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ABSTRACT

An average Reynolds equation for predicting the effects of deterministic periodic roughness, taking

JFO mass flow preserving cavitation model into account, is introduced based upon double scale analysis

approach. This average Reynolds equation can be used both for a microscopic interasperity cavitation

and a macroscopic one. The validity of such a model is verified by numerical experiments both for one

dimensional and two dimensional roughness patterns.
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NOMENCLATUREA", B", Ai, Bi = partial differential operatorsa?ij , a?i , a0i = auxiliary homogenized coefficientsA?ij , B?i , B0i = homogenized coefficientsh1, h2 = description of the gaph, h" = actual gaphs = smooth part of the gaphr = amplitude of the roughnessp = pressurep0, p1... = approximations of the pressureQ = input flow valueU = velocityx = (x1; x2) = dimensionless space coordinatesy = (y1; y2) = microscale coordinatesX = (X1; X2) = oblique coordinatesX 0 = (X 01; X 02) = real coordinatesY =℄0; 1[�℄0; 1[ = rescaled microcell
 = obliqueness angle�=�n = normal derivative� = viscosity" = roughness spacing� = saturation�0 = microscopic homogenized saturation�, �1,�2 = macrohomogenized saturationswi, �0i = auxiliary functions defined on Y� Y = average operator with respect to y[�℄Y1 = average operator with respect to y1[�℄Y2 = average operator with respect to y2
0 Introduction

The effects of the surface roughness on the behavior of a thin film flow has long been the subject of intensive

studies. Various ways have been introduced to study Reynolds roughness by seeking an average equation with

smooth coefficients. Some of the most popular results are the Christensen formula [1] for longitudinal and trans-

verse roughness and the Patir and Cheng flow factor model [2] for a more general surface roughness pattern. Two

wide classes of results can be outlined. In the first one, which is deterministic, a periodic description of the sur-

faces is often assumed to be known and linked to a specific process of the surface [3]. It is possible to distinguish

macrovariables and microvariables and to use a mathematical homogenization approach to rigorously obtain an

average Reynolds equation by making the period of the roughness tend to zero [4]. The coefficients of this aver-

age Reynolds equation implicitly contain the description of the microroughness elementary cell. The second class

of results deals with a statistical description of the surface roughness. Following the Patir and Cheng approach,

numerous authors proposed an average Reynolds equation in which the coefficients included the knowledge of the

surface statistics by way of flow factors which can be evaluated by numerical experiments. Rigorously speaking,

this approach is less satisfactory than the first one, assuming a priori the existence of a control volume in which
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the average flow rates can be equivalently expressed in terms of flow factors. The number and quantities (Peklenik

number, combined root mean square roughness...) involved in the characterization of the flow factors can also be

discussed. Moreover, as the initial Reynolds equation, the average Reynolds equation can be expressed in terms

of r � (Krp) = F in which K is a diagonal matrix. This seems to be contradictory with the result obtained by

the first approach in which K is a non diagonal matrix for two dimensional general roughness pattern [5].

Up to now, these averaging processes never take cavitation into account. A common procedure is to use the

average equation instead of the classical Reynolds equation with Gumbel and Swift Steiber boundary conditions

or to include it in the S.O.R. algorithm proposed by Richardson, thus obtaining the splitting of the lubricated

device in two areas. In a first area, the pressure is greater than the cavitation pressure and the average Reynolds

equation is valid; in the other area, pressure is equal to the cavitation pressure. It is well known [6–8], however,

that none of these models is mass preserving, especially through the cavitation area. Jakobsson, Floberg and Ols-

son (JFO) [9,10] developed a set of conditions for the cavitation boundary that properly takes the conservation of

mass into account in the entire device. Elrod [11, 12] proposed a slightly modified formulation and a related spe-

cific algorithm. The mathematical related problem evidence a hyperbolic-parabolic feature which renders difficult

both theoretical study and numerical experiments [7, 13–15]. It is the goal of this paper to develop in a rigorous

way an average JFO Reynolds equation for the deterministic periodic roughness pattern. So far, few papers have

been devoted to such a problem. Recently, the interasperity cavitation has been studied by way of a statistical

approach [16, 17]. The Patir and Cheng flow factor method is extended and an average Reynolds equation is

proposed. The resulting equation has the same left-hand side that in the Patir and Cheng equation (cavitation

has no effect on the corresponding flow factors) while the right-hand side of the equation is modified and new

flow factors are introduced. At last Harp and Salant [17] proposed to modify the boundary conditions by a value

which is a function of the wavelength of the roughness. Our approach is quite different and explicitly based upon

the introduction of fast and slow variables. The initial equation is rewritten in terms of these two variables and

asymptotic expansion of the pressure is introduced with respect to a small parameter associated to the roughness

wavelength. The goal is to find an equation satisfied by the first terms of the expansion. Some assumptions about

the shape of the roughness appear to be necessary to solve the problem, leading to a new average Reynolds cavi-

tation equation. This equation has numerous common features with the initial Reynolds equation: it is also a two

unknowns pressure-saturation formulation. Some particular cases - transverse, longitudinal roughness patterns -

will be studied in details.

1 Basic equations

Our studied cavitation model, like the Elrod algorithm and its variants, views the film as a mixture. It does

not, however, make the assumption of liquid compressibility in the full film area as in [15] and some other papers.

As in [18, 19], only the liquid-vapor mixture in the cavitated region is assumed compressible. The flow obeys the

following “universal” Reynolds equation (here written in a dimensionless form) through all the gap in which the

pressure cavitation is assumed to be zero in the cavitation area2Xi=1 ��xi  h3 �p�xi! = ��h�x1 ; (1)p � 0; (2)0 � � � 1; (3)
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p (1� �) = 0: (4)

In this steady state isoviscous version of the equation, p is the pressure, � is the relative mixture density, h the

film thickness, x1 is the direction of the effective relative velocity of the shaft, while x2 is the transverse direction.

This system of equations can be understood as follows (see [7,9–12,14,18] for various comments and meaning

of the � variable):� the well-known Reynolds equation holds in the full film region, that is p > 0 and � = 1,� a mass flow conserving equation ��h=�x1 = 0 holds in the cavitated region with p = 0 and 0 < � < 1.� a boundary condition which is also mass flow preserving at the (unknown) interface between the two regions:�h3 �p�n + h 
os(n; x1) = �h 
os(n; x1):
The reason to retain this specific cavitation equation is that it has been the subject of numerous mathematical

studies [7] giving a strong and rigorous basis to the following manipulations [20]. To be noticed, however, that

our approach can be applied without difficulty to other cavitation models as the one in [15]. Last, it has to be

mentioned that this equation takes both macrocavitation (associated to the occurrence of a diverging part of a

bearing for example) and interasperity cavitation into account.

The boundary conditions depend on the considered device. However, the following ones are often used,

corresponding for example to a journal bearing with an axial supply groove. The pressure is imposed at two

circumferential locations and one axial location. The last boundary condition is an input flow condition at the

axial location corresponding to the supply groove:�(x)h(x)� h3(x) �p�x1 (x) = Q: (5)

For small values of Q, starvation may occur in the vicinity of the supply groove.

2 Asymptotic expansion

Let us suppose that the roughness is periodically reproduced in the two x1 and x2 directions from an ele-

mentary cell Y (or “miniature bearing” in Tonder’s terminology). We denote by " the ratio of the homothetic

transformation passing from the elementary cell Y = Y1�Y2 to the real bearing and by y1 = x1=" and y2 = x2="
the local variables (see FIG. 1).

Let us now consider shapes that can be written as h"(x) = h(x; x="). We suppose furthermore that they are

described as h"(x) = h1 �x; x1" � h2 �x; x2" �
which allows us to take into account either transverse or longitudinal roughness, but also more general two di-

mensional roughness. Introducing now the fast variables y1 and y2, it appears that the new expression for the gap
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Figure 1. Macroscopic domain and elementary cells

is: h(x; y) = h1 (x; y1)h2 (x; y2) : (6)

The combined computation in terms of (x1; x2) or (y1; y2) is an important feature of the method. It is conve-

nient to consider first x and y as independent variables and to replace next y by x=" (see [4]).

2.1 Formulation of average equations

We denote by A" the initial differential Reynolds operatorA"[�℄ = 2Xj=1 ��xj  h3 �x; x"� � [�℄�xj ! ;
and we also define the right-hand side operatorB"[�℄ = ��x1 �h�x; x"� [�℄� :

The Reynolds equation (1) becomes A"(p) = B"(�):
5



The underscript " indicates the dependance of the real pressure on the microtexture related to ". We also define

the following operators: A1[�℄ = 2Xj=1 ��yj  h3 (x; y) � [�℄�yj ! ;A2[�℄ = 2Xj=1 ��yj  h3(x; y)� [�℄�xj !+ 2Xj=1 ��xj  h3(x; y)� [�℄�yj ! ;A3[�℄ = 2Xj=1 ��xj  h3(x; y)� [�℄�xj ! ;
and also Bi1[�℄ = ��yi (h(x; y) [�℄ ) ; i = 1; 2;Bi2[�℄ = ��xi (h(x; y) [�℄ ) ; i = 1; 2:

If applied to a function of (x; x="), the operators becomeA" = �1="2 A1 + 1=" A2 + A3� ; (7)B" = �1=" B11 +B12� : (8)

We shall look for an asymptotic expansion of the solutionsp(x) = p0(x; x" ) + "p1 �x; x"�+ "2p2 �x; x"�+ :::; (9)�(x) = �0 �x; x"� ; (10)

each unknown pi and �0 being a function of (x; y). The problem of the boundary conditions to be satisfied by thepi is somewhat difficult but may be summarized as follows.

(i) The natural boundary conditions on (p"; �") are assigned to p0 and an equivalent saturation linked to �0, which

will be developped in next subsection.

(ii) The function pi, i � 1, are Y periodic, i.e. periodic in the two variables y1, y2, for each value of (x1; x2).
To be noticed that unlike of p, we do not introduce an asymptotic expansion for �. This can be explained by

observing the evolution of p and � as " tends to 0 (see FIG.2 for instance). Clearly, the oscillations of the pressure

are decreasing and p tends to a smooth function (namely p0 which, actually, does not depend on the fast variable

as it will be pointed out further). This is not the case for � and an asymptotic smooth limit cannot be considered.
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We shall see later that the functions pi, i � 1, are defined up to an additive constant. Moreover, from Equations

(2)–4), the following properties hold: p0(x; y) � 0; (11)0 � �0(x; y) � 1; (12)p0(x; y) (1� �0(x; y)) = 0: (13)

Putting Equations (9) and (10) into Equation (1) and taking account of Equations (7) and (8), one can write

by an identification procedure: A1p0 = 0; (14)A1p1 + A2p0 = B11�0; (15)A1p2 + A2p1 + A3p0 = B12�0: (16)

Let us remark that these equations are of the following type: For a given F , find a function q, depending on

the variable y, q being Y periodic, such that (x is a parameter),A1q = F: (17)

A condition to have a solution for Equation (17) isZY F (x; y)dy = 0: (18)

Moreover, if q is a solution, then q+ 
 with 
 any constant with respect to y is also a solution. Applying Condition

(18) to Equation (14), we deduce that p0 does not depend on yp0(x): (19)

Let us suppose now that p0 is known, and noticing that, due to boundary conditions, (B11�0 � A2p0) satisfies

Equation (18), existence of p1 is guaranteed. Now we can represent p1 as a function of p0 in a more usable form.

We define wi and �0i (i = 1; 2) as the Y periodic solutions (up to an additive constant) of the following local

problems: A1 wi = �h3�yi ; i = 1; 2; (20)A1 �0i = ��0h�yi ; i = 1; 2: (21)
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The solution of Equation (15) reduces top1(x; y) = �01(x; y)� �p0�x1 (x)w1(x; y)� �p0�x2 (x)w2(x; y): (22)

The same procedure can be used to ensure the existence of p2, but in that step, the corresponding condition

(18) applied to Equation (16) becomes ZY (B12�0 � A2p1 � A3p0) dy = 0: (23)

Then the main idea is to put Equation (22) into Equation (23), so that the only remaining unknowns are p0 and�0.

By analogy with the probabilistic framework, we denote by uY the local average of any Y periodic functionu: uY (x) = 1[Y ℄ ZY u(x; y) dy:
By exchanging the integral and the derivation symbols, and after some calculations, Equation (23) becomesXi;j ��xi  A?ij �p0�xj! =  �B01�x1 + �B02�x2 ! ; (24)

where (i; j = 1; 2 and j 6= i) A?ii = h3Y � h3�wi�yi Y ;A?ij = �h3 �wj�yi Y = �h3�wi�yj Y = A?ji;
and also B01 = �0hY � h3��01�y1 Y ;B02 = �h3��01�y2 Y :

Equation (24) deals with any periodic roughness pattern. To be noticed is the fact that the differential operator

is no more of the Reynolds type since extra terms �2p0=�xi�xj appear. The right-hand side also contains an

additive term in the x2 direction. However, the link between p0 and �0 is not so clear. This is a major obstacle

which prevents from getting a tractable equation. Nevertheless, Assumption 6 allows us to solve the following

difficulties:
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� Computation of A?ii, i = 1; 2:

Let us recall Equation (20) with i = 1:��y1  h3�w1�y1 !+ ��y2  h3�w1�y2 ! = �h3�y1 :
Since h3�w1=�y2 is Y periodic, averaging this equation over Y2 gives��y1  "h3�w1�y1 #Y2! = � [h3℄Y2�y1 ;
where [�℄[Yi℄ is the averaging operator over Yi (for i = 1; 2).

Thus we have, by integrating in the y1 variable and using Equations(6):"h3 � h3�w1�y1 #Y2 = C1;
where C1 is a constant with respect to y. Let us notice that, averaging the earlier equation over Y1 simply givesC1 = A?11. Thus, it remains to calculate C1. Dividing each side of the previous equation by h31:hh32iY2 � "h32�w1�y1 #Y2 = C1h31
and, since w1 is Y periodic, averaging over Y1 givesA?11 = h32Yh�31 Y : (25)

Following the same procedure, we state: A?22 = h31Yh�32 Y : (26)� Computation of A?ij , i 6= j:

Starting from Equation (20) with i = 1, since h3 � h3�w1=�y1 is Y periodic, averaging this equation over Y1
gives ��y2  "h3�w1�y2 #Y1! = 0:
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Thus we have, by integrating in the y2 variable"h3�w1�y2 #Y1 = C2;
where C2 is a constant with respect of y. Similarly to the computation of A?ii, one has C2 = A?12 = A?21.

Dividing each side of the equation by h32: C2h32 = "h31�w1�y2 #Y1 ;
and, since w1 is Y periodic, averaging over Y2 gives C2a�11 Y = 0, i.e.A?12 = A?21 = 0: (27)

Now, it remains to calculate the right-hand side of the Reynolds equation.� Computation of B01 :

Let us recall Equation (21) with i = 1:��y1  h3��01�y1 !+ ��y2  h3��01�y2 ! = ��0h�y1 :
Since h3��01=�y2 is Y periodic, averaging this equation over Y2 gives��y1  "h3��01�y1 #Y2! = � [�0h℄Y2�y1 :
Thus we have, by integrating in the y1 variable:"�0h� h3��10�y1 #Y2 = C3;
where C3 is a constant with respect to y. Clearly, we have C3 = B01 . Dividing each side of the equation by h31:"�0hh31 #Y2 � "h32��01�y1 #Y2 = C3h31 ;

10



and, since �01 is Y periodic, averaging over Y1 gives �0h=h31Y = C3h�31 Y
, i.e.B01 =  �0h2h21 !Yh�31 Y (28)� Computation of B02 :

Starting from Equation (21) with i = 1, since the function h3 � h3��01=�y1 is Y periodic, averaging this

equation over Y1 gives ��y2  "h3��01�y2 #Y1! = 0:
Thus we have, by integrating in the y2 variable:� "h3��01�y2 #Y1 = C4;
where C4 is a constant with respect of y. We have C = B02 . Then dividing each side by h32:C4h32 = "h31��01�y2 #Y1 ;
and, since �01 is Y periodic, averaging over Y2 gives C4h�31 Y = 0, i.e.B02 = 0: (29)

Now, it is obvious that Equation (24) can be written in a more simple way by using Equations (25)–(29).

Before that, let us write the term B01 in a more usable form. Defining the quantitiesB?1 = h�21 Yh�31 Y h2Y ; (30)� = 1h2Y h�21 Y  �0h2h21 !Y ; (31)

we get B01 = �B?1 . Moreover, from Equations (12) and (13), we immediately have:0 � �(x) � 1; (32)p0(x) (1� �(x)) = 0; (33)
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so that the homogenized equations appear to be2Xi=1 ��xi  A?ii�p0�xi! = ��B?1�x1 ; (34)p0 � 0; (35)0 � � � 1; (36)p0 (1� �) = 0; (37)

where A?11, A?22 and B?1 are, respectively, given by Equations (25), (26) and (30). Moreover, the link between a

new (smooth) “macroscopic” saturation � and the (oscillating) “microscopic” saturation �0 is given by Equation

(31). As an important feature, � is not the average of the microscopic saturation �0.
2.2 Average boundary condition

When the pressure is imposed, the corresponding average boundary condition is assigned to p0. When an

input flow is given on a supply line, the average flow condition is obtained following the asymptotic expansion

method. Taking account of roughness patterns, Equation (5) becomes:�(x)h�x; x"�� h3 �x; x"� �p�x1 (x) = Q: (38)

Putting Equations (9) and (10) into Equation (38), one can write by an identification procedure:�0(x; y)h(x; y)� h3(x; y) �p0�x1 (x) + �p1�y1 (x; y)! = Q:
Putting Equation (22) into it gives �0h� h3��01�y1 !�  h3 � h3�w1�y1 ! �p0�x1 +  h3�w2�y1 ! �p0�x2 = Q:
Averaging over Y gives the boundary condition relating p0 and � at the supply groove:B01 � A?11 �p0�x1 � A?12 �p0�x2 = Q;

and since A?12 = 0 and B01 = �B?1 , one gets: �B?1 � A?11 �p0�x1 = Q: (39)

The next subsection deals with two main particular cases: transverse or longitudinal roughness.
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2.3 Particular cases� Transverse roughness: when the roughness does not depend on y2, we have the homogenized equation, easily

deduced from Equations (25)–(31)��x1  1h�3Y �p0�x1!+ ��x2  h3Y �p0�x2! = ��x1 0��h�2Yh�3Y 1A ;
with � = 1h�2Y  �0h2!Y

and the boundary condition at the supply groove, deduced from Equation (39), should

be read as: �h�2Yh�3Y � 1h�3Y �p0�x1 = Q:� Longitudinal roughness: when the roughness does not depend on y1, we get��x1  h3Y �p0�x1!+ ��x2  1h�3Y �p0�x2! = ��x1 ��hY � ;
with � = �0hYhY , and the boundary condition at the supply groove should be read as:�hY � h3Y �p0�x1 = Q:

3 Oblique roughness

Let us consider gaps that can be written as:h"(x) = h1  x; X1(x)" !h2  x; X2(x)" ! ;
with (X1(x) = 
os 
 x1 + sin 
 x2;X2(x) = � sin 
 x1 + 
os 
 x2;
which allows us to take into account oblique roughness (with h2 � 1 for instance). The idea is to introduce a

change of coordinates so that the assumption of Section B.2 on the roughness form in the new coordinates system

is valid. The first step is to rewrite Equation (1) in the X coordinates:2Xi=1 ��Xi  h3" �p�Xi! =  ��h"�X1 
os 
 � ��h"�X2 sin 
! :
13



Working now in the X coordinates and using the operators defined in Section B.2 (up to the writing in the X
coordinates), we apply the asymptotic expansion technique to the earlier equation. With the formal asymptotic

expansion used in Section B.2, we have in the (X; y) coordinates (with y = X="):A1p0 = 0; (40)A1p1 + A2p0 = B11�0 
os 
 � B21�0 sin 
; (41)A1p2 + A2p1 + A3p0 = B12�0 
os 
 � B22�0 sin 
: (42)

As in Section B.2, p0 only depends on the X variable. Equation (41) allows us to determine p1:p1(X; y) = �01(X; y) 
os 
 � �02(X; y) sin 
 � w1(X; y) �p0�X1 (X)� w2(X; y) �p0�X2 (X):
Then, putting the earlier expression into Equation (42) gives:Xi;j ��Xi  a?ij �p0�Xj! = ��X1 �b011 
os 
 + b012 sin 
�+ ��X2 �b021 
os 
 + b022 sin 
� ;
where the coefficients, which are easily computed as in Section B.2, are given by (i; j = 1; 2, i 6= j):a?ii = h3Y � h3�wi�yi Y = h3j Yh�3i Y ; (43)a?ij = � h3�wj�yi Y = 0; (44)

and also (i; j = 1; 2, i 6= j) b0ii = �0hY � h3��0i�yi Y = 1h�3i Y  �0hjh2i !Y ; (45)b0ij = � h3��0i�yj Y = 0: (46)

Finally, as in Section B.2, defining the quantitiesb?i = h�2i Yh�3i Y hjY ; (47)�i = 1hjY h�2i Y  �0hjh2i !Y ; (48)
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one has b0ii = �i b?i , with p0(1� �i) = 0 and 0 � �i � 1.

Finally, going back to the initial x coordinates, one gets the following homogenized problem:Xi;j ��xi  A?ij �p0�xj! =  �B01�x1 + �B02�x2 ! ; (49)p0 � 0; (50)0 � �i � 1; (i = 1; 2); (51)p0 (1� �i) = 0; (i = 1; 2); (52)

with the left hand-side coefficients: A?11 = a?11 � (a?11 � a?22) sin2 
;A?22 = a?22 + (a?11 � a?22) sin2 
;A?12 = A?21 = (a?11 � a?22) sin 
 
os 
;
and the right hand-side member: B01 = �1b?1 � (�1b?1 ��2b?2) sin2 
;B02 = (�1b?1 ��2b?2) sin 
 
os 
;
the coefficients a?ii, b?i (i = 1; 2) being given by Equation (43)1 and Equation (47)1 in the x coordinates. The link

between the “microscopic saturation” �0 and the two “macroscopic saturations” �i (i = 1; 2) is given by Equation

(48)1.

At first glance, Equation (49) is very similar to (24). A major difference however is the anisotropic aspect of

the saturation with two saturation functions �i (i = 1; 2), one for each direction.

From a mathematical point of view, it is not clear wether the system of Equations (49)–(52) is a closed one or

not: is a supplementary equation needed to obtain a well-posed problem or not? Nevertheless, it can be proved that�1 = �2 is a possible choice for a solution of the system. With this assumption, it is possible to solve Equations

(49)–(52) by using the kind of algorithms as the ones used to solve Equations (1)–(4). The only difference lies in

the modified coefficients and the fact that the direction of the flow is no longer the x1 axis but an oblique one.

4 Numerical results

As both Equations (1) and (24) have the same mathematical feature, various algorithms (see [6, 7, 11, 13, 15,

18, 21]) used to compute solutions of Equations (1)–(4) can be adressed for the solution of Equation (24). In this

paper, we propose the characteristics method adapted to steady state problems to deal with nonlinear convection

term combined with finite elements. Moreover, the nonlinear Elrod-Adams model for cavitation is treated by a

duality method. The combination of these numerical techniques has been explained and successfully applied by

Bayada, Chambat and Vazquez in [22].1to be translated in the x coordinates
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4.1 Computation of homogenized coefficients

We consider effective gaps defined with either transverse or longitudinal roughness patterns.

Table 1 summarizes homogenized coefficients obtained for transverse and longitudinal cases:

Transverse roughness Longitudinal roughnessh(x; y) hs(x) + hr sin (2�y1) hs(x) + hr sin (2�y2)A?11(x) 2(hs(x)2 � h2r)5=22hs(x)2 + h2r hs(x)3 + 32 hs(x) h2rA?22(x) hs(x)3 + 32 hs(x) h2r 2 (hs(x)2 � h2r)5=22hs(x)2 + h2rB?1(x) 2hs(x) hs(x)2 � h2r2hs(x)2 + h2r hs(x)
Table 1. Homogenized coefficients

The coefficients corresponding to assumption (6) can be easily obtained from the ones that are presented in

Table 1, using products taking account of roughness effects in each direction.

The coefficients corresponding to oblique roughness can be obtained by using products and linear combina-

tions of coefficients given in Table 1.

4.2 Transverse roughness tests

We adress the numerical simulation of journal bearing devices with axial supply of lubricant. Indeed we

simulate a journal bearing device whose length is denoted L, the mean radius Rm = (Rb + Rj)=2, Rb and Rj
being the bearing and journal radii respectively, and the clearance is 
 = Rb � Rj . The supply flow is QR, the

lubricant viscosity is � and the velocity of the journal is U . Moreover, the roughless gap between the two surfaces

is given by: Hs(X 0) = 
 1 + � 
os X 01Rm!! ; X 0 = (X 01; X 02) 2 (0; 2�Rm)� (0; L)
where the eccentricity � satisfies 0 � � < 1. The classical Reynolds problem, in real variables X 0 = (X 01; X 02),
should be posed as follows: r � �H3s6�rP� = U ��X 01��Hs� (53)P � 0; 0 � � � 1; P (1� �) = 0; (54)

with the boundary conditions P = 0; (55)
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except on the supply groove in which U�Hs � H3s6� �P�X 01 = QR: (56)

Now let us introduce the dimensionless coordinates and quantities that provide the effective system to be

solved: x1 = X 01Rm ; x2 = X 02Rm ; hs = Hs
 ;p = 
26�URm P; Q = QR
U ; � = RmL :
Then, the dimensionless Reynolds problem becomes for x 2 (0; 2�)� (0; �):r � �h3srp� = ��x1 ��hs�; (57)p � 0; 0 � � � 1; p (1� �) = 0; (58)

with the boundary conditions �hs � h3s �p�x1 = Q; (59)

on the boundary corresponding to the dimensionless supply groove (namely f0g � (0; �)), and the conditionp = 0; (60)

on the other boundaries. The roughless gap is now hs(x) = 1 + � 
os (x1). For the numerical tests, we have

worked on the dimensionless equations, with the following data:� � = 1, i.e. Rm = L.� The domain being (0; 2�)� (0; 1), the rough dimensionless gap is given by:h(x; x=") = hs(x) + hr(x=") = 1 + � 
os(x1) + (1� �)� sin�2�x1" � ;
with � = 0:75, � = 0:7, hs (respectively hr) denoting the smooth (respectively rough) contribution to the gap.� The dimensionless flow at the supply groove is Q = �inhs(0) with �in = 0:4571.

For various values of ", FIG.2 represents the behavior of both pressure and saturation. In particular, it justifies the

formal asymptotic expansion used in Section B.2. Three main facts have to be observed:
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Figure 2. Pressure and saturation at x2 = 0:5 for different roughness periods

1= The oscillations of the pressure tend to vanish, thus showing that p tends to a smooth limit pressure (i.e. p0(x)).2= The oscillations of the saturation do not vanish; the gradient tends to explode. Thus, �(x) behaves like a

function which depends on both slow and fast variables (i.e. �0(x; y)).3= The existence of two cavitation areas at both extremities of the bearing (starvation phenomenon).

FIG.2 allows us not only to compare more precisely the convergence of the pressure to the homogenized one,

but also to observe the behaviour of the saturation. The homogenized saturation may be viewed as an average,

with respect to y, of the microsaturation weighted by roughness parameters.
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4.3 Two dimensional roughness effects

The only difference with the previous subsection lies in the definition of the dimensionless gap h(x; y) defined

by Assumption 6, other data being unchanged:h1(x; y1) = 1 + 0:5 
os(x1) + 0:35 sin (2�y1) ;h2(x; y2) = 1 + 0:35 sin (2�y2) :
FIG.3 represents the pressure at a fixed x1 (notice that the corresponding saturation figure is omitted, since

there is nearly no cavitation).

FIG.4 and 5 represent pressure and saturation at a fixed x2, for various values of " as well as the homogenized
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Figure 3. Hydrodynamic pressure with 2D roughness patterns at x1 = 2:639
curves. Due to the number of discretized elements for solving the real problem, it is difficult to compute solutions

for values of " smaller than 1=20. However, the convergence for the pressure is observed in both directions, and

the same comments as in the transverse roughness case can be made.
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Figure 4. Hydrodynamic pressure with 2D roughness patterns at x2 = 0:5
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Figure 5. Hydrodynamic saturation with 2D roughness patterns at x2 = 0:5
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4.4 Oblique roughness effects

For convenience in computation, the data are not similar to the ones used in the previous subsections: consid-

ering the problem given in the real variables (see Equations (53)–(56)), we choose the following scaling process:x1 = X 012�Rm ; x2 = X 022�Rm ; hs = Hs
 ;p = 
26�U2�Rm P; Q = QR
U ; � = 2�RmL :
Now, the dimensionless Equations (57)–(60) are considered with the following data:� � = 0:2, i.e. 2�Rm = 0:2L.� The domain being (0; 1)� (0; 0:2), the rough dimensionless gap is given by:h(x; x=") = hs(x) + hr(x=") = 1 + 0:5 
os�2�e
 � x" � ;

with e
 = (
os
; sin 
), x = (x1; x2) and 
 = �=4, hs (respectively hr) denoting the smooth (respectively

rough) contribution to the gap.� The dimensionless flow at the supply groove is Q = �inhs(0) with �in = 0:6.

FIG.6 shows the behaviour of the pressure at a fixed x2, thus clearly establishing the convergence of the

pressure. FIG.7 represents the pressure on the supply line (x1 = 0), corresponding to the maximum pressure for

the homogenized solution.

FIG.8 shows the evolution of the cavitated areas when " tends to 0. Lubricated (respectively cavitated) zones

are coloured in white (respectively black). For not too small values of ", the direction of the cavitation streamlines

is the one of the roughness pattern. This does not seem to be the case for the homogenized one.

The results point out the fact that nondiagonal terms in the left-hand side and extra term in the right-hand side

of the homogenized Equation (24) or (49) are actually needed.

4.5 Some remarks on interasperity cavitation

In [17], Harp and Salant have proposed an average equation for modelling interasperity cavitation from JFO

mass flow preserving model. Basic assumptions are the existence of a (not too small) leading value of the period

of the roughness (length of correlation �) and that the roughness is distributed in a somewhat stochastic way. Then

the value of � does not disappear in the average equation obtained in [17] and allows for a description in detail

of the saturation in the interasperity. However, this equation is questionable for for general roughness patterns as

neither extradiagonal terms in the left hand-side nor a derivative with respect to the second direction in the right

hand-side appear in the average equation, unlike to our present Equation (24). This fact has been already pointed

out in [4] and is directly related to assumptions (4) in [17]. In true two dimensional roughness, it is important to

take it into account, even without cavitation (see also [23]). For one dimensional roughness as the one numerically

studied in [17], it is well known that these additional terms no longer exist, so that some comparison can be made

between the two approaches.

FIG.9 describes numerical results linked to Harp and Salant’s comments (in particular Example 2, p. 141

in [17]). The data are the following ones:
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Figure 6. Hydrodynamic pressure for oblique roughness patterns at x2 = 0:1
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Figure 7. Hydrodynamic pressure for oblique roughness patterns at x1 = 0
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Figure 8. Lubricated [white] and cavitated [black] areas for different values of ": 1=20, 1=50, homogenized� The domain is a small square bearing ℄0; l[�℄0; l[ whose area is l2 = 0:36 mm2.� Periodic boundary conditions are placed on x1 = 0 and x1 = l.� Pressure is imposed on other sides: p = 1:105 Pa on x2 = 0 and p = 6:105 Pa on x2 = l.� The effective gap is given by: h"(x) = 
�1 + 0:5 
os�2�l x1" ��
with 
 = 9:10�6 m.� The viscosity is � = 0:2 N:m:s�2.� The velocity is U = 1m:s�1.

FIG.9 describes on the right-hand side the evolution of the saturation as a function of ". The related cavitated area

consists of a set of elements whose width is thiner with epsilon and whose number is proportional to 1=". In the

homogenized case, the cavitation disappears.

Comparing with the results obtained in [17], we can observe that averaging the pressure in the x1 direction

gives the same kind of curves. Moreover, when " tends to 0, the results are identical with both approaches, as the

jump of the pressure at the boundary, introduced in [17], decreases with an order ".
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5 Conclusion

A solution procedure for deterministic periodic roughness computation has been developped. The procedure

uses homogenization multiscale approach and rigorously takes mass flow conservation into account. Classical JFO

algorithms can easily be extended to numerically compute the solution of the homogenized Reynolds equation for

transverse, longitudinal, oblique and even some two dimensional roughness.

However, further mathematical developments are needed to cope with general two dimensional roughness due

to anisotropic effects on the saturation.
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