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Abstract
We investigate the effective behaviour of a small transversal perturbation of
order ε to a completely integrable stochastic Hamiltonian system, by which we
mean a stochastic differential equation whose diffusion vector fields are formed
from a completely integrable family of Hamiltonian functions Hi, i = 1, . . . , n.
An averaging principle is shown to hold and the action component of the solution
converges, as ε → 0, to the solution of a deterministic system of differential
equations when the time is rescaled at 1/ε. An estimate for the rate of the
convergence is given. In the case when the perturbation is a Hamiltonian
vector field, the limiting deterministic system is constant in which case we
show that the action component of the solution scaled at 1/ε2 converges to that
of a limiting stochastic differentiable equation.

Mathematics Subject Classification: 60H10, 58J65, 58J37

1. Introduction

The Model. A smooth 2n-dimensional manifold M is said to be a symplectic manifold if
it is equipped with a symplectic structure, that is, a closed differential two-form ω which is
non-degenerate in the sense that for each x ∈ M, ω(v, w) = 0 for all w ∈ TxM implies v = 0.
Equivalently M admits a set of coordinates mapping such that the coordinate changing maps
are symplectic on R2n with the standard symplectic form ω0 = ∑

dpi ∧ dqi .
A family of n smooth Hamiltonians {Hk} on a 2n-dimensional symplectic manifold is

said to form a (completely) integrable system if they are pointwise Poisson commuting and if
the corresponding Hamiltonian vector fields XHk

are linearly independent at almost all points.
Given such an integrable family and a C1 locally Hamiltonian vector field V commuting with
the family of vector fields XHk

in the sense of ω(XHk
, V ) = 0, consider the following model,

which we call a completely integrable stochastic symplectic/Hamiltonian system:

dxt =
n∑

k=1

XHk
(xt ) ◦ dBk

t + V (xt ) dt. (1.1)
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Here (Bk
t , k = 1, . . . , n) are pairwise independent Brownian motions on a filtered probability

space (�, F, Ft , P ) with the standard assumptions on the filtration and ◦ stands for
Stratonovitch integration. We have suppressed the chance element ω here as is convention.
Note that the customary symbol for the symplectic form is unfortunately the same as that
for the chance variable, however confusion should not arise as the chance variable will from
now on not be explicitly expressed unless indicated otherwise. We call, respectively, XHk

the
diffusion vector fields and, V , the drift vector field for the stochastic differential equation.

In the integrable stochastic Hamiltonian system case, the diffusion vector fields span a
sub-bundle of the tangent bundle, at least locally. The purpose of this paper is to investigate
the effect of a small perturbation to random systems of this type. A solution to an integrable
Hamiltonian system preserves the energies Hk , just as does a solution to any other stochastic
Hamiltonian system and there are corresponding invariant manifolds (level sets). The Markov
solution restricts to each compact level set and the restriction has generator

L0 =
n∑

k=1

1

2
LXHk

LXHk
+ LV .

Here LV indicates Lie differentiation in the direction of V . If the integrable stochastic
Hamiltonian system is perturbed by a vector field εK for ε > 0 and K a C1 vector field
not necessarily taking values in the span of {XHk

, k = 1, 2, . . . , n} the solution to the resulting
equation

dyε
t =

n∑
i=1

XHk
(yε

t ) ◦ dBk
t + V (yε

t ) dt + εK(yε
t ) dt,

yε
t = y0

(1.2)

will not conserve the energies. On the other hand letting ε → 0, the deviation from level
sets of the energies will be small. Consider the solution yε(t/ε) scaled in time by 1/ε, which
has a generator given by 1

ε
L0 + LK . Note that the motion splits into two parts with the fast

component an elliptic diffusion on the invariant torus and the slow motion governed by the
transversal part of the vector field K . The evolution of yε(t/ε) is the skew product of the
diffusion of order 1 across the level sets and the fast elliptic diffusion of order ε−1 along
the level sets. The motion on the level sets (thinking of the level sets as the standard n-torus),
which would be quasi-periodic if there were no diffusion terms, is ergodic. The evolution of
the action component of yε(t/ε) will not depend on the angular variable in the limit as ε → 0
and is shown to be described by a system of n ordinary differential equations whose right-hand
sides can be deduced from ω(K, XHi

), i = 1, . . . , n. Here ω is the symplectic 2-form. The
convergence rate is shown to be of order ε

1
3 .

Furthermore if the vector field K is given by a Hamiltonian function, the average of
ω(K, XHi

) over the torus vanishes and we look at the second order scaling to see an interesting
limit. The action component of yε(tε−2) involves a martingale term in the limit and the
asymptotic law of yε(tε−2) across the level sets is shown to be given by a stochastic differential
equation. It remains open to find an estimate for the rate of the convergence of the law of
yε(tε−2) to the law of the limiting diffusion.

Main results. Suppose that ω(V, XHi
) = 0 and V commutes with each vector field XHi

.
Let y0 ∈ M be a regular point of H with a neighbourhood U0 the domain of an action-angle
coordinate map. Let T ε be the first time that the solution yt/ε starting from y0 exits U0. Set
Hε(t) = (H1(y

ε
t/ε), . . . , Hn(y

ε
t/ε)). Then Hε converges to the solution of the following system
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of deterministic equations
d

dt
H̄i(t) =

∫
MH̄(t)

ω(XHi
, K)(H̄ (t), z) dµH̄t

(z),

with a corresponding initial condition: if T 0 is the first time that H̄ (t) exits from U0 then for
all t < T0, β > 1, there exists a constant C2 > 0 such that(

E

(
sup
s�t

‖Hε(s ∧ T ε) − H̄ (s ∧ T ε)‖β

)) 1
β

� C2ε
1/3.

Furthermore if r > 0 is such that U ≡ {x : ‖H(x) − H(y0)‖ � r} ⊂ U0 define

Tδ = inf
t

{|H̄t − H(y0)| � r − δ}.
Then for any β > 1, δ > 0 and a constant C depending on Tδ ,

P(T ε < Tδ) � C(Tδ)δ
−βεβ/3.

In the case of K being a smooth local Hamiltonian vector field
∫
MH̄(t)

ω(XHi
, K)(H̄ (t), z)×

dµH̄t
(z) = 0 and hence we could look at the second scaling. The law of the stochastic process

H(yε
t/ε2) stopped at Sε , the first time that the process yε

t/ε2 exits from U0, converges to that of
H(zt∧Sε ) where zt is the solution to the following stochastic differential equation:

dz
j
t =

∑
i

σ
j

i (zt ) ◦ dBi
t + bj (zt ) dt.

Here (σ
j

i ) is the square root of the matrices (aij ),

aij (a) = −
∫

Ma

ω(K, XHj
)L−1

0 (ω(K, XHi
))(a, z) dµa(z)

and

bj (a) = 1

2

∫
Ma

LKL−1
0 (ω(XHj

, K))(a, z) dµa(z).

We give here a somewhat trivial example of a stochastic integrable system of equations
on R4 with the standard symplectic structure:

dx1(t) = x3(t) dBt,

dx2(t) = x4(t) dBt + x4 dWt,

dx3(t) = −x1(t) dBt,

dx4(t) = −x2(t) dBt − x2(t) dWt,

where Bt and Wt are independent 1-dimensional Brownian motions. Take the perturbation
vector to be

K1 =
(

0,
x2

x2
2 + x2

4

, 0, 0

)
,

K2 =
(

x3

(x2
1 + x2

3 )2
, 0,

x1

(x2
1 + x2

3 )2
, 0

)
or

K3 =
(

x3

(x2
1 + x2

3 )
3
2

, 0, − x1

(x2
1 + x2

3 )
3
2

, 0

)
.

In the case of K1 we have a non-trivial average; in the case of K2 and K3 we have trivial averages
at first scaling and can proceed to the second scaling and obtain a stochastic differential equation
(SDE) in the limit.
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Remark on the model. This work is based on the framework of Arnold on an averaging
principle for an integrable Hamiltonian system, as a stochastic Hamiltonian system can be
considered as a family of ordinary differential equations with time dependent random vector
fields (whose corresponding Hamiltonians are in general neither bounded from below nor
differentiable in time). Averaging of stochastic systems was pioneered by Khasminskii [16],
Papanicolaou et al [22], and has been an active research field on which there is a rich literature.
The structure of the main averaging results is close to that described in the excellent survey
of Papanicolaou [21]. We refer to Abraham–Marsden [3], Arnold [4], Hofer–Zehnder [15]
and McDuff–Salamon [20] as references for Hamiltonian systems on symplectic manifolds,
to Givon–Kupferman–Stuart [13] for some physical models behind these problems and for
recent progress in the direction of deterministic averaging, to Freidlin–Wentzell [9] and
Sowers–Namachchivaya [24] for random perturbations to systems with one degree of freedom,
and to Eizenberg–Freidlin [8], Borodin–Freidlin [6], Freidlin–Wentzell [10], Sowers [23],
Koralov [18], Khasminskii–Krylov [17], and Khasminskii–Yin [19] for recent related work
on perturbations of stochastic systems as well as Arnold–Imkeller–Namachchivaya [1] for a
discussion on asymptotic expansion of a damped oscillator of one degree of freedom with small
noise perturbation. For the Lagrangian mechanics and variational principle in a stochastic
framework we would like to refer to Bismut’s work [5]. However in this paper we do not
investigate the stochastic mechanics related to the SDEs.

The main novelty of this work is the model itself. We also obtained a rate of convergence.
The generator of our perturbed system is

Lε
0 =

n∑
k=1

1

2
LXHk

LXHk
+ LV + εLK,

from which we observe the following aspects of the model: (a) The unperturbed random
dynamical system is a completely integrable system. (b) The fast component of the system is the
diffusion term, not the deterministic term. It is also worth noting that the limiting slow motion
scaled at 1/ε has n degrees of freedom and is described by a system of n ordinary differential
equations. It is only at the second scaling, in the case of the perturbation being Hamiltonian,
that we see a limiting n-dimensional non-trivial Markov process. The convergence of the slow
motion (H1(y

ε
t/ε), . . . , Hn(y

ε
t/ε)) is in Lp with rate ε

1
3 . At the second scaling the slow motion

converges weakly. The assumptions we make on the Hamiltonian functions are: the Rn valued
function (H1, . . . , Hn) is proper and its set of critical points has measure zero.

The following work relates particularly well to ours. We will point out the differences and
similarities. In Dolgopyat [7] the following is proved: if ĥ is a first integral of ẏ = E(F (y, ξ1)),
where ξ1 is a random variable of compact support, the piece-wise linear function hε given by
ĥε(ε

2n) = ĥ(xε
n) converges weakly to the solution of a SDE, under suitable conditions. This

was proved using the martingale method. Here xε
n is solution to

xn+1 = xn + εF (xn, ξn) + ε2G(xn, ξn) + ε3H(xn, ξn, ε),

and the ξn’s are i.i.d. random variables. The equation governing xn are very general. If the
perturbation K in (1.2) is given by a Hamiltonian function we may take F ≡ 0 in Dolgopyat’s
model and take ĥ = h, a first integral to (1.1); however it is not clear how the piece-wise
linear function ĥε relates to the fast motion h(xt/ε2). In Eizenberg–Freidlin [8] and Borodin–
Freidlin [6], the diffusion part of the motion belongs to the slow component and the fast motion
is deterministic. More precisely the perturbed generator is LV + εL1 + L2 for a vector field V

and an interaction term L2. Freidlin and Weber [11, 12] have a different objective. They are
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mainly concerned with one conserved quantity H , not a completely integrable system. The
objective there is to obtain a limiting Markov process, using weak convergence, on the graph
homeomorphic to the set of connected components of the level sets of H .

2. Preliminaries

2.1. Hamiltonian and symplectic vector fields

Every symplectic manifold has a natural measure, called the Liouville measure. It is in fact
∧nω, differing from the volume form by a constant. Denote by ιvω the inner product of a
tangent vector v with ω. The map from T M to T ∗M given by v 	→ ιvω is a vector bundle
isomorphism, and there is a one to one correspondence between vector fields and differential
1-forms. A symplectic vector field V , also called a locally Hamiltonian vector field, is one
which preserves the symplectic structure, i.e. LV ω = 0. Here LV denotes Lie differentiation
in the direction of V . Equivalently ιV ω is a closed differential 1-form. For every C1 function
H : M → R we can associate a Hamiltonian vector field (also called symplectic gradient
vector field) given by

ιXH
ω = dH.

The canonical symplectic structure on R2n with coordinates (q1, . . . , qn, p1, . . . , pn) is
ω = ∑n

i=1 dqi ∧ dpi . Darboux’s theorem asserts that any symplectic manifold is locally R2n

with its canonical symplectic structure. If the first de Rham cohomology H
1(M; R) vanishes,

as in the case of R2n, every locally Hamiltonian vector field is given by a Hamiltonian function.
There are locally Hamiltonian vector fields which are not given by a Hamiltonian function.
Take the two torus T 2 with coordinates x and y periodic in x and y. The canonical symplectic
structure on R2 induces the symplectic structure on T 2: ω = dx ∧ dy. A vector field
X(x, y) = a(x, y)(∂/∂x) + b(x, y)(∂/∂y) with (∂a/∂x) + (∂b/∂y) ≡ 0 is clearly locally
Hamiltonian: the 1-form ιXω = a(x, y) dy − b(x, y) dx is closed. If a = 1, b = 0, the vector
field is not given by a Hamiltonian function on T 2.

The space of smooth functions on M has a Lie algebra structure given by the
Poisson bracket. The Poisson bracket of two smooth functions is denoted by {F1, F2} and
{F1, F2} = dF1(XF2) = ω(XF1 , XF2). The vector field corresponding to the Poisson bracket
is precisely the Lie bracket of the Hamiltonian vector fields XF1 and XF2 . Two Hamiltonian
functions are Poisson commuting or in involution if their Poisson bracket vanishes, in which
case their corresponding Hamiltonian flows commute. If {F, H } = 0 we say that F is a first
integral of H . Two Hamiltonian functions are said to be linearly independent at x if their
associated Hamiltonian vector fields are linearly independent at that point. A family of n

Hamiltonian functions is said to form an integrable system if the Hamiltonian functions are
pairwise Poisson commuting and if they are linearly independent on a set of full measure.

2.2. An example of a stochastic Hamiltonian system on R2n

The Hamiltonian vector field given by a Hamiltonian function H is given by XH = J dH ,
where J is the canonical complex structure:

J =
(

0 1

−1 0

)
,
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where 1 denotes the n by n identity matrix. The corresponding Hamiltonian system thus takes
the familiar form

q̇i = ∂H

∂pi

, 1 � i � n,

ṗi = −∂H

∂qi

, 1 � i � n.

For simplicity write p = (p1, . . . , pn) and q = (q1, . . . , qn). An important class of examples
of Hamiltonian functions on R2n is those of the form H(p, q) = 1

2 |p|2 + V (q) for some
potential function V . If V is quadratic, e.g. V (q) = 1

2a2|q|2, we have the standard harmonic
oscillator. The Poisson bracket in R2n is of the following form:

{H, F } =
n∑

i=1

(
∂H

∂pi

∂F

∂qi

− ∂H

∂qi

∂F

∂pi

)
.

A example of an integrable stochastic Hamiltonian system is given by

dqi(t) = ∂K

∂pi

dt +
n∑

k=1

∂Hk

∂pi

◦ dBk
t ,

dpi(t) = −∂K

∂qi

dt +
n∑

k=1

∂Hk

∂qi

◦ dBk
t ,

where

H1 = 1

2

n∑
i=1

a2
i q

2
i +

1

2

n∑
i=1

p2
i

Hk = 1

2
akq

2
k +

1

2

p2
k

ak

, 2 � k < n,

and K is a smooth function which commutes with all Hi , e.g. if K is a smooth function of Hi .

2.3. The invariant manifolds and integrable symplectic Hamiltonian systems

Let {Hk}nk=1 be an integrable family of smooth Hamiltonian functions, i.e. they are Poisson
commuting and so the Hk’s are first integrals of each other and they are independent on a set of
full measure. For a = (a1, . . . , an) ∈ Rn denote by Ma the level set of the first integrals {Hk}:

Ma = ∩n
i=1{x : Hi(x) = ai}.

The Liouville–Arnold theorem states that if {Hk}nk=1 are independent on Ma then Ma is a
smooth manifold and furthermore it is diffeomorphic to an n-dimensional torus if it is compact
and connected. For such value a, Ma is invariant under the flows of each Hk and each x in M

determines an invariant manifold through the value a = (H1(x), . . . , Hn(x)), which we write
also as MH(x).

An application of Itô’s formula below shows that the solution flow {Ft(x) : t � 0} of (1.1)
preserves the invariant manifolds {Ma}:

dHi(xt ) =
∑

k

dHi(XHk
(xt )) ◦ dBk

t + dHi(V (xt )) dt = 0, 1 � i � n.
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For simplicity we assume throughout the paper the following:

• The invariant manifolds are compact, which is the case if the map x ∈ M 	→
(H1(x), . . . , Hn(x)) ∈ Rn is proper. Note that the n vector fields {XHi(x)} are tangent
to MH(x) and the symplectic form ω vanishes on the invariant manifolds Ma . Therefore
the stochastic differential equation (1.1) is elliptic when restricted to individual invariant
manifolds and the Markovian solution is ergodic. Denote by µa the unique invariant
probability measure on Ma; it can be considered as the uniform probability measure on
the torus.

2.4. The invariant measure and the divergence operator for semi-elliptic stochastic
symplectic systems

Let {A0, A1, . . . , An} be smooth symplectic vector fields with [Ai, Aj ] = 0 for all i, j . Assume
that {A1, . . . , An} spans a sub-bundle E of the tangent bundle T M of rank n. Consider the
following stochastic differential equation:

dxt =
n∑

i=1

Ai(xt ) ◦ dBi
t + A0(xt ) dt. (2.1)

If there is a global solution flow {Ft(x0, ω) : t � 0} to equation (2.1), then the solution flows
are stochastic symplectomorphisms, i.e. ω = F ∗

t ω, where ω is the symplectic form, not the
chance variable.

For each x ∈ M , define a linear map A(x) : R2n → TxM by

A(x)(e) =
n∑

i=1

Ai(x)〈e, ei〉, e ∈ R2n

where {ei} is an orthonormal basis of R2n. The linear map is onto Ex with kernel {0}× Rn and
gives a positive symmetric bilinear form on E by making {Ai(x)} an orthonormal basis:

〈Ai(x), Aj (x)〉 = δij .

Then A(x) is an isomorphism from Rn×{0} to Ex . This defines a metric on E: for u = ∑
i uiA

i

and v = ∑
i viA

i ,

〈u, v〉 =
n∑

i=1

uivi

and for a function f we define its gradient ∇Ef = ∑
i df (Ai)Ai .

The symplectic structure ω restricts to E defines a complex structure on M as follows: we
first give the tangent bundle T M any Riemannian metric which agrees with the one constructed
on E using the linear map A. Define Jx : TxM → TxM by

ω(Jxu, v) = 〈u, v〉x.
To see that this identity defines Jx uniquely suppose that for u ∈ TxM there are u1 and u2

satisfies ω(ui, v) = 〈ui, v〉x , i = 1, 2. Then ω(u1 − u2, v) = 0 for all v. Thus u1 = u2.
Existence can be easily seen as direct calculations can be done in R2n.

Next take Ai = XHi
in (2.1), i = 1, 2, . . . , n, to be the Hamiltonian vector fields for an

integrable family of Hamiltonian functions {Hi} and A0 = V . We arrive back to the integrable
stochastic symplectic equation (1.1) where V is a symplectic vector field commuting with all
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XHi
. Under our assumption that

H : x → (H1(x), . . . , Hn(x))

is a proper map, then for almost every point a0 in Rn it is either trivial or a local trivial fibration
in the sense that there is a neighbourhood V of a0 such that H−1(a) is a smooth sub-manifold
for all a ∈ V and that there is a diffeomorphism from H−1(V ) to V × H−1(a0). Such a0 is
called a regular value of H . Denote by 
H the set of values in Rn which are not regular. A
point y in M is said to be a critical point if H(y) ∈ 
H . By Sard’s theorem the set of critical
values of the function H has measure zero. The 2n-differential form ωn, as a measure, has a
decomposition which gives a measure on each invariant manifold Ma for regular a value. The
decomposition can be chosen in the following way. First recall that on a neighbourhood of a
regular point a0 of H , every component of the level set Ma0 is diffeomorphic to an n-torus and
a small neighbourhood U0 of Ma0 is diffeomorphic to the product space T n × D, where D is a
relatively compact open set in Rn, see, e.g. [2]. More precisely if V is an open set of Rn such
that H−1(V ) does not contain any critical points of H then it is diffeomorphic to D × T n.
Take an action-angle chart around Ma which is diffeomorphic to D × T n for some open set
D. The measure (

∑
i dI i ∧ dθ i)n on the product space naturally splits to give us a probability

measure, the Haar measure dθ1 ∧ · · · dθn on T n. We take the corresponding one on Ma and
denote it by µa . Let U be a section of E. Define the divergences diva

EU to be the functions
such that ∫

Ma

df (U) dµa = −
∫

Ma

f diva
EU dµa

for all smooth functions f on Ma . Note that divEXHi
= 0, since∫

Ma

df (XHi
) dµa =

∫
Ma

{Hi, f } dµa = 0

for all smooth functions f (see the beginning of section 4 for a calculation). Thus if
U = ∑

i aiXHi
, where ai are constant on Ma and is thus divergence free.

Remark 2.1. Let U be a section of E commuting with all XHi
the invariant measure for the

SDE (1.1) restricted to the invariant manifold Ma is µa , which varies smoothly with a in
sufficiently small neighbourhoods of a regular value.

Proof. The measure ωn is an invariant measure for the SDE on M due to the fact that the
solution of the SDE leaves invariant the symplectic form. More precisely, since U commutes
with {XHi

} and thus can be written in the the form of U = ∑
i aiXHi

(x), where ai are constant
on Ma , it is therefore divergence free. Thus the invariant measure of the SDE restricted to
the torus is the same as that of the corresponding SDE without a drift. From the action-angle
transformation we see that the measure µa is an invariant measure for the SDE restricted to
Ma . This is in fact the only invariant measure for the SDE on Ma since the system is elliptic
when restricted to each level set and the conclusion follows. �

3. An averaging principle

Let {Hi}ni=1 be a completely integrable system on a smooth 2n-dimensional symplectic
manifold M so that the functions {Hi} are constants of motions of each other and that they
are pairwise in involution. We assume that the Rn-valued function H = (H1, . . . , Hn) is
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proper and its set of critical points has measure zero. Note that the vector fields {XHi
}

form an integrable distribution and through each point of the manifold there is an integrable
n-dimensional manifold.

Take an action-angle coordinate: φ−1 : U0 → D × T n. In this coordinate, x = φ(I, θ),
I ∈ D, θ ∈ T n, and (φ−1)∗ω = dI∧ dθ defines a symplectic structure on D×T n. Furthermore
if H̃i = Hi(φ(I, θ)) is the induced Hamiltonian on D × T n then İ k

i = −(∂H̃i/∂θk) = 0 and

θ̇ k
i = ∂H̃i

∂Ik

= ωk
i (I ) (3.1)

with ωk
i smooth functions. In fact XH̃i

= (φ−1)∗(XHi
) = − ∑n

k=1(∂(Hi ◦ φ)/∂Ik)(∂/∂θk).
For example the integrable Hamiltonian system in section 2.2 is equivalent to the Hamiltonian
system H1 = ∑n

i=1 ai q̄i , ai > 0, and Hk = q̄k, k = 2, . . . , n, through the action-angle
coordinates change (q, p) 	→ (q̄, p̄):

(q1, . . . , qn, p1, . . . , pn)

=
(√

2q̄1

a1
cos p̄1, . . . ,

√
2q̄n

an

cos p̄n,
√

2a1q̄1 sin p̄1, . . . ,
√

2anq̄n sin p̄n,

)
.

The corresponding Hamiltonian system is the trivial one ˙̄pi = ai, ˙̄qi = 0. Since U0 is
diffeomorphic to D × T n there is a constant r > 0 such that U0 contains the open set
{x :

∑
i |Hi(x) − Hi(y0)|2 � r2}.

Let K be a smooth vector field, transversal in the sense that ω(XHi
, K) are not all

identically zero. Denote by yε
t the solution to (1.2), the perturbation of the integrable system

(1.1) starting from a given point y0 in M . Set xt = y0
t , the solution to (1.1) with initial value

y0. If V is a vector field on M denote by Ṽ the induced vector field on D × T n. We assume
the following of the SDE (1.2):

Condition R. Suppose that ω(V, XHi
) = 0 and V commutes with all vector fields XHi

. Let
y0 ∈ M be a regular point of H with a neighbourhood U0 the domain of an action-angle
coordinate map: φ−1 : U0 → D × T n, where D is an open set of Rn.

We adopt the following notation: if f is a function on U0, by f̃ we mean the representation
of f in D × T n.

Lemma 3.1. Assume condition R holds for (1.2). Let τ ε be the first time that the solution yε
t

starting from y0 exits U0. Then for any smooth function f on M ,

(1)

[
E

(
sup

s�t∧τ ε

|f (yε
s ) − f (xs)|p

)] 1
p

� C1ε(t + t2),

where C1 = C1(V , K, Hi, f ) depends on the upper bounds of the functions |df̃ |,
|∂2H̃k/∂Ii∂Ij |, |dṼ |, |K̃| on D × T n.

(2) If V ≡ 0, then the estimates above, ε(t + t2), can be improved to C1ε(t + t
3
2 ).

Proof. In the proof below C stands for an unspecified constant. We denote the flows in
action-angle coordinates by xt = φ(It , θt ) and yε

t = φ(I ε
t , θε

t ). Set f̃ = f ◦ φ. Then

|f (yε
t ) − f (xt )| = |f̃ (I (yε

t ), θ(yε
t )) − f̃ (I (xt ), θ(xt ))|

� C|I (yε
t ) − I (xt )| + C|θ(yε

t ) − θ(xt )|,
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using the fact that ∂f̃ /∂I and ∂f̃ /∂θ are bounded on T n ×D as D is relatively compact. In the
local chart, (∂Ṽ /∂θi) = 0 and we can write V (I, θ) = Vj (I )(∂Hj/∂I)(I, θ) = ω

j

0(I )(∂/∂θj )

for some smooth functions ω
j

0 on D. The perturbation vector field can be written as (Kθ , KI ),
where Kθ = (K1

θ , . . . , Kn
θ ) and KI = (K1

I , . . . , Kn
I ) are, respectively, the angle and the action

component of the vector field K̃ on T n × Dn. The result is now clear from the form of the
SDE on T n × D:

dI ε,i
t = εKi

I (I
ε
t , θε

t ) dt,

dθε,i
t =

n∑
k=1

ωi
k(I

ε
t ) ◦ dBk

t + ωi
0(I

ε
t ) dt + εKi

θ (I
ε
t , θε

t ) dt,

where ωi
k, i, k = 1, . . . , n, are defined by (3.1). Indeed, then

sup
s�t∧τ ε

|I ε
s − Is | = ε sup

s�t∧τ ε

|
∫ s

0
|KI(I

ε
s , θε

s )| ds � εt sup
D×T n

|KI |,

and for s < τε ,

θε,i
s − θ i

s =
n∑

k=1

∫ s

0
(ωi

k(I
ε
r ) − ωk

i (Ir )) ◦ dBk
r

+
∫ s

0
(ωi

0(I
ε
r ) − ωi

0(Ir )) dr + ε

∫ s

0
Ki

θ (I
ε
r , θε

r ) dr.

As the Stratonovitch correction for the SDE vanishes, we may replace the Stratonovitch
integration by Itô integration:∫ s

0
(ωi

k(I
ε
r ) − ωi

k(Ir)) ◦ dBk
r =

∫ s

0
(ωi

k(I
ε
r ) − ωi

k(Ir)) dBk
r .

Consequently,

|θi(y
ε
s ) − θi(xs)| �

∣∣∣∣
n∑

k=1

∫ s

0
(ωi

k(I
ε
r ) − ωk

i (Ir )) dBk
r

∣∣∣∣
+ sup

D×T n

|dωi
0| ·

∫ s

0
|I ε

r − Ir | dr + εs sup
D×T n

|Ki
θ |

�
∣∣∣∣

n∑
k=1

∫ s

0
(ωi

k(I
ε
r ) − ωk

i (Ir )) dBk
r

∣∣∣∣
+ ε

s2

2
sup

D×T n

|KI | · sup
D×T n

|dω0
i | + εs sup

D×T n

|Ki
θ |.

Summing up over i, we have

E sup
s�t∧τ ε

|θε
s − θs |p � C1 sup

s�t

( n∑
i,k=1

E
∫ s

0

∣∣∣∣ωi
k(I

ε
r ) − ωi

k(Ir)

∣∣∣∣
2)p/2

+ C2(K̃)ε(t + t2)p

� C1

( ∑
i,k

(|dωi
k| ∨ 1)p

)
εpt

3p

2 + C2(K̃)εp(t + t2)p
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by Lp inequalities for martingales. Combining the estimates we obtain

E sup
s�t∧τ ε

|f (yε
s ) − f (xs)| � C3ε(t + t2)

for some constant C3.
If the drift V ≡ 0 then ω0 = 0 and the calculation above shows that the estimate is of the

order ε(t
3
2 ∧ 1). �

If the stochastic dynamical system (1.1) is subjected to a small non-Hamiltonian
perturbation, the slow variable is in the direction transversal to the energy surfaces while
the stochastic components are the fast variables. The lemma shows that the first integrals
of the perturbed system change by an order ε(t + t2) over a time interval t and so the slow
component accumulates over a time interval of the size t/ε and we obtain a new dynamical
system in the limit: as ε goes to zero the motion along the torus is significantly faster compared
with the motion in the transversal direction and thus the action component of yε

t/ε has a limit
as the randomness in the fast component is averaged out by the induced invariant measure, as
shown below. Recall that H(x) = (H1(x), . . . , Hn(x)).

We first prove the following lemma.

Lemma 3.2. Assume condition R holds. Let g be a real-valued function on M , which
is considered in the action-angle coordinates as a function from D × T n to R. Define
Qg : D ⊂ Rn → R to be its average over the torus:

Qg(a) =
∫

T n

g̃(a, z) dµ(z). (3.2)

Suppose that g is C1 on U0. Set

Hε
i (s) = Hi(y

ε
s/ε), H ε(s) = (Hε

1 (s), . . . , H ε
n (s)).

Then ∫ (s+t)∧T ε

s∧T ε

g(yε
r/ε) dr =

∫ (s+t)∧τ ε

s∧τ ε

Qg(Hε(r)) dr + δ(g, ε, t) (3.3)

with the following rate of convergence: for any β > 1,(
E sup

s�t

|δ(g, ε, s)|β
) 1

β

� C(t)ε
1
3 , (3.4)

where T ε is the first time that yε
t/ε exits from U0 and τ ε = T ε/ε.

Proof. The idea is to approximate g(yε
r ) by g(yr) on sufficiently small intervals and to apply

the law of large numbers to each integral bearing in mind that the cost of replacing yε
r by yr is

of order εδ on an interval of size δ, assuming that δ → ∞ as ε → 0, and that the error term
for replacing time average by space average is of order 1/

√
δ.

Let τ ε be the first time that yε
t exits from U0. For q ∈ (0, 1), let �t = ((t + s)/εq) ∧

τ ε − (s/εq) ∧ τ ε , which is of order ε−q , and set N ≡ N(ε) = [εq−1] + 1, which is of order
εq−1. Here [εq−1] is the integer part of εq−1 and all terms may depend on the sample paths of
ω. Take tn = (s/ε) ∧ τ ε + n�t , 1 � n � N − 1, so that

s

ε
∧ τ ε = t0 < t1 < · · · < tN−1 <

s + t

ε
∧ τ ε.
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We first make some pathwise estimates. For any C1 function g on M ,∣∣∣∣
∫ (s+t)∧T ε

s∧T ε

g(yε
u/ε) du

∣∣∣∣ =
∣∣∣∣∣ε

∫ s+t
ε

∧τ ε

s
ε
∧τ ε

g(yε
r ) dr

∣∣∣∣∣
� ε

∣∣∣∣∣
N−1∑
n=0

∫ tn+1

tn

g(yε
r ) dr

∣∣∣∣∣ + ε

∣∣∣∣∣
∫ s+t

ε
∧τ ε

tN

∣∣∣∣∣ g(yε
r ) dr.

Since g is bounded on U0, the second term on the right-hand side of the above expression
converges to zero with rate ε1−q :

ε

∣∣∣∣
∫ (s+t)

ε
∧τ ε

tN

g(yε
r ) dr

∣∣∣∣ � Cε�t � Ctε1−q .

For the remaining terms we use the splitting

ε

N−1∑
n=0

∫ tn+1

tn

g(yε
r ) dr = ε

N−1∑
n=0

∫ tn+1

tn

[g(yε
r ) − g(Fr−tn (y

ε
tn
, �tn(ω)))] dr

+ ε

N−1∑
n=0

∫ tn+1

tn

g(Fr−tn (y
ε
tn
, �tn(ω))) dr,

where ω denotes the chance variable, �t the shift operator on the canonical probability space:
�t(ω)(−) = ω(− + t) − ω(t) and {Ft(x, ω), t � 0} the solution flow of the unperturbed
stochastic differential equation (1.1) with starting point x. Write the summation as the sum of
A1 and A2 and the second term is

A2(t, ε) ≡ ε

N−1∑
n=0

∫ tn+1

tn

g(Fr−tn (y
ε
tn
, �tn(ω))) dr.

The law of large numbers says that for any function f on a compact manifold converging
to infinity as t converges to infinity, 1

t

∫ s+t

s
f (xr) dr converges to

∫
M

f (z) dz when t → ∞
with rate 1/

√
t and the convergence is uniform on compact time intervals in Lp for all p > 1.

Here dz is the volume measure. The easiest way to see that this holds is to first assume that∫
f dz vanishes and let h be the function solving �h = 2f and apply Itô’s formula to h(xt )

on the time interval [s, s + t]. Note that the intervals [ti , ti+1] are either constant intervals or
intervals of zero length with the exception of one bad interval of the form [a, τ ε] of size at
most �t . Let M be the integer such that [ti , ti+1] are constant intervals for i < M . For the bad
interval [tM, τ ε), the following term in A2:

ε

∫ τ ε

tM

g(Fr−tn (y
ε
tn
, �tn(ω))) dr

is of order ε�t . On each constant interval [ti , ti+1], i < M , the corresponding term in A2 is

ε

∫ tn+1

tn

g(Fr−tn (y
ε
tn
, �tn(ω))) dr = ε

∫ �t

0
g(Fr(y

ε
tn
, �tn(ω))) dr.

Denote by µHε(εtn), or µyε
tn

, the invariant measure on the invariant manifold MHε(εtn) ≡ Myε
tn

.
We apply the law of large numbers to such terms and use the Markov property of the flow to
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obtain the following estimates, for all sufficiently small ε,[
E sup

u�t

(
A2(u, ε) − ε�t

N−1∑
n=0

∫
MHε(εtn)

g(Hε(εtn), z) dµHε(εtn)(z)

)β
] 1

β

� Cε�t + N sup
n

[
E

(
ε

∫ �t

0
g(Fr(y

ε
tn
, �tn(ω))) dr

−ε�t

∫
MHε(εtn)

g(Hε(εtn), z) dµHε(εtn)(z)

)β] 1
β

� Cε�t + (ε�t)N sup
n

(
E sup

u�t

∣∣∣∣ 1

�t

∫ �t

0
g(Fr(y

ε
tn
, �tn(ω))) dr

−
∫

MHε(εtn)

g(Hε(εtn), z) dµHε(εtn)(z)

∣∣∣∣
β) 1

β

� Ctε1−q + C
ε�tN√

t/εq
=� Ctε1−q + C

1√
t
ε

q

2 .

On the other hand letting sn = εtn so �s = ε�t and consider s0 < s1 · · · < sN . As �s is of
order O(ε1−q), the following pathwise estimate follows:∣∣∣∣∣�s

N−1∑
n=0

∫
MHε(sn)

g(Hε(sn), z) dµHε(sn)(z) −
∫ (s+t)∧τ ε

s∧τ ε

∫
MHε(s)

g(Hε(sn), z) dµHε(r)(z) dr

∣∣∣∣∣
� C(g)tε1−q,

where C(g) = maxU0 |dg|. To summarize:∫ (s+t)∧τ ε

s∧τ ε

g(yε
r/ε) dr =

∫ (s+t)∧τ ε

s∧τ ε

Qg(Hε(r)) dr + δ(g, ε, t), (3.5)

where

|δ(g, ε, t)| � Cε1−q +

∣∣∣∣ε
∫ (t+s)

ε
∧τ ε

tN

g(yε
r ) dr

∣∣∣∣ + |A1(t, ε)|

+

∣∣∣∣A2(t, ε) −
∑

ε�t

∫
MHε(εtn)

g(Hε(εtn), z) dµHε(εtn)(z)

∣∣∣∣
+

∣∣∣∣ ∑ �s

∫
MHε(sn)

g(Hε(sn), z) dµHε(sn)(z)

−
∫ (s+t)∧τ ε

s∧τ ε

∫
MHε(s)

g(Hε(s), z) dµHε(s)(z) ds

∣∣∣∣
and

A1(t, ε) = ε

N−1∑
n=0

∫ tn+1

tn

[g(yε
r ) − g(Fr−tn (y

ε
tn
, �tn(ω)))] dr.

By the previous estimates:

|δ(g, ε, t)| � Ctε1−q + Ct−
1
2 εq/2 + |A1(t, ε)|.
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To show that |A1| is reasonably small, we apply lemma 3.1 and Hölder’s inequality(
Esup

s�t

(A1(s,ε))
β

) 1
β

�Ctε1−q +ε

[
Esup

s�t

(N−1∑
n=0

∫ tn+1

tn

|g(yε
r )−g(Fr−tn (y

ε
tn
,�tn(ω)))|dr

)β] 1
β

�Ctε1−q +ε ·N1−1/β

(N−1∑
n=0

E
[

sup
s�t

∫ tn+1

tn

|g(yε
r )−g(Fr−tn (y

ε
tn
,�tn(ω)))|dr

]β) 1
β

�Ctε1−q +εN1−1/β ·N 1
β C ·ε(�t +(�t)2)

�C(t +t2)ε1−q +Ctε.

Consequently,(
E sup

s�t

|δ(g, ε, s)|β
) 1

β

� C(t + t2)ε1−q + Ct−
1
2 εq/2 + Ctε

and finally take q = 2/3 to obtain∥∥∥∥ sup
s�t

δ(g, ε, s)

∥∥∥∥
Lβ

� C(t + t2)ε
1
3 + Cε

1
3 t−

1
2 . (3.6)

�

Theorem 3.3. Consider the stochastic differential equation (1.2) satisfying condition R. Let
T ε be the first time that the solution yt/ε starting from y0 exits U0. Set

Hε
i (t) = Hi(y

ε
t/ε).

(1) Let H̄ (t) ≡ H̄t ≡ (H̄1(t), . . . , H̄n(t)) be the solution to the following system of
deterministic equations.

d

dt
H̄i(t) =

∫
MH̄(t)

ω(XHi
, K)(H̄ (t), z) dµH̄t

(z), (3.7)

with initial condition H̄ (0) = H(y0). Let T 0 be the first time that H̄ (t) exits from U0.
Then for all t < T0, β > 1, there exists a constant C2 > 0 such that(

E

(
sup
s�t

‖Hε(s ∧ T ε) − H̄ (s ∧ T ε)‖β

)) 1
β

� C2ε
1/3,

(2) Let r > 0 be such that U ≡ {x : ‖H(x) − H(y0)‖ � r} ⊂ U0 and define

Tδ = inf
t

{|H̄t − H(y0)| � r − δ}.
Then for any β > 1, δ > 0 and a constant C depending on Tδ ,

P(T ε < Tδ) � C(Tδ)δ
−βεβ/3.

Remark 3.4. To see that (3.7) is a genuine system of ordinary differential equations, take the
canonical transformation map xa : Ma → T n. The pushed forward measure x∗(µa) is the
Lebesque measure µ on the torus and (3.7) becomes:

d

dt
H̄i(t) =

∫
T n

ω(XHi
, K)(x−1

H̄t
(H̄t , z)) dµ(z).
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Proof. By Itô’s formula, for t < T0 ∧ T ε .

Hε
i (t) = Hi(y0) +

∫ t

0
ω(XHi

, K)(yε
s
ε
) ds.

For i fixed, write

gi = ω(XHi
, K). (3.8)

We only need to estimate

|Hε
i (t) − H̄i(t)| =

∣∣∣∣
∫ t

0
gi(y

ε
s/ε) ds − H̄i(t)

∣∣∣∣. (3.9)

Using the notation of the previous lemma then equation (3.7) can be written as
d

dt
H̄i(t) = Qgi (H̄t ),

H̄0 = H(y0).

Applying (3.3) to the functions gi we have for any t < T ε ,

|Hε
i (t ∧ T ε) − H̄i(t ∧ T ε)| �

∫ t∧T ε

0
|Qgi (Hε(s)) − Qgi (H̄ (s))| ds + δ(gi, ε, t)

� C(g, φ)

∫ t

0
‖Hε(s)) − H̄ (s)‖, ds + δ(gi, ε, t).

By Gronwall’s inequality,(
E

(
sup

s�t∧T ε

‖Hε(s) − H̄ (s)‖β

)) 1
β

� C(t)ε
1
3 ,

concluding part (1) of theorem 3.3.
Part (2) of the theorem easily follows. By definition Tδ is the first time that√∑

i

|H̄i(s) − Hi(y0)|2 � r − δ

then

P(T ε < Tδ) � P

(
sup

s�Tδ∧T ε

‖H̄s − Hε(s)‖ > δ

)
� δ−βE

(
sup

s�Tδ∧T ε

‖H̄i(s) − Hε
i (s)‖β

)

� Cδ−βε
β

3 . �

4. Perturbation by a Hamiltonian vector field

If the perturbation K to the stochastic Hamiltonian system (1.1) is a Hamiltonian vector field,
i.e. LXω = 0, then

∫
Mc

ω(XHi
, K) dµc vanishes if c is not a bifurcation value. In fact let

(U0, φ) be an action-angle coordinate around Mc. We can write K = Xk for some smooth
function k,∫

Mc

ω(XHi
, K)(z) dµc(z) =

∫
T n

d(k ◦ φ)

(
−

n∑
k=1

∂(Hk ◦ φ)

∂I k

∂

∂θk

)
dθ

= −
n∑

β=1

ωi
β(I )

∫
T n

(
∂

∂θβ

)
(k ◦ φ) dθ = 0,
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where dθ is the standard measure on the n-torus. The ordinary differential equation (3.7)
governing limε→0 Hi(y

ε
t/ε) thus has a constant solution. In this case we may consider the

second order scaling yε
t/ε2 and the accumulation of the perturbation over a large time interval

of order ε−2. The proof is inspired by a proof in Hairer–Pavliotis [14] and this also benefited
from the papers by Khasminski, Papanicolau–Stroock–Varadhan and Freidlin.

Let

L0(I ) = 1

2

∑
LXHi

LXHi
+ LV

be the restriction of the elliptic operator on the invariant manifold with value I . If f on MI

has
∫

f dµ = 0 then the Poisson equation

L0h = f (4.1)

is solvable. We denote by L−1f the solution to the Poisson equation satisfying
∫

L−1f dµ = 0.
Since L0 is elliptic on each level set manifold Ma and {Hi, k} is centred there, the Poisson

equation has a unique solution hi . Note that the functions LK{Hi, k} and LXHi
hi are well

defined.
Note that if K = Xk then the matrix with the (i, j)th entry given by

−dHi(K)L−1
0 (dHj(K)))

is positive definite.

Theorem 4.1. Assume condition R and suppose that K is a smooth local Hamiltonian vector
field so that K = Xk for some smooth function k in the chart U0. Define the matrices (aij ) by

aij (a) = −
∫

Ma

ω(K, XHj
)L−1

0 (ω(K, XHi
))(a, z) dµa(z), a ∈ D ⊂ Rn

and let (σ
j

i ) be its square root. Set

bj (a) = 1

2

∫
Ma

LKL−1
0 (ω(XHj

, K))(a, z) dµa(z).

Let zt be the solution to the following stochastic differential equation

dz
j
t =

∑
i

σ
j

i (zt ) ◦ dBi
t + bj (zt ) dt.

Then the law of the stochastic process H(yε
t/ε2) stopped at Sε , the first time that the process

yε
t/ε2 exits from U0, converges to that of H(zt∧Sε ).

Remark. The limiting measure is clearly well defined as aij and bj are invariant with different
choices of the inverse to L0.

Proof. In the following calculation we restrict ourselves on the event {t < Sε}, equivalently
consider the relevant processes stopped at Sε . Set

ŷε
t = yε

t

ε2 ∧Sε ,

Ĥ ε(t) ≡ (Ĥ ε
1 (t), . . . , Ĥ ε

n (t)) = (H1(ŷ
ε
t ), . . . , Hn(ŷ

ε
t )).

Then

Ĥ ε
i (t) = Hi(y0) − ε

∫ t

ε2 ∧Sε

0
ω(K, XHi

)(yε
s ) ds.
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We first show that the family of the laws µε , distribution of Ĥ ε(t ∧Sε), is tight. It follows,
by Prohorov’s theorem, that {µε} is relatively compact in the space of probability measures
with the topology of weak convergence and hence has a weak limit µ̄. To see the tightness of
the family µε , we show that for any a, η > 0 there is a δ > 0 with

P

(
sup

|s−t |<δ

‖Ĥ ε(t) − Ĥ ε(s)‖2 � a

)
� η.

For this, observe that

‖Ĥ ε(t) − Ĥ ε(s)‖2 =
n∑

i=1

∣∣∣∣ − ε

∫ t

ε2 ∧Sε

s

ε2 ∧Sε

ω(K, XHi
)(yε

r ) dr

∣∣∣∣
2

.

Set hi to be the solution to the Poisson equation:

L0hi = ω(K, XHi
)

with
∫
Ma

h0 = 0 for any a ∈ Rn. Then

‖Ĥ ε(t) − Ĥ ε(s)‖2 =
n∑

i=1

∣∣∣∣ε
n∑

j=1

∫ t

ε2 ∧Sε

s

ε2 ∧Sε

LXHj
hi(y

ε
r ) dBj

r

+ ε2
∫ t

ε2 ∧Sε

s

ε2 ∧Sε

LKhi(y
ε
r ) dr − εhi(ŷ

ε
t ) + εhi(ŷ

ε
s )

∣∣∣∣
2

.

Applying lemma 3.2 with ε replaced by ε2, one sees that the drift term has a nice bound
in |t − s|:

ε2
∫ t

ε2 ∧Sε

s

ε2 ∧Sε

LKhi(y
ε
r ) dr =

∫ t∧τ ε

s∧τ ε

∫
Ĥ ε (r)

LKhi(z) dµ(z) dr + δ(LKhi, ε, t − s).

This gives us a comfortable estimate since δ(LKhi, ε, t −s) is of the order
√

ε(t −s). Similarly
the quadratic variation of each of the martingale terms also converges with the same rate of
convergence:

E
〈 ∫ t

ε2 ∧Sε

s

ε2 ∧Sε

LXHj
hi(y

ε
r ) dBj

r

〉
= ε2

∫ t∧ε

s∧τ ε

∫
E|LXHj

hi(y
ε
r )|2 dr.

Applying Burkerholder–Gundy inequality to obtain an estimate on the Lβ norm of

sup
|s−t |<δ

ε

∣∣∣∣
n∑

j=1

∫ t

ε2 ∧Sε

s

ε2 ∧Sε

LXHj
hi(y

ε
r ) dBj

r

∣∣∣∣,
which is a constant multiple of |s − t | plus an error term of the order

√
ε(t − s).

Finally it is clear that

sup
|s−t |<δ

|εhi(ŷ
ε
t ) − εhi(ŷ

ε
s )|2 � Cε → 0.

To identify the limiting measure let h be the solution to the Poisson equation,

h = 1

2

n∑
i=1

∂iF (H)L−1
0 (ω(K, XHi

)),



820 X-M Li

where L−1
0 is considered to act on the angle variable only and

∫
Ma

h = 0 for each a. For any
smooth function F on Rn, we have

F(Ĥ ε(t))) − F(Ĥ ε(0)) = −ε

n∑
i=1

∫ t

ε2 ∧Sε

0
∂iF (H(yε

s ))ω(K, XHi
)(yε

s ) ds

= ε

n∑
j=1

∫ t

ε2 ∧Sε

0
LXHj

h(yε
s ) dBj

s + ε2
∫ t

ε2 ∧Sε

0
LKh(yε

s ) ds + ε(h(y0) − h(ŷε
t )).

The first term on the right-hand side is a martingale and the last term converges to zero as
ε → 0. We first identify LKh in terms of the function F . By assumption the functions
ω(K, XHi

) are centred and L−1
0 has no effect on functions of H and so

LKh = 1

2
LKL−1

0

( n∑
i=1

∂iF (H)ω(K, XHi
)

)
= 1

2
LK

( n∑
i=1

(∂iF )(H)L−1
0 (ω(K, XHi

))

)

= −1

2

n∑
i=1

∂j ∂iF (H)ω(K, XHj
)L−1

0 (ω(K, XHi
))

+
1

2

( n∑
i=1

∂iF (H)LKL−1
0 (ω(XHi

, K))

)
.

Set

L̄ = −1

2

∑
i,j

ω(K, XHj
)L−1

0 (ω(K, XHi
))∂i∂j +

1

2

n∑
i=1

LKL−1
0 (ω(K, XHi

))∂i,

to see

F(Ĥ ε(t))) − F(Ĥ ε(0)) = ε

n∑
j=1

∫ t

ε2 ∧Sε

0
LXHj

h(yε
s ) dBj

s

+ ε2
∫ t

ε2 ∧Sε

0
L̄F ◦ H(yε

s ) ds + ε(h(y0) − h(ŷε
t )).

Mimicking Papanicolaou–Stroock–Varadhan, we define FH
s ≡ σ {Ĥ ε

r∧Sε : r � s} and so
{FH

s : s � 0} is the filtration generated by Ĥ ε
·∧Sε . We need the following estimates:

ε2
∫ t

ε2 ∧Sε

a∧T ε

L̄F(H(yε
s )) ds =

∫ t∧T ε

a∧T ε

( ∫
MĤε (s)

L̄F ◦ H(z) dµĤε(s)(z)

)
ds + δ(L̄F, ε2, t − a)

=
∫ t∧T ε

a∧T ε

LF ◦ Ĥ ε(s) ds + δ(L̄F ◦ H, ε2, t − a),

where in the action-angle local coordinate,

LF(a) = −1

2

n∑
i,j=1

∂j ∂iF (a)

∫
Ma

ω(K, XHj
)L−1

0 (ω(K, XHi
))(a, z) dµI (z)

+
1

2

n∑
i=1

∂iF (a)

∫
Ma

LKL−1
0 (ω(XHi

), K)(a, z) dµ(z).
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Then for any FH
s - measurable L2 random function G, using again lemma 3.2,

EG

[
F(Ĥ ε(t ∧ Sε))) − F(Ĥ ε(s ∧ Sε))) −

∫ t∧Sε

s∧Sε

∫
MĤε (r)

(L̄F)(z) dµĤε(r)(z) dr

]

= EG

[
ε

n∑
j=1

∫ t

ε2 ∧Sε

s

ε2 ∧Sε

LXHj
h(yε

s ) dBj
s

]

+ EG[δ(L̄F, ε2, t − s) + ε(h(yε
s

ε2 ∧Sε ) − h(yε
t

ε2 ∧Sε ))]

= EG[δ(L̄F, ε2, t − s) + ε(h(yε
s

ε2 ∧Sε ) − h(yε
t

ε2 ∧Sε ))] → 0.

Consequently

E
{
F(Ĥ ε(t ∧ Sε))) − F(Ĥ ε(s ∧ Sε))) −

∫ t∧Sε

s∧Sε

∫
MĤε (r)

(L̄F)(z) dµĤε(r)(z) dr|FH
s

}
→ 0,

and so any weak limit of the law Ĥ ε
· is the solution to the martingale problem for the second

order differential operator L. �
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