

An Average-case Analysis of Graph Search

 Anup K. Sen Amitava Bagchi ♣ Weixiong Zhang ♠
 Indian Institute of Management Calcutta School of Management Computer Science Department
 Joka, D. H. Road, Post Box 16757 University of Texas at Dallas Washington University
 Calcutta 700 027, INDIA Richardson, Texas 75083 St. Louis, Missouri 63130
 sen@iimcal.ac.in abagchi@utdallas.edu zhang@cs.wustl.edu

Abstract

Many problems in real-world applications require searching
graphs. Understanding the performance of search algorithms
has been one of the eminent tasks of heuristic search
research. Despite the importance of graph search algorithms,
the research of analyzing their performance is limited, and
most work on search algorithm analysis has been focused on
tree search algorithms. One of the major obstacles to
analyzing graph search is that no single graph is an
appropriate representative of graph search problems. In this
paper, we propose one possible approach to analyzing graph
search: Analyzing the performance of graph search
algorithms on a representative graph of a cluster of
problems. We specifically consider job-sequencing problems
in which a set of jobs must be sequenced on a machine such
that a penalty function is minimized. We analyze the
performance of A* graph search algorithm on an abstract
model that closely represents job sequencing problems. It is
an extension to a model widely used previously for
analyzing tree search. One of the main results of our
analysis is the existence of a gap of computational cost
between two classes of job sequencing problems, one with
exponential and the other with polynomial complexity. We
provide experimental results showing that real job
sequencing problems indeed have a huge difference on
computational costs under different conditions.

Introduction and Overview
Graph search has been shown in many cases to be more
effective and efficient than tree search. There are real-world
applications where tree search is simply not feasible. For
example, sequence alignment, an important problem in
computational biology that can be formulated as a shortest-
path problem in a grid, is only amenable to graph search
algorithms [Korf and Zhang 2000]. There are also real
problems that can be solved more efficiently by graph search
algorithms. For instance, it was shown in [Sen and Bagchi
1996] that when the evaluation function is non-order-

preserving ([Pearl 1984], pp. 100-102), graph search for job
sequencing problems significantly outperforms tree search in
terms of running time. Moreover, a graph search usually
uses much less memory than a tree search [Sen, Bagchi and
Ramaswamy 1996], making many large problems solvable
on our current machines.

Despite its importance in understanding, characterizing
and solving difficult problems, the performance analysis of
graph search algorithms is almost an untouched topic. This
sharply contrasts to a large amount of effort and literature
devoted to the topic of performance analysis of tree search
algorithms [Huyn, Dechter and Pearl 1980, Pearl 1984,
Bagchi and Sen 1988, Davis 1990, Chenoweth and Davis
1991, Zhang and Korf 1995, Korf, Reid and Edelkamp
2001]. To further advance the state-of-the-art on heuristic
search, especially on performance analysis, it is desirable to
extend our current research to the performance analysis of
graph search.

One major difficulty that has crippled the research on
the performance analysis of graph search algorithms is
perhaps that no single graph is an authenticated
representative of various real search problems. Therefore,
general results on the performance of graph search seem to
be out of reach, which to some extent explains and reflects
the state-of-the-art on performance analysis of graph search.
On the other end of the spectrum of possibilities to
performance analysis, we may consider each individual
problem that we encounter. There are numerous important
graph search problems. To solve many of them and try to
generalize the results may be a tedious and difficult task.

In this research, we consider an alternative to the
performance analysis of graph search. We take a middle
ground between a “general” graph search problem and a
single problem, i.e., we consider a representative model of a
set of related problems. We hope that the results will not
only shed lights on individual class of problems, but also can
be combined relatively easily to provide a deep
understanding of graph search problems and algorithms.

In this paper, we are particularly interested in a class of
job sequencing problem, an important topic in Computer
Science and Operations Research. Job sequencing and
scheduling problems appear in many real applications in
manufacturing and production systems as well as in
information-processing environments [Pinedo 1995]. We
consider the class of problems in which N jobs must be so
sequenced on a machine that a penalty function on job
completion time is minimized. The penalty function may be

Copyright © 2002, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.
♣ On leave from Indian Institute of Management Calcutta.
♠ Funded in part by NSF Grants IIS-0196057 and IET-0111386, and in
part by DARPA Cooperative Agreements F30602-00-2-0531 and
F33615-01-C-1897.

AAAI-02 757

From: AAAI-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

in various other different forms, such as to minimize the
mean job lateness and/or earliness, weighted sum of non-
linear functions of completion times, etc.

Our analytic model of job sequencing problems is a
graph that defines a partial ordering of subsets of a set of N
elements under the set inclusion property. In this graph, there
are 2N nodes; the set of N elements is the root node at level 0
and the empty set is the goal node at level N. Thus it is a
directed acyclic graph (DAG) with one goal node and allows
multiple solution paths.

To make analysis feasible, following [Pearl 1984] it is
assumed that the normalized errors of heuristic estimates of
non-goal nodes are independent, identically distributed
(i.i.d.) random variables. Using this abstract model, we
analyze the expected complexity of A* graph search
algorithm, measured by the number of node expansions
[Pearl 1984]. We choose A* because it is optimal in terms of
the number of node expansions among all algorithms that use
the same heuristic information [Dechter and Pearl 1985].
Therefore, the results reflect the expected complexity of
searching the abstract model as well as the underlying
problems represented by the model.

We present two main theoretical results in this paper.
First, we show that under certain weak conditions the
expected number of distinct nodes expanded by A* increases
exponentially with the number of jobs N for large N. This
result matches the previous experimental results on the single
machine job sequencing applications [Sen, Bagchi and
Ramaswamy 1996]. Second, we identify cases of interest
where the expected number of node expansions of A* is
polynomial in N for large N. These two classes of
complexity indicate that the expected complexity of A*
graph algorithm on job sequencing problems has two phases,
one exponential and the other polynomial, showing a huge
gap similar to a phenomenon of phase transitions. Indeed,
our experimental results on single machine job sequencing
problems support our theoretical analysis. Specifically, we
summarize the previous results for the exponential case, and
provide new test results on the polynomial case.

The paper is organized as follows. The basic concepts
and the analytic graph model are introduced in the next
section. We then analyze the expected complexity of A*
using the model. The proofs to the theorems are included in
the Appendix. Then we present our experimental results.
Concluding remarks are given at the end.

Basic Concepts
A search graph (or network) G is a finite directed graph with
nodes n, n', n1, n2, ... The search always begins at the start (or
root) node s, and ends at the goal node r. Each directed arc
(n1,n2) in G has a finite arc cost c(n1,n2) > 0. A path is a
sequence of directed arcs. A solution path is a path that
begins at the start node s and ends at the goal node r. The cost
c(P) of a path P is the sum of the costs of the arcs that make
up the path. The objective of a search algorithm like A* is to
find a solution path of minimum cost in G. To find such a
solution path, A* uses a nonnegative heuristic estimate h(n)
associated with each nongoal node n in G; h(n) can be

viewed as an estimate of h*(n), which is the cost of a path of
least cost from n to the goal node.
 Let g*(n) be the cost of a path of least cost from the start
node to node n, and let f*(n) = g*(n)+h*(n). Then f*(n) can
be viewed as the cost of a solution path of least cost
constrained to pass through node n. During an execution of
A*, we use g(n) to represent the cost of the path of least cost
currently known from s to n. So g(n) can be viewed as the
current estimate of g*(n), and f(n) = g(n)+h(n) as the current
estimate of f*(n). As is customary, f*(r) denotes the cost of a
minimum cost solution path in G.
 Our networks are directed acyclic graphs. In such
graphs, introducing more than one goal node adds no extra
generality because there are many paths from the root to the
goal node. When A* is run on such a network, a node may
reenter OPEN from CLOSED; as a result, a node may get
expanded more than once. Let Zd and Zt denote, respectively,
the number of distinct nodes expanded by A* and the total
number of node expansions made by A* when run on a given
network G. Our primary goal is to determine the expected
values E(Zd) and E(Zt).
 In order to assign a probability distribution on the
heuristic estimates of nongoal nodes in G in a meaningful
way, we adopt the notion of a normalizing function [Pearl
1984, pp. 184]. A normalizing function Φ(.) is a total
function with the set of nonnegative real numbers as domain
and the set of real numbers > 1 as range. It has the following
properties:
(i) Φ(0) = 1;
(ii) Φ(x) is nondecreasing in x;
(iii) Φ(x) is unbounded, i.e. the range of Φ has no finite

upper bound.
We allow Φ to take one of three functional forms, viz.
identity, less-than-linear and logarithmic:
Φ(x) = max {1, x} identity
Φ(x) = max {1, xδ } for some δ, 0 < δ < 1, less-than-linear
Φ(x) = max {1, ln x} logarithmic
The normalized error at a nongoal node n is X(n)=(h(n)-
h*(n))/ Φ(h*(n)). We assume that for all nongoal nodes in G,
the normalized errors X(n) are i.i.d. random variables. The
normalizing function Φ determines the accuracy of the
heuristic estimate function. When Φ is the identity function,
the magnitude of the error h(n)-h*(n) is proportional to h*(n).
The purpose of allowing other functions, such as logarithmic
ones for example, is to enable us to study the consequences
of limiting the error h(n)-h*(n) to lower order values,
implying greater accuracy of heuristic estimates. We use X
in place of X(n), as the X(n)'s are identically distributed. Let
FX(x) = Prob{X ≤ x} be the cumulative probability
distribution function of X, which is nondecreasing in x. We
allow FX(x) to have discontinuities; these must be left-
discontinuities, since FX(x) by definition is right-continuous.
We do not assume any specific functional form for FX(x).
 A heuristic function h is admissible if for every nongoal
node n in the network G, h(n) ≤ h*(n). Otherwise h is
inadmissible. If FX(x) = 1 for x ≥ 0, then all nongoal nodes
have admissible heuristic estimates with probability 1. Let a1
= lub {x | FX(x) = 0} and a2 = glb {x | FX(x) = 1}. For x < a1,

758 AAAI-02

FX(x) is identically 0, while for x ≥ a2, FX(x) is identically 1.
The heuristic estimate function is admissible if a2 ≤ 0; it is
purely inadmissible if a1 > 0. Note that when Φ(x) is the
identity function, we must have a1 ≥ -1. From now onwards,
whenever a normalizing function is under discussion, we
assume that the corresponding a1 and a2 are finite.

Minimum Penalty Job Sequencing
Let SN be the set {1, 2, …, N}. The subsets of SN under the
partial ordering relation induced by set inclusion form a
directed acyclic graph Gjs of 2N nodes. In this graph SN is the
root node at level 0; and the empty set {} is the goal node at
level N. The immediate successors of a node n are the
various subsets of SN obtained from n by removing one
element. Thus a node corresponding to a subset of k elements
has k immediate successors. Gjs for N = 4 is shown in Figure
1. Such a graph has the following characteristics:
i) A node with i elements is at level N-i.
ii) There are i! distinct paths to a node at level i.
iii) There are NCi nodes at level i.
iv) The total number of paths starting at the root and going

up to level i is NCi.(i!).

Figure 1: Analytic model Gjs for N=4

Gjs is representative of the type of search graphs that arise in
certain single machine job-sequencing problems. These
search graphs were searched using A* or TCBB [Kaindl et al
1995]. In the analysis below, we restrict ourselves to the A*
algorithm due to its optimality in terms of node expansions.
 Suppose that jobs Ji with processing times Ai > 0, 1 ≤ i ≤
N, have been submitted to a one-machine job shop at time 0.
The jobs are to be processed on the given machine one at a
time. In this analysis we assume that jobs have no setup
times. Let the processing of job Ji be completed at time Ti.
 Penalty functions Hi(.) are supplied such that the penalty
associated with completing job Ji at time Ti is Hi(Ti) > 0. Hi
is nondecreasing, and in general nonlinear. The jobs must
be sequenced on the machine in such a way that the total
penalty F = Σ{Hi(Ti)| 1 ≤ i ≤ N} is minimized. Nodes in Gjs
correspond to (unordered) subsets of jobs that remain to be
processed; the root node corresponds to the set of all N

jobs, and the goal node to the empty set of jobs. Arc costs
are assigned as follows. Suppose there is an arc from node
n1 to node n2, and suppose job Ji is present in the subset of
jobs associated with n1 but absent from the subset of jobs
at n2; then c(n1,n2) = Hi(Ti). Here Ti is the time at which the
processing of job Ji is completed; its value does not depend
on the order in which jobs prior to job Ji are processed.
Since setup times are ignored in this model, arc costs are
order preserving [Pearl 1984].
 We now assign a probability distribution on the heuristic
estimates of nodes. To compute the number of nodes
expanded, we impose some restrictions on the job processing
times and the penalty functions. We first suppose that 1 < Ai
< k, 1 ≤ i ≤ N, for some constant k > 1. Thus we do not
permit jobs to have arbitrarily large processing times. We
then assume that there is a positive integer constant β such
that Hi(x) is o(xβ), 1 ≤ i ≤ N. This means that each penalty
function is polynomial in its argument, with the highest
power in the polynomial being less than β. These are both
reasonable assumptions to make about the processing of jobs
in single machine job sequencing problems. Similar
assumptions were made in [Sen, Bagchi and Ramaswamy
1996]. Under these circumstances, when the normalizing
function is the identity function and the heuristic is not purely
inadmissible, the expected number of distinct nodes
expanded turns out to be exponential in N for large N.

Goal {}

{2,4}

{3,4}

Root {1,2,3,4}

{1,2,4} {2,3,4} {1,3,4} {1,2,3}
Theorem 1: Suppose that for 1 ≤ i ≤ N, Hi(x) is o(xβ) where
β is a positive integer constant, and 1 ≤ Ai ≤ k for some
constant k > 1. If Φ(x) is the identity function and a1 < 0, then
E(Zd), the expected number of distinct nodes of Gjs that get
expanded, is exponential in N for large N.
Proof: See Appendix. ♦
 This theorem is quite general and covers a wide variety
of situations that arise in minimum-penalty sequencing (see
quadratic penalty problems and other forms in [Sen and
Bagchi 1996]). For example:
i) There is really no need to assume a constant upper

bound on the job processing times. In the proof, we may
assume that there exists a (small) positive integer
constant ε such that Ai is o(Nε), 1 ≤ i ≤ N.

ii) The proof also applies to normalizing functions that are
less-than-linear i.e. to Φ(x) = xδ, 0 < δ < 1.

Experimental results for the above case have been described
in Section 4.
 What happens if the normalizing function is
logarithmic? Nothing specific can be said in general as
described in the following example.
Example 1: Let all arcs in Gjs have unit cost.
i) Suppose the heuristic estimate function h is perfect.

Then E(Zt) can be linear to exponential in N depending
on how ties are resolved.

ii) Suppose that the heuristic estimates are not perfect.
Suppose a1 < 0, i.e. heuristic estimates of nodes have a
nonzero probability of being admissible. Then for any
nongoal node n, f(n) < N with probability p > 0, so that
E(Zd) = E(Zt) ≥ 1 + p NC1 + p2 NC2 + … + pN which is
exponential in N for large N. This holds even when the
normalizing function is logarithmic. ♦

AAAI-02 759

There exist cases of polynomial complexity when the
normalization function is logarithmic in nature. In such cases,
we don’t need the restriction of the constant upper bound on
arc costs; instead, we put restrictions on the number of
outgoing arcs emanating from a node with arc costs lying
within a give upper bound. This assumption covers the cases
where the arcs below a node may have varying cost structure.
Our assumptions are as follows:
• We restrict ourselves to graphs Gjs with a cost function

defined on its arcs. In such graphs, not too many
outgoing arcs at a node have arc costs lying within a
given upper bound. Thus, we may assume that for each
nongoal node in Gjs, and for each y, y > 0 and integer,
there are at most min(N-i, θ(y)) outgoing arcs from
node n with arc cost ≤ y, where i is the level of node n
in Gjs and θ: { 1,2,…,N } R be a given non-
decreasing (total) function with the positive real numbers
as domain as well as range. Further, for every nongoal
node, there is at least one outgoing arc of arc cost ≤ k
for some given constant k ≥ 1 independent of N. Let’s
call such job sequencing search graphs as θ-restricted.

• In addition, we assume that the processing times of jobs
are distinct. Then SN represents the set of jobs with
distinct processing times and therefore the jobs in SN can
be viewed as ordered in increasing order of processing
times. The costs of the outgoing arcs would then have the
same relative order as the processing times of jobs that
have been scheduled from the subset. The outgoing arc
corresponding to the scheduling of the job with the
smallest processing time from a node n would have the
lowest cost, and so on. We call such job sequencing
graphs C-ordered. Thus, for the penalty functions
considered in ([Kaindl et al 1995, Sen, Bagchi and
Ramaswamy 1996]), the graphs are C-ordered so long as
the processing times of jobs are distinct.

Theorem 2: Let θ(y) = yβ for integer y > 0 and 0 < β ≤ 1, and
let (Gjs, C) be θ-restricted and C-ordered. If Φ(x) is the
logarithmic function and a1 < 0, then E(Zt) is polynomial in N
for large N.
Proof: See Appendix. ♦
 The following theorem specifies the sufficient condition
to be imposed on θ-restricted graphs for which the total
number of nodes expanded by A* will always be polynomial
in N for large N.
Theorem 3: Let y0 be a given positive integer independent of
N. Let
 θ(y) = yβ for y ≤ y0, β > 0
 = y0

β for y > y0.

Let (Gjs, C) be θ-restricted and the graph be C-ordered. Then
regardless what Φ(x) is, E(Zt) is polynomial in N for large N.
 Proof: See Appendix. ♦
 We now present our experimental findings in the next
section.

Experimental results
We carried out a number of experiments on a single machine

job sequencing problem in which the penalty function for a
job is proportional to the square of its completion time. Jobs
have processing times but no setup times. All jobs are
submitted at time t=0. The objective is to find a sequence of
jobs so that the sum of the penalties is minimized [Townsend
1978]. Penalty coefficients (proportionality constants) were
taken as integers and were generated randomly in the range 1
to 9 from a uniform distribution. Processing times were also
integers and were generated randomly in the range 1 to 99
from a uniform distribution. For a given number of jobs, 100
random instances were generated and each of these instances
were solved using A*. The results averaged over these 100
runs are presented in the tables.

Exponential Complexity
 We first solved the random instances using A*. The
heuristic estimate at a node was computed as suggested in
[Townsend 1978], which is known to be consistent [Pearl
1984]. Table 1 below presents the average number of nodes
generated and expanded by A* on problems of different
sizes. No node is expanded more than once since heuristic is
consistent. These results1 were also presented in [Sen, Bagchi
and Ramaswamy 1996]. The nodes generated and expanded
are exponential in job size.

Table 1: Performance of A* using consistent heuristic
Job Nodes Generated

 Mean Std Dev
Nodes Expanded

 Mean Std Dev
6 23.99 4.18 5.96 1.54
8 53.06 17.54 10.88 4.52

10 104.05 38.56 17.38 7.25
12 191.78 82.12 26.63 13.06
14 372.51 198.53 44.49 26.28
16 688.61 399.27 71.53 46.30
18 1299.37 837.37 119.70 86.13
20 2327.02 1523.12 191.52 137.97

Next, we experimented assuming that normalizing

function is the identity function (Theorem 1). For each of
the problem instance,
i) we used the quadratic penalty job sequencing problem

where Hi(Ti)=Ci Ti
2 , that is, β=3 in Theorem 1;

ii) processing times Ai <= 99 for all i.
iii) Φ(x) is the identity function.
iv) heuristic estimates (h) are admissible.
v) h = h* - ℘ h* since Φ(x) is identity function, and ℘ is

a random number satisfying uniform distribution

The results are given in Table 2. Since heuristic estimate
became inconsistent, same node was repeatedly expanded
along different paths to a node. As a result, the number of
nodes expanded may be more than the number of nodes
generated. The results clearly indicate that the performance

1 Relatively, a little less number of generated and expanded nodes was
reported in [Sen, Bagchi and Ramaswamy 1996] since a pruning rule was
applied.

760 AAAI-02

of A* with admissible heuristic deteriorates very fast with N
when normalizing function is an identity function.

Table 2: A* performance with linear error
Job Nodes Generated

 Mean Std Dev
Nodes Expanded

 Mean Std Dev
6 61.22 4.69 60.55 18.31
8 249.24 22.27 317.28 87.12

10 1001.67 96.65 1606.49 443.89
12 4029.92 400.12 7906.96 1886.63
14 16156.33 1623.79 39349.97 10288.72
16 64752.36 6529.43 185991.06 40743.79

Polynomial Complexity
Next we assumed that the normalizing function is

logarithmic in nature (Theorem 2). For each problem
instance of the quadratic penalty problem,
i) we generated C-ordered graphs (distinct processing

times) which by the nature of the problem are also θ-
restricted;

ii) below every node, there are at most N arcs with arc
costs < 10 x (100 N)2;

iii) heuristic estimates (h) are admissible;
iv) h = h* - ℘log(h*) since Φ(x) is logarithmic function and

℘ is a random number satisfying uniform distribution.

Table 3: A* performance with logarithmic error
Job Nodes Generated

 Mean Std Dev
Nodes Expanded

 Mean Std Dev
6 21.00 0.00 5.00 0.00
8 36.00 0.00 7.00 0.00

10 55.00 0.00 9.00 0.00
12 78.00 0.00 11.00 0.00
14 105.62 2.49 13.06 0.24
16 136.51 2.52 15.12 0.91

 We also experimented with h = h* - log(κh*) where κ is
a large constant, the objective being to have a relatively
larger logarithmic error. The result obtained is similar, as
shown for κ=106 in Table 4.

Table 4: A* performance with logarithmic error, κ=106

Job Nodes Generated
 Mean Std Dev

Nodes Expanded
 Mean Std Dev

6 21.04 0.40 5.01 0.10
8 36.12 0.84 7.02 0.14

10 55.16 1.13 9.02 0.14
12 78.09 0.90 11.01 0.10
14 105.84 2.89 13.08 0.27
16 136.92 3.89 15.15 0.94

With logarithmic error, the node generations and node
expansions reduce drastically, and appear polynomial in
problem size. Since the error is assumed to be logarithmic,
the heuristic estimates are close to perfect heuristic and

hence, with distinct arc costs below a node, the performance
of algorithm A* becomes polynomial in problem size.

Conclusion and Future Directions

In this paper, we proposed a method to extend the analysis of
the average-case performance of A* from tree search
problems to graph search problems. The topic has importance
because many practical problems can be solved more
efficiently using graph search algorithms and a better
understanding of their performance may help to characterize
the features of real graph search problems. Our main
contribution consists of a set of average-case complexity
results of A* graph search algorithm on an analytic model
that captures the main features of various job sequencing
problems. Both our analytical and experimental results show
that the expected complexity of job sequencing problems
may change from exponential to polynomial with the
accuracy of heuristic functions used. In other words, the
expected complexity exhibits an exponential to polynomial
transition when the heuristic function becomes accurate.
 We expect that the approach we proposed and the results
we obtained here can be generalized in a number of
directions. The first direction is to use a model similar to the
incremental random trees [Karp and Pearl 1983, Zhang and
Korf 1995]. The second possibility is to directly compare the
expected complexity of graph and tree search algorithm on
graph problems. The questions to be answered along this
direction include the expected savings on the number of
nodes explored that a graph search algorithm, such as A*,
can provide. Such analysis will help decide which algorithm
to use for real applications in practice.

Appendix
Proof of Theorem 1: We renumber jobs if needed and
assume that there is a minimal cost solution path in G of cost
M > N, such that if we move along it from root to goal, jobs
get scheduled from the set {1,2, ...,N} in the sequence 1 2 ...
N. Choose 0 < δ < 1/(β+1), and consider the nongoal nodes
in Gjs for which all the missing jobs, corresponding to the
jobs already completed, belong to the set {1,2,...,V}, where V
= Nδ. There are 2V-1 such nodes excluding the root, and for
any such node n, g(n) < V(Vk)β and h*(n) > M - V(Vk)β.
 Let n' be the node for which the missing elements are
exactly 1,2,...,V. Then h*(n') < M, since n' lies on the
minimum cost solution path, and the cost of the path to n'
from any predecessor n of n' cannot exceed V(Vk)β. It
follows that M - V(Vk)β < h*(n) < M + V(Vk)β. Let a' = a1/2
< 0, so that p = FX(a') > 0. Then h(n) ≤ h*(n)+a'Φ(h*(n)) with
probability p, so that f(n) < M with probability p, provided
g(n)+h*(n) < M - a'Φ(h*(n)) with probability p. As a' < 0 and
Φ is the identity function, it suffices to show M + 2V(Vk)β <
M - a'M + a'V(Vk)β, which always holds for large N because
V is of smaller order than N. The above conditions are true
for n' or any ancestor of n'. Thus if node n is at level i, it gets
expanded with probability pi. Therefore, E(Zd) ≥ 1+pV+p2
VC2+...+pV = (1+p)V which is exponential in N for large N. ♦
Proof of Theorem 2: We first show that E(Zd) is polynomial
in N. To do this, we need to find out the total number of

AAAI-02 761

nodes n with g*(n) + h(n) ≤ f*(r) + a2 ln (f*(r)). If node n is at
level i, expressing h(n) in terms of h*(n) as h(n) ≥ h*(n) +
a1ln(h*(n)), the condition becomes g*(n) ≤ h*(r) – h*(n) + a2
ln (h*(r)) - a1ln(h*(n)) or g*(n) < k i + k0 ln (kN) where k
and k0 are constants, k0 given by
  a2 + |a1| if a1 < 0
 k0 = 
  a2 if a1 ≥ 0.
Since G is θ-restricted, outgoing arcs at a node have costs
bounded below by 1, 21/β, 31/β, …, respectively. In computing
upper bounds on the number of expanded nodes, these lower
bounds can be viewed as the exact costs of the outgoing arcs.
We have to find out, for a node n at level i, how many paths
from the root to node n of length i have arc costs summing up
to at most k i + k0 ln (kN).
 Assuming Gjs is C-ordered. Consider the subset of jobs
corresponding to a node n at level i. Let J1, J2, …, Ji be the
jobs of the subset which are in SN but are missing from node
n. Suppose J1 < J2 < … < Ji. There are i! ways of scheduling
the i jobs leading to i! paths to node n from the root. The
scheduling of the jobs in the sequence J1, J2, …, Ji will
determine the path of least cost from the root to node n. The
arc costs in such a path from the root to node n will form a
nondecreasing sequence. Thus, to find an upper bound on
E(Zd), we have to count the number of nondecreasing
sequences of length i which sum up to at most k i + k0 ln
(kN) such that each element in the sequence has values 1,
21/β, 31/β, ... , since 1/β ≥ 1, k’1/β ≥ k’ for any integer k’ > 1. So
to get an upper bound, it is enough to find out the total
number of partitions of a positive integer k” and then sum
over all k” ≤ k0 ln(kN) and over all levels i. Using the Hardy-
Ramanujan asymptotic formula [Andrews 1976, pp. 70, 97]
for the number of partitions of an integer, we get
 E(Zd) ≤ [k N (k0 ln (kN)) A1 eA2 √ (ko ln (kN))]/[k0 ln (kN)]
where A1, A2 are positive real constants. Thus E(Zd) ≤ A1 N
eA2 √ (ko (ln kN)) which is polynomial in N for large N.
 To get an upper bound on E(Zt), we have to find out the
number of paths from the root to a node n of distinct cost,
since n can get expanded along each of these paths in the
worst case. Since the outgoing arc costs at a node may be
taken as 1, 21/β, 31/β, …, the total number of paths of distinct
cost to a node at a level i ≤ N will be polynomial in N. Hence
E(Zt) is also polynomial in N for large N. ♦
Proof of Theorem 3: Let k0 = y0

β, a constant. Every node at
level i, 1 ≤ i ≤ N, will have at most min(k0, N-i) outgoing arcs
having arc costs ≤ y for any y ≥ y0; other outgoing arcs can
be viewed as having infinite cost. The number of nodes at
level i with finite g*-value is ≤ ko+i-1 Ci since the job
sequencing graph is C-ordered. So the total number of nodes
in the graph with finite g*-value is ≤ Σ{ ko+i-1 Ci | 1 ≤ i ≤ N } +
1 ≤ ko+NCN which is polynomial in N for large N. As the total
number of paths of distinct cost to a node at a level i ≤ N will
be polynomial in N, E(Zt) is polynomial in N as well. ♦

References
Andrews, George E. 1976. The Theory of Partitions,

Encyclopedia of Mathematics and Its Applications, vol. 2,
Ed. Gian Galo Rota.: Addison –Wesley.

Bagchi, A., and Sen, Anup K. 1988. Average-case analysis
of heuristic search in tree-like networks. Search in Artificial
Intelligence (Ed L N Kanal and V Kumar), Springer-Verlag,
pp. 131-165.

Chenoweth, Stephen V., and Davis, H W. 1991. High
performance A* search using rapidly growing heuristics. In
Proc International Joint Conference on Artificial
Intelligence (IJCAI-91), Sydney, Australia: Morgan
Kaufman Publishers, pp. 198-203.

Davis, H. W. 1990. Cost-error relationships in A*
tree-searching. JACM 37(2):195-199.

Dechter, R. and Pearl, J. 1985. Generalized best-first search
strategies and the optimality of A*. JACM 32: 505-536.

Huyn, N.; Dechter, R.; and Pearl, J. 1980. Probabilistic
analysis of the complexity of A*. Artificial Intelligence 15:
241-254.

Kaindl, H.; Kainz, G.; Leeb, A.; and Smetana, H. 1995.
How to Use Limited Memory in Heuristic Search. In Proc.
Fourteenth International Joint Conference on Artficial
Intelligence (IJCAI-95). San Francisco, CA: Morgan
Kaufman Publishers, pp. 236—242.

Karp, R. and Pearl J. 1983, Searching for an optimal path
in a tree with random costs. Artificial Intelligence 21:99-
117.

Korf, R. E.; Reid, M.; and Edelkamp, S. 2001. Time
complexity of iterative-deepening-A*. Artificial
Intelligence 129:199-218.

Korf, R. E., and Zhang W. 2000. Divide-and-Conquer
Frontier Search Applied to Optimal Sequence Alignment,
In Proc AAAI-2000, Austin, TX: Morgan Kaufman
Publishers, pp. 910-916.

Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving.: Addison- Wesley

Pinedo, M. 1995, Scheduling: Theory, Algorithms and
Systems. Prentice Hall.

Sen, Anup K., Bagchi, A.; and Ramaswamy, R. 1996.
Searching graphs with A*: applications to job sequencing.
IEEE Trans. Syst., Man Cybern. Part A Syst, Humans
26:168-173.

Sen, Anup K. and Bagchi, A. 1996. Graph search methods
for non-order-preserving evaluation functions: Applica-
tions to job sequencing problems. Artificial Intelligence
86(1):43-73.

Townsend, W. 1978. The single machine problem with
quadratic penalty function of completion times: A branch
and bound solution. Management Science 24(5):530-534.

Zhang, W. and Korf, R. E. 1995. Performance of linear-
space search algorithms. Artificial Intelligence 79:241-292.

762 AAAI-02

	An Average-case Analysis of Graph Search
	Anup K. Sen Amitava Bagchi (Weixiong Zhang (
	Basic Concepts
	Minimum Penalty Job Sequencing
	Conclusion and Future Directions
	Appendix

