed. 
Since setup times are ignored in this model, arc costs are 
order preserving [Pearl 1984]. 
 We now assign a probability distribution on the heuristic 
estimates of nodes. To compute the number of nodes 
expanded, we impose some restrictions on the job processing 
times and the penalty functions. We first suppose that 1 < Ai 
< k, 1 ≤ i ≤ N, for some constant k > 1. Thus we do not 
permit jobs to have arbitrarily large processing times. We 
then assume that there is a positive integer constant β such 
that Hi(x) is o(xβ), 1 ≤ i ≤ N. This means that each penalty 
function is polynomial in its argument, with the highest 
power in the polynomial being less than β. These are both 
reasonable assumptions to make about the processing of jobs 
in single machine job sequencing problems. Similar 
assumptions were made in [Sen, Bagchi and Ramaswamy 
1996]. Under these circumstances, when the normalizing 
function is the identity function and the heuristic is not purely 
inadmissible, the expected number of distinct nodes 
expanded turns out to be exponential in N for large N. 

Goal {} 

{2,4} 

{3,4} 

Root {1,2,3,4}

{1,2,4} {2,3,4} {1,3,4} {1,2,3}
Theorem 1: Suppose that for 1 ≤ i ≤ N, Hi(x) is o(xβ) where 
β is a positive integer constant, and 1 ≤ Ai ≤ k for some 
constant k > 1. If Φ(x) is the identity function and a1 < 0, then 
E(Zd), the expected number of distinct nodes of Gjs that get 
expanded, is exponential in N for large N. 
Proof: See Appendix.  ♦ 
 This theorem is quite general and covers a wide variety 
of situations that arise in minimum-penalty sequencing (see 
quadratic penalty problems and other forms in [Sen and 
Bagchi 1996]). For example: 
i) There is really no need to assume a constant upper 

bound on the job processing times. In the proof, we may 
assume that there exists a (small) positive integer 
constant ε such that Ai is o(Nε), 1 ≤ i ≤  N. 

ii) The proof also applies to normalizing functions that are 
less-than-linear i.e. to Φ(x) = xδ, 0 < δ < 1. 

Experimental results for the above case have been described 
in Section 4.  
 What happens if the normalizing function is 
logarithmic? Nothing specific can be said in general as 
described in the following example. 
Example 1: Let all arcs in Gjs have unit cost. 
i) Suppose the heuristic estimate function h is perfect. 

Then E(Zt) can be linear to exponential in N depending 
on how ties are resolved. 

ii) Suppose that the heuristic estimates are not perfect. 
Suppose a1 < 0, i.e. heuristic estimates of nodes have a 
nonzero probability of being admissible. Then for any 
nongoal node n, f(n) < N with probability p > 0, so that 
E(Zd) = E(Zt) ≥ 1 + p NC1 + p2 NC2 + … +  pN which is 
exponential in N for large N. This holds even when the 
normalizing function is logarithmic.  ♦ 
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There exist cases of polynomial complexity when the 
normalization function is logarithmic in nature. In such cases, 
we don’t need the restriction of the constant upper bound on 
arc costs; instead, we put restrictions on the number of 
outgoing arcs emanating from a node with arc costs lying 
within a give upper bound. This assumption covers the cases 
where the arcs below a node may have varying cost structure. 
Our assumptions are as follows: 
• We restrict ourselves to graphs Gjs with a cost function 

defined on its arcs. In such graphs, not too many 
outgoing arcs at a node have arc costs lying within a 
given upper bound.  Thus, we may assume that for each 
nongoal node in Gjs, and for each y, y > 0 and integer, 
there are at most min(N-i, θ(y)) outgoing arcs from 
node n with arc cost ≤ y, where i is the level of node n 
in Gjs  and  θ: { 1,2,…,N }  R be a given non-
decreasing (total) function with the positive real numbers 
as domain as well as range. Further, for every nongoal 
node, there is at least one outgoing arc of arc cost ≤ k 
for some given constant k ≥ 1 independent of N.  Let’s 
call such job sequencing search graphs as θ-restricted. 

• In addition, we assume that the processing times of jobs 
are distinct. Then SN represents the set of jobs with 
distinct processing times and therefore the jobs in SN can 
be viewed as ordered in increasing order of processing 
times. The costs of the outgoing arcs would then have the 
same relative order as the processing times of jobs that 
have been scheduled from the subset. The outgoing arc 
corresponding to the scheduling of the job with the 
smallest processing time from a node n would have the 
lowest cost, and so on. We call such job sequencing 
graphs C-ordered. Thus, for the penalty functions 
considered in ([Kaindl et al 1995, Sen, Bagchi and 
Ramaswamy 1996]), the graphs are C-ordered so long as 
the processing times of jobs are distinct.  

Theorem 2: Let θ(y) = yβ for integer y > 0 and 0 < β ≤ 1, and 
let (Gjs, C) be θ-restricted and C-ordered.  If Φ(x) is the 
logarithmic function and a1 < 0, then E(Zt) is polynomial in N 
for large N.  
Proof: See Appendix.  ♦ 
 The following theorem specifies the sufficient condition 
to be imposed on θ-restricted graphs for which the total 
number of nodes expanded by A* will always be polynomial 
in N for large N. 
Theorem 3: Let y0 be a given positive integer independent of 
N. Let 
    θ(y)  = yβ  for y ≤ y0,  β > 0 
     = y0

β for y > y0. 
 
Let (Gjs, C) be θ-restricted and the graph be C-ordered.  Then 
regardless what Φ(x) is, E(Zt) is polynomial in N for large N. 
 Proof:  See Appendix.  ♦ 
 We now present our experimental findings in the next 
section. 

Experimental results 
We carried out a number of experiments on a single machine 

job sequencing problem in which the penalty function for a 
job is proportional to the square of its completion time. Jobs 
have processing times but no setup times. All jobs are 
submitted at time t=0. The objective is to find a sequence of 
jobs so that the sum of the penalties is minimized [Townsend 
1978]. Penalty coefficients (proportionality constants) were 
taken as integers and were generated randomly in the range 1 
to 9 from a uniform distribution. Processing times were also 
integers and were generated randomly in the range 1 to 99 
from a uniform distribution. For a given number of jobs, 100 
random instances were generated and each of these instances 
were solved using A*. The results averaged over these 100 
runs are presented in the tables. 

Exponential Complexity 
 We first solved the random instances using A*. The 
heuristic estimate at a node was computed as suggested in 
[Townsend 1978], which is known to be consistent [Pearl 
1984]. Table 1 below presents the average number of nodes 
generated and expanded by A* on problems of different 
sizes.  No node is expanded more than once since heuristic is 
consistent. These results1 were also presented in [Sen, Bagchi 
and Ramaswamy 1996]. The nodes generated and expanded 
are exponential in job size.  

Table 1: Performance of A* using consistent heuristic 
Job Nodes Generated 

    Mean         Std Dev 
Nodes Expanded 

     Mean         Std Dev 
6 23.99 4.18 5.96 1.54 
8 53.06 17.54 10.88 4.52 

10 104.05 38.56 17.38 7.25 
12 191.78 82.12 26.63 13.06 
14 372.51 198.53 44.49 26.28 
16 688.61 399.27 71.53 46.30 
18 1299.37 837.37 119.70 86.13 
20 2327.02 1523.12 191.52 137.97 

 
Next, we experimented assuming that normalizing 

function is the identity function (Theorem 1). For each of 
the problem instance,  
i) we used the quadratic penalty job sequencing problem 

where Hi(Ti)=Ci Ti
2 , that is, β=3 in Theorem 1;  

ii) processing times Ai <= 99 for all i.  
iii) Φ(x) is the identity function. 
iv) heuristic estimates (h) are admissible. 
v) h = h* - ℘ h* since Φ(x) is identity function, and ℘ is 

a random number satisfying uniform distribution 

The results are given in Table 2. Since heuristic estimate 
became inconsistent, same node was repeatedly expanded 
along different paths to a node. As a result, the number of 
nodes expanded may be more than the number of nodes 
generated. The results clearly indicate that the performance 

                                                 
1 Relatively, a little less number of generated and expanded nodes was 
reported in [Sen, Bagchi and Ramaswamy 1996] since a pruning rule was 
applied. 
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of A* with admissible heuristic deteriorates very fast with N 
when normalizing function is an identity function.  

Table 2: A* performance with linear error  
Job Nodes Generated 

    Mean         Std Dev 
Nodes Expanded 

     Mean        Std Dev 
6 61.22 4.69 60.55 18.31 
8 249.24 22.27 317.28 87.12 

10 1001.67 96.65 1606.49 443.89 
12 4029.92 400.12 7906.96 1886.63 
14 16156.33 1623.79 39349.97 10288.72 
16 64752.36 6529.43 185991.06 40743.79 

Polynomial Complexity 
Next we assumed that the normalizing function is 

logarithmic in nature (Theorem 2). For each problem 
instance of the quadratic penalty problem, 
i) we generated C-ordered graphs (distinct processing 

times) which by the nature of the problem are also θ-
restricted; 

ii) below every node, there are at most N arcs with arc 
costs < 10 x (100 N)2; 

iii) heuristic estimates (h) are admissible; 
iv) h = h* - ℘log(h*) since Φ(x) is logarithmic function and 

℘ is  a random number satisfying uniform  distribution. 

Table 3: A* performance with logarithmic error 
Job Nodes Generated 

    Mean             Std Dev 
Nodes Expanded 

    Mean     Std Dev 
6 21.00 0.00 5.00 0.00 
8 36.00 0.00 7.00 0.00 

10 55.00 0.00 9.00 0.00 
12 78.00 0.00 11.00 0.00 
14 105.62 2.49 13.06 0.24 
16 136.51 2.52 15.12 0.91 

 We also experimented with h = h* - log(κh*) where κ is 
a large constant, the objective being to have a relatively 
larger logarithmic error. The result obtained is similar, as 
shown for κ=106 in Table 4. 

Table 4: A* performance with logarithmic error, κ=106 

Job Nodes Generated 
   Mean            Std Dev 

Nodes Expanded 
   Mean       Std Dev 

6 21.04 0.40 5.01 0.10 
8 36.12 0.84 7.02 0.14 

10 55.16 1.13 9.02 0.14 
12 78.09 0.90 11.01 0.10 
14 105.84 2.89 13.08 0.27 
16 136.92 3.89 15.15 0.94 

 
With logarithmic error, the node generations and node 
expansions reduce drastically, and appear polynomial in 
problem size. Since the error is assumed to be logarithmic, 
the heuristic estimates are close to perfect heuristic and 

hence, with distinct arc costs below a node, the performance 
of algorithm A* becomes polynomial in problem size. 

Conclusion and Future Directions 

In this paper, we proposed a method to extend the analysis of 
the average-case performance of A* from tree search 
problems to graph search problems. The topic has importance 
because many practical problems can be solved more 
efficiently using graph search algorithms and a better 
understanding of their performance may help to characterize 
the features of real graph search problems.  Our main 
contribution consists of a set of average-case complexity 
results of A* graph search algorithm on an analytic model 
that captures the main features of various job sequencing 
problems.  Both our analytical and experimental results show 
that the expected complexity of job sequencing problems 
may change from exponential to polynomial with the 
accuracy of heuristic functions used.  In other words, the 
expected complexity exhibits an exponential to polynomial 
transition when the heuristic function becomes accurate. 
 We expect that the approach we proposed and the results 
we obtained here can be generalized in a number of 
directions.  The first direction is to use a model similar to the 
incremental random trees [Karp and Pearl 1983, Zhang and 
Korf 1995].  The second possibility is to directly compare the 
expected complexity of graph and tree search algorithm on 
graph problems.  The questions to be answered along this 
direction include the expected savings on the number of 
nodes explored that a graph search algorithm, such as A*, 
can provide.  Such analysis will help decide which algorithm 
to use for real applications in practice. 

Appendix 
Proof of Theorem 1: We renumber jobs if needed and 
assume that there is a minimal cost solution path in G of cost 
M > N, such that if we move along it from root to goal, jobs 
get scheduled from the set {1,2, ...,N} in the sequence 1 2 ... 
N.  Choose 0 < δ < 1/(β+1), and consider the nongoal nodes 
in Gjs for which all the missing jobs, corresponding to the 
jobs already completed, belong to the set {1,2,...,V}, where V 
= Nδ. There are 2V-1 such nodes excluding the root, and for 
any such node n, g(n) < V(Vk)β and h*(n) > M - V(Vk)β. 
 Let n' be the node for which the missing elements are 
exactly 1,2,...,V. Then h*(n') < M, since n' lies on the 
minimum cost solution path, and the cost of the path to n' 
from any predecessor n of n' cannot exceed V(Vk)β. It 
follows that M - V(Vk)β < h*(n) < M + V(Vk)β.  Let a' = a1/2 
< 0, so that p = FX(a') > 0. Then h(n) ≤ h*(n)+a'Φ(h*(n)) with 
probability p, so that f(n) < M with probability p, provided 
g(n)+h*(n) < M - a'Φ(h*(n)) with probability p. As a' < 0 and 
Φ is the identity function, it suffices to show M + 2V(Vk)β < 
M - a'M + a'V(Vk)β, which always holds for large N because 
V is of smaller order than N. The above conditions are true 
for n' or any ancestor of n'. Thus if node n is at level i, it gets 
expanded with probability pi. Therefore, E(Zd) ≥ 1+pV+p2 
VC2+...+pV  = (1+p)V which is exponential in N for large N. ♦ 
Proof of Theorem 2: We first show that E(Zd) is polynomial 
in N. To do this, we need to find out the total number of 
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nodes n with g*(n) + h(n) ≤ f*(r) + a2 ln (f*(r)). If node n is at 
level i, expressing h(n) in terms of h*(n) as h(n) ≥ h*(n) + 
a1ln(h*(n)), the condition becomes g*(n) ≤ h*(r) – h*(n) + a2 
ln (h*(r)) -  a1ln(h*(n)) or g*(n) < k i  + k0 ln (kN) where k 
and k0 are constants, k0  given by  
             a2 + |a1|  if  a1 < 0 
  k0 =   
             a2  if a1 ≥ 0. 
Since G is θ-restricted, outgoing arcs at a node have costs 
bounded below by 1, 21/β, 31/β, …, respectively. In computing 
upper bounds on the number of expanded nodes, these lower 
bounds can be viewed as the exact costs of the outgoing arcs. 
We have to find out, for a node n at level i, how many paths 
from the root to node n of length i have arc costs summing up 
to at most k i + k0 ln (kN). 
 Assuming Gjs is C-ordered. Consider the subset of jobs 
corresponding to a node n at level i. Let J1, J2, …, Ji  be the  
jobs of the subset which are in SN but are missing from node 
n. Suppose J1  < J2 < … < Ji. There are i! ways of scheduling 
the i jobs leading to i! paths to node n from the root. The 
scheduling of the jobs in the sequence J1, J2, …, Ji will 
determine the path of least cost from the root to node n. The 
arc costs in such a path from the root to node n will form a 
nondecreasing sequence. Thus, to find an upper bound on 
E(Zd), we have to count the number of nondecreasing 
sequences of length i which sum up to at most k i + k0 ln 
(kN) such that each element in the sequence has values 1, 
21/β, 31/β, ... , since 1/β ≥ 1, k’1/β ≥ k’ for any integer k’ > 1. So 
to get an upper bound, it is enough to find out the total 
number of partitions of a positive integer k” and then sum 
over all k” ≤ k0 ln(kN) and over all levels i. Using the Hardy-
Ramanujan asymptotic formula [Andrews 1976, pp. 70, 97] 
for the number of partitions of an integer, we get 
 E(Zd) ≤ [k N (k0 ln (kN)) A1 eA2 √ (ko ln (kN)) ]/[ k0 ln (kN) ] 
where A1, A2 are positive real constants. Thus E(Zd) ≤ A1 N 
eA2 √ (ko (ln kN)) which is polynomial in N for large N.  
 To get an upper bound on E(Zt), we have to find out the 
number of paths from the root to a node n of distinct cost, 
since n can get expanded along each of these paths in the 
worst case. Since the outgoing arc costs at a node may be 
taken as 1, 21/β, 31/β, …,  the total number of paths of distinct 
cost to a node at a level i ≤ N will be polynomial in N. Hence 
E(Zt) is also polynomial in N for large N.  ♦ 
Proof of Theorem 3: Let k0 = y0

β, a constant. Every node at 
level i, 1 ≤ i ≤ N, will have at most min(k0, N-i) outgoing arcs 
having arc costs ≤ y for any y ≥ y0; other outgoing arcs can 
be viewed as having infinite cost. The number of nodes at 
level i with finite g*-value is ≤ ko+i-1 Ci since the job 
sequencing graph is C-ordered. So the total number of nodes 
in the graph with finite g*-value is ≤ Σ{ ko+i-1 Ci | 1 ≤ i ≤ N } + 
1 ≤ ko+NCN which is polynomial in N for large N. As the total 
number of paths of distinct cost to a node at a level i ≤ N will 
be polynomial in N, E(Zt) is polynomial in N as well.  ♦ 
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