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Abstract

We discuss possible algorithms for interpolating data given in a set of curves and/or points in

the plane. We propose a set of basic assumptions to be satis�ed by the interpolation algorithms

which lead to a set of models in terms of possibly degenerate elliptic partial di�erential equations.

The Absolute Minimal Lipschitz Extension model (AMLE) is singled out and studied in more

detail. We show experiments suggesting a possible application, the restoration of images with

poor dynamic range.

1 Introduction

Our purpose in this paper will be to discuss possible algorithms for interpolating scalar data given

on a set of points and/or curves in the plane. Our main motivation comes from the �eld of image
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processing. A number of di�erent approaches using interpolation techniques have been proposed

in the literature for 'perceptually motivated' coding applications [5, 17, 22]. The underlying image

model is based on the concept of 'raw primal sketch' [18]. The image is assumed to be made mainly

of areas of constant or smoothly changing intensity separated by discontinuities represented by

strong edges. The coded information, also known as sketch data, consists of the geometric structure

of the discontinuities and the amplitudes at the edge pixels. In very low bit rate applications, the

decoder has to reconstruct the smooth areas in between by using the edge information. This can

be posed as a scattered data interpolation problem from an arbitrary initial set (the sketch data)

under certain smoothness constraints. For higher bit rates, the residual texture information has to

be separately coded by means of a waveform coding technique, for instance, pyramidal or transform

coding. In the following we assume that a set of curves and points is given and we want to construct

a function interpolating these data. Several interpolation techniques using implicitely or explicitely

the solution of a partial di�erential equation have been used in the engineering literature [4, 5, 6].

In the spirit of [1], our approach to the problem will be based on a set of formal requirements

that any interpolation operator in the plane should satisfy. Then we show that any operator

which interpolates continuous data given on a set of curves can be given as the viscosity solution

of a degenerate elliptic partial di�erential equation of a certain type. The examples include the

Laplacian operator and the minimal Lipschitz extension operator [2], [15] which is related to the

work of J. Casas [5, 6]. We also discuss other interpolation schemes proposed in the literature.

Before starting with the theory, we wish to give it a 
avour by simple heuristic arguments.

The main di�erential operators we discuss here arise inmediately from the mere consideration of

which kind (linear ?, nonlinear ?) of mean value property an interpolant function u(x) must have.

Assume that we know u(x) at all pixels except one, x0 2 IR2. What is the value to be chosen at

x0? The possibilities are three and correspond to more and more adventurous decisions:
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1) u(x0) is a mean value of the neighbouring pixels.

2) u(x0) is a median value of the neighbouring pixels.

3) u(x0) is obtained by propagation from neighbouring pixels ([5]). We shall make this de�nition

more precise below.

Let us now assume that a function u is an interpolant of itself. That is, it satis�es for all

x0, u(x0) = (mean value (u(x))) on a neighbourhood, no matter what we mean by "mean value".

Then, returning to the above possibilities and assuming that u is C2, we have:

1) u(x0) =
1
4(u(x0 + (h; 0)) + u(x0 � (h; 0)) + u(x0 + (0; h)) + u(x0 � (0; h))). Taking the di�erence

and letting h! 0, it is easily seen by Taylor expansion that this implies

�u(x0) =
@2u

@x21
(x0) +

@2u

@x22
(x0) = 0:

This is the "standard" interpolation. The above calculation does not depend upon the kind of

linear mean value algorithm. See [13].

2) u(x0) = median value fu(y); y 2 D(x0; h)g, where D(x0; h) is a disk with radius h. In this

case, it can be proved (see [13]) that by letting h! 0 and some manipulations, we get

curv(u)(x0) =
1

jDuj3
D2u(Du?;Du?) =

u2x2ux1x1 � 2ux1ux2ux1x2 + u2x1ux2x2
(u2x1 + u2x2)

3=2
= 0

where curv(u)(x0) is the curvature of the level line passing by x0 and Du? is orthogonal to Du,

jDu?j = jDuj, Du = (ux1 ; ux2) being the gradient of u and D2u the Hessian of u, i.e. the

matrix of the second derivatives of u. Here and in all what follows we shall use the notation

A(x; y) =
P2

i;j=1 aijxiyj , where A = (aij)i;j is a 2� 2 matrix and x; y 2 IR2.

3) In the case of propagation (see Fig. 1), let us take as an example the remarkable Casas and

Torres interpolation algorithm [6]. It is easily seen that if u is C2 at x and if u(x) is obtained by

this interpolation algorithm, then we can write

u(x) =
1

2
(u(x+ hDu) + u(x� hDu)) + o(h2):
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Letting h! 0 and using here again a Taylor expansion, one gets easily

D2u(Du;Du) = 0:

We shall give more details on this algorithm before the end of this introduction.

x-hDu

h

h
x

x+hDu

Fig. 1. Interpolation by propagation.

In conclusion, we see that three di�erent classical or new interpolation processes suggest that

the interpolant function can be solution of one of three elliptic PDE's

�u = 0: (1)

D2u(Du?;Du?) = 0; (2)

D2u(Du;Du) = 0; (3)

Notice that the �rst equation is nothing but the sum of the two last ones. This sum yields

jDuj2�u = 0.

We shall not develop further the analysis of simple interpolation processes. There is no need for

doing separate analyses as sketched above. Indeed, we shall show that the axiomatic approach not

only permits to retrieve the preceding operators, but also to identify all possible operators, given

sound assumptions on the interpolation process.

In fact, our axiomatic analysis will prove that the three above operators (1), (2), (3) essentially

describe all the choices we have for an interpolation method. Now, the second one (2) will be

proved not to give necessarily a solution. The �rst one (1) is excellent and standard, but does not
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permit to interpolate isolated points. It is well known that the problem �u = 0, u = 0 on @D(0; r),

u(0) = 1 has no solution. We have the same imposibility with Equation (2). Equation (3), instead,

yields a cone function u(x) = jxj� 1, as interpolant. Equation (3) is somewhat new as far as image

interpolation is concerned. Using Aronsson's [2] and Jensen's [15] results, we shall show that we

can indeed de�ne for every Lipschitz datum de�ned at curves and points a Lipschitz interpolant.

This method is inspired from Casas-Torres [6], but it must be made clear that the Casas-Torres

algorithm does not create necessarily a continuous interpolant, in contrast with Aronsson's method

[2] (see also [15]). Let us explain brie
y why. In the case of an initial datum u0 de�ned on a set

�0 of curves 
i and points Pi, such that u0 = constant on each 
i, the Casas-Torres de�nition is as

follows:

a) Compute the skeleton ~�1 of IR
2 n �0.

b) For every point x in ~�1: if ~�1 is a simple curve at x, then there are two points in �0, y and z,

such that d(x; y) = d(x; z) = d(x;�0). Then set u(x) = u(y)+u(z)
2 . If x is a multiple point of ~�1,

de�ne similarly u(x) as the mean value of all points z in �0 such that d(x; z) = d(x;�0).

c) Take �1 = �0 [ ~�1 and iterate with �1 instead of �0.

This process de�nes u on a dense subset [n�n of IR2 and an extension of u to the whole plane

would be possible, was uj[n�n continuous. Unfortunately, this is not the case. Take (e.g.)

�0 = f(0; 0); (0; 2); (2; 0); (2; 2)g

with u(0; 0) = 0, u(2; 0) = 2, u(2; 0) = 6 and u(2; 2) = 4. Then �1 is made of four half lines

Li; i = 1; 2; 3; 4 with endpoints at (1; 1) (see Fig. 2)

L1 = f(x1; x2) : x1 = 1; x2 < 1g ujL1 = 1;

L2 = f(x1; x2) : x2 = 1; x1 < 1g ujL2 = 3;

L3 = f(x1; x2) : x2 = 1; x1 > 1g ujL3 = 3;
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L4 = f(x1; x2) : x1 = 1; x2 > 1g ujL4 = 5:

u=0

u=4

u=2

u=6

L

L L   

L

(1,1)

u=5

u=3

u=1

u=3

1

3

4

.

.2

Fig. 2. Creation of discontinuities by the Casas-Torres interpolation algorithm.

Clearly, (1; 1) is a discontinuity point for u and remains so in the iteration process, since this

iteration process does not modify the acquired values of u.

We refer to the excellent and far ranging review by Powell [20] on the numerical methods for

interpolation of scattered data points. From his review follows that we have essentially three classes

of interpolation algorithms for scattered points.

a) The Delaunay triangulation ([11]), followed by piecewise polynomial interpolation.

b) The Shepard's global method, which permits C1 interpolation.

c) The radial basis function method.

It is easily seen that no one of these methods is adapted to image processing. Indeed, �rst of

all, in image processing, we have not only points as data for interpolation, but also pieces of curves,

or very dense sets of points. This makes all three methods di�cult to implement and numerically

unstable. Next, it is trivial to notice that none of these methods is stable. We mean that given a

datum u0 and an interpolant u, it may well be asked that if we interpolate u itself, we get back

to u. This is not the case for a), b), c). Now, we will prove that it is possible to de�ne stable

interpolation methods in the preceeding sense.

Here, we meet a peculiarity of image processing with respect to classical numerical analysis. In

numerical analysis, it is generally desirable that the interpolant be C2 or more. We shall prove that
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no stable method can yield a C2 interpolant if we, in addition, ask the method to interpolate data

de�ned on both curves and points. In contrast, we shall prove that the equation D2u(Du;Du) = 0

de�nes a stable method with smooth enough (but not C2) interpolant. In practice, experiments

prove that its regularity is more than enough as far as visual comfort is asked.

Operator (3) is in no way new in Computer Vision. In fact, it has been proposed as edge

detector by Havens and Strikwerda [14], Torre and Poggio [24] and Yuille [25]. It also appears in an

early work by Prewitt [21] in the context of edge enhancement. The whole Canny edge detection

theory [3] is based on it. Its use is following. As is proved below (Proposition 2), at points where

jDuj is maximal in the direction of the gradient one has by di�erentiation D2u(Du;Du) = 0. Such

points are de�ned as edge points by the above mentioned authors. Thus, it is reasonable to impose

the condition D2u(Du;Du) = 0 in regions where we are interpolating the image. This only means

that in these regions all points are edge points, or, rather, that none of them has any advantage

as a candidate to be an edge. Of course, the same considerations apply to Operator (1) and the

Marr-Hildreth edge detection theory [19].

Our plan is as follows. In Sect. 2 we introduce a formal set of axioms which should be satis�ed

by any interpolation operator in the plane and derive the associated partial di�erential equation.

In Sect. 3 we discuss several examples of interpolation operators relating them to the set of axioms

studied in the previous section. We shall concentrate our attention in an special one, the so called

AMLEmodel, giving existence and uniqueness results for the associated PDE. Its numerical analysis

is given in Sect. 4. Finally, in Sect. 5 we display some experimental results obtained by using the

previous model. Although the whole theory will be developped in IR2, there are very few alterations

in order to extend it to IRn.
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2 Axiomatic analysis of interpolation operators

We begin by recalling the de�nition of a continuous simple Jordan curve.

De�nition: A continuous function � : [a; b] ! IR2 is a continuous simple Jordan curve if it is

one-to-one in (a; b) and �(a) = �(b). By Alexandro� Theorem, such a curve surrounds a bounded

simply connected domain which we denote by D(�).

Let C be the set of continuous simple Jordan curves in IR2. For each � 2 C, let F(�) be the set of

continuous functions de�ned on �. We shall consider an interpolation operator as a transformation

E which associates with each � 2 C and each ' 2 F(�) a unique function E(';�) de�ned in the

region D(�) inside � satisfying the following axioms:

(A1) Comparison principle:

E(';�) � E( ;�) for any � 2 C and any '; 2 F(�) with ' �  

(A2) Stability principle:

E(E(';�) j�0 ;�
0) = E(';�) jD(�0)

for any � 2 C, any ' 2 F(�) and �0 2 C such that D(�0) � D(�).

Γ

’Γ

Fig. 3. Stability principle.

This principle means that no new application of the interpolation can improve a given interpolant.

If this were not the case, we should iterate the interpolation operator inde�nitely until a limit

interpolant satisfying (A2) is attained.
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For the next principle, we denote by SM(2) the set of symmetric two-dimensional matrices.

(A3) Regularity principle: Let A 2 SM(2), p 2 IR2 � f0g, c 2 IR and

Q(y) =
A(y � x; y � x)

2
+ < p; y � x > +c:

(where < x; y >=
P2

i=1 xiyi). Let D(x; r) = fy 2 IR2 : ky � xk � rg and @D(x; r) its boundary.

Then

E(Q j@D(x;r); @D(x; r))(x) �Q(x)

r2=2
! F (A; p; c; x) as r ! 0+ (4)

where F : SM(2)� IR2 � f0g � IR� IR2 ! IR is a continuous function.

This assumption is much weaker than what it appears to be. Indeed, assume only that given

A; p; c; x, we can �nd a C2 function u such that D2u(x) = A, Du(x) = p, u(x) = c, such that the

di�erentiability assumption (4) holds (with u instead of Q). Then, arguing as in Theorem 1 in [8]

it is easily proven that (4) holds for all C2 functions and in particular for Q.

Together with these basic axioms, let us consider the following axioms which express obvious

independence properties of the interpolation process with respect to the observer's, standpoint and

the grey level encoding scale.

(A4) Translation invariance:

E(�h';�� h) = �hE(';�)

where �h'(x) = '(x + h), h 2 IR2, ' 2 F(�), � 2 C. The interpolant of a translated image is the

translated of the interpolant.

(A5) Rotation invariance:

E(R';R�) = RE(';�)

where R'(x) = '(Rtx), R being an orthogonal map in IR2, ' 2 F(�), � 2 C. The interpolant of a

rotated image is the rotated of the interpolant.
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(A6) Grey scale shift invariance:

E('+ c;�) = E(';�) + c

for any � 2 C, any ' 2 F(�), c 2 IR.

(A7) Linear grey scale invariance:

E(�';�) = �E(';�) for any � 2 IR

(A8) Zoom invariance:

E(��'; �
�1�) = ��E(';�)

where ��'(x) = '(�x), � > 0. The interpolant of a zoomed image is the zoomed interpolant.

Axioms (A1), (A3) and (A4) to (A8) are obvious adaptations from the axiomatic developped

in [1]. Let us write G(A) = F (A; e1), A 2 SM(2), e1 = (1; 0). Then G is a continuous function of

A. Given a matrix

A =

0
@ a b

b c

1
A ;

let us write for simplicity G(a; b; c) instead of G(A). Then using an argument similar to the one

developped in [1] we prove.

Theorem 1 ([8]) Assume that E is an interpolation operator satisfying (A1)�(A8). Let ' 2 C(�),

u = E(';�). Then u is a viscosity solution of

G

 
D2u

�
Du

jDuj
;
Du

jDuj

�
;D2u

 
Du

jDuj
;
Du?

jDuj

!
;D2u

 
Du?

jDuj
;
Du?

jDuj

!!
= 0: in D(�)

uj� = '

(5)

In addition, G(A) is a nondecreasing function of A satisfying G(�A) = �G(A) for all � 2 IR
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We do not give explicitely the notion of viscosity solution for the general model (5) and we refer

to [8]. We shall precise this notion when needed for each concrete example below. From now on,

we shall assume that the interpolation operator E satis�es (A1)� (A8). Using the monotonicity of

G, we can reduce the number of involved arguments inside G.

Proposition 1 i) If G does not depend upon its �rst or its last argument, then it only depends on

its last (resp. its �rst) argument. In other terms,

If G(�; �; 
) = Ĝ(�; �); then G = Ĝ(�) = �Ĝ(1);

If G(�; �; 
) = Ĝ(�; 
); then G = Ĝ(
) = 
Ĝ(1):

�; �; 
 2 IR.

ii) If G is di�erentiable at 0 then G may be written as G(A) = Tr(BA) where B is a nonnegative

matrix.

Proposition 1i) is due to the fact that A! A(�; �?) (� 2 R2, j�j = 1, �? being the vector obtained

by rotation of �=2 of �) is not a monotone operator with respect to A.

Proof: i) Assume that G(�; �; 
) = Ĝ(�; 
). Let A;B two matrices. Let a22 � b22 = � > 0

and a12 � b12 = � for any � 2 IR. Setting a11 = b11 +
�2

�2
, we see that (A � B)((x; y); (x; y)) =

�2

�2
x2 + 2�xy + �y2 = (�� x+ �y)2 � 0. Thus, A � B, which implies

G(A) = Ĝ(b12 + �; b22 + �) � Ĝ(b12; b22) = G(B)

for all � > 0 and for all � 2 IR. Letting �! 0, we obtain

Ĝ(b12 + �; b22) � Ĝ(b12; b22); 8� 2 IR:

Thus Ĝ does not depend upon its �rst argument, i.e., G = Ĝ(
). Moreover, since Ĝ is continuous

and Ĝ(�
) = �Ĝ(
) for all � � 0 (� 2 IR), then Ĝ(
) = 
Ĝ(1) for all 
 2 IR.
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ii) Let �; �; 
 2 IR and " > 0. Since G is di�erentiable at (0; 0; 0) then

G("�; "�; "
) = G(0; 0; 0) + "rG(0; 0; 0) � (�; �; 
) + o("):

Since G(0; 0; 0) = 0 and G("�; "�; "
) = "G(�; �; 
), dividing the above identity by " and letting

"! 0 we get

G(�; �; 
) = a�+ 2b� + c


where (a; 2b; c) = rG(0; 0; 0). Observe that the above expression can be written as Tr(BA) where

B =

0
@ a b

b c

1
A ; and A =

0
@� �

� 


1
A :

Since G is an increasing function of A, then B must be a nonnegative matrix. 2

Thus if we assume that G is di�erentiable at (0; 0; 0) then we may write Equation (5) as

aD2u

�
Du

jDuj
;
Du

jDuj

�
+ 2bD2u

 
Du

jDuj
;
Du?

jDuj

!
+ cD2u

 
Du?

jDuj
;
Du?

jDuj

!
= 0: (6)

where a; c � 0, ac � b2 � 0 which is the same as to say that the matrix B above is nonnegative.

Let us explore which of these operators can be used to interpolate data given on a set of points

and/or curves. For that we consider D = B((0; 0); 1) the ball of center (0; 0) and radius 1 and look

for a solution of (6) on D n f(0; 0)g such that U(0; 0) = 1 and U(x1; x2) = 0 for (x1; x2) 2 @D.

Assume that we have existence and uniqueness of solutions of (6). Since the equation and the data

are rotation invariant then we may look for a radial solution u = f(r) with r = (x21 + x22)
1=2 of (6).

If u satis�es (6) then f is a solution of

arf 00 + cf 0 = 0 0 < r < 1 (7)

such that f(0) = 1; f(1) = 0. In terms of the values of a; b; c we have

i) If a = 0, then b = 0. If c = 0 then we have no equation. If c > 0 then f 0 = 0 and the only solution

of (7) is f = constant. The boundary conditions cannot be satis�ed. There are no interpolation

operators in this case.
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ii) Consider now a > 0. Since (7) is an Euler equation the solutions are of the form 1, rz or log r.

If 0 � c < a then z = 1� c=a and f(r) = 1� rz. Notice that ru is bounded if and only if z = 1,

i.e. c = 0. In that case also b = 0 and the equation is

D2u

�
Du

jDuj
;
Du

jDuj

�
= 0 (8)

When 0 < c < a the solution exists but the gradient is unbounded at (0; 0). If c = a then the

general solution of (7) is f(r) = �+� log r, �; � 2 R and we cannot match the boundary conditions.

Similarly if c > a, f(r) = � + �rz, z = 1 � c=a < 0, �; � 2 R and again we cannot match the

boundary conditions.

This discussion proves that if we require to the interpolation operators described by a smooth

function G to be able to interpolate data given on curves and/or points we are forced to assume

model (8). As discussed above there are other possibilities with 0 < c < a but the gradient may

become unbounded even for smooth data at the boundary which means that we are having less

regularity than in model (8) which, as we shall see below, always keeps a bound on the gradient if

the data have a bounded gradient.

Figure 4
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3 Examples

Example 1. Given � 2 C and ' 2 F(�) we consider E1(';�) to be the solution of

�u = 0 in D(�)

uj� = ':

(9)

The operator E1 satis�es all axioms (A1) � (A8) above. Just mention that the regularity axiom

follows from the mean value theorem for the Laplace equation on a disk. It corresponds to the

function G(A) = �Tr(A), that is G(a; b; c) = �(a + c). We recall that this operator does not

permit to interpolate points (see introduction).

A more general situation is given by the so called p-Laplacian

div(jrujp�2ru) = 0 in D(�)

uj� = ':

(10)

where p � 1. Formally, after dividing by jrujp�2, the above equation can be written as

(p� 1)D2u

�
Du

jDuj
;
Du

jDuj

�
+D2u

 
Du?

jDuj
;
Du?

jDuj

!
= 0: (11)

which is contained in the family of equations (6) with a = p� 1, b = 0, c = 1. As it is known the

value of u can be �xed at point if and only if p > 2. This corresponds to the case a > c. From the

above discussion we see that, unless c = 0 which corresponds to the case p =1, the gradient of u

can be unbounded. The case of p =1 will be our next example.

Example 2. Our next example is more interesting and will be discussed in detail. Given a domain


 with @
 2 C and ' 2 F(@
) we consider E2('; @
) to be the viscosity solution of

D2u

�
Du

jDuj
;
Du

jDuj

�
= 0 in 


uj@
 = ':

(12)
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We consider equation (12) in the viscosity sense. Given u 2 C(
) we say that u is a viscosity

subsolution (supersolution) of (12) if for any  2 C2(
) and any x0 local maximum (minimum) of

u�  in 
 such that D (x0) 6= 0

D2 (x0)

�
D (x0)

jD (x0)j
;
D (x0)

jD (x0)j

�
� 0 (� 0):

A viscosity solution is a function which is a viscosity sub- and supersolution.

Equation (12) was introduced by G. Aronsson in [2] and recently it has been studied by R.

Jensen [15]. Indeed, in [2] the author considered the following problem:

Given a domain 
 in IRn, does a Lipschitz function u in 
 exist such that

sup
x2~


jDu(x)j � sup
x2~


jDw(x)j;

for all ~
 � 
 and w such that u�w is Lipschitz in ~
 and u = w on @ ~
. If it exists, such a function

will be called an absolutely minimizing Lipschitz interpolant of wj@
 inside 
 or AMLE for short.

Notice that the above de�nition, if it de�nes uniquely u, immediately implies the stability of AMLE

in the sense of (A2). Then it was proved in [2] that if u is an AMLE and is C2 in 
, then u is a

classical solution of

D2u(Du;Du) = 0 in 
: (13)

Later Jensen [15] proved that if u is an AMLE, then u solves (13) in the viscosity sense. Moreover,

the viscosity solution is unique. We shall use the viscosity solution formulation of Equation (13).

Given u 2 C(
) we say that u is a viscosity subsolution (supersolution) of (13) if for any  2 C2(
)

and any x0 local maximum (minimum) of u�  in 


D2 (x0)(D (x0);D (x0)) � 0 (� 0):
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A viscosity solution is a function which is a viscosity sub- and supersolution. Then Jensen proved

[15] a comparison principle between sub- and supersolutions of Equation (13) together with an

existence result for boundary data in the space of functions Lip@(
) which are Lipschitz continuous

with respect to the distance d
(x; y). We denote by d
(x; y) the geodesic distance between x and

y, i.e., the minimal length of all possible paths joining x and y and contained in 
 [15]. Observe

that if u is a viscosity subsolution (supersolution, solution) of (12) if and only if u is a viscosity

subsolution (supersolution, solution) of (13). From this follows the corresponding comparison

principle for solutions of (12).

Theorem 2 Assume that v is a subsolution and w a supersolution of (12) (equivalently of (13)).

If v j@
, w j@
2 Lip@(
) then

sup
x2


(v � w) = sup
x2@


(v � w): (14)

Theorem 3 Given g 2 Lip@(
), u is the AMLE of g into 
 if and only if u is the solution of

(13) with u j@
= g.

Let us state R. Jensen's existence result for (12) in a way that makes explicit the fact that we

are able to interpolate a datum which is given on a set of curves and points. Let us consider a

domain 
 whose boundary @
 = @1
 [ @2
 [ @3
 where @1
 is a �nite union of recti�able simple

Jordan curves,

@2
 = [mi=1Ci;

where Ci are recti�able curves homeomorphic to a closed interval and

@3
 = fxi : i = 1; :::; Ng
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is a �nite number of points. The boundary data to be interpolated is given by a Lipschitz function

'1 on @1
, two Lipschitz functions '
i
2+; '

i
2� on each curve Ci, which coincide on the extreme points

of Ci, i = 1; :::;m and a constant value ui on each point xi, i = 1; :::; N . We shall denote by C+
i , C

�
i

the same curve Ci where we take into account the direction of the normal �+i (x), �
�
i (x) = ��+i (x),

x 2 Ci as in Fig. 5. When we write uj
C
+

i

= 'i2+ as in the next theorem we mean that u(y)! 'i2+(x)

as y ! x if < y; �+i (x) >< 0, x 2 Ci and similarly for uj
C
�
i

= 'i2�.

Ω

. .

ν

ν
x

C

C

x

1

C

2

2

−

+

1
2

2

2

−

+

Fig. 5. General domain of interpolation.

Theorem 4 Given 
, '1, '
i
2+; '

i
2�, uj, i = 1; :::;m, j = 1; :::; N , as above then there exists a

unique Lipschitz viscosity solution u of

D2u

�
Du

jDuj
;
Du

jDuj

�
= 0 in 


uj@1

= '1

uj
C
+

i

= 'i2+

uj
C
�
i

= 'i2�; i = 1; :::;m

u(xi) = ui; i = 1; :::; N:

(15)

This result enables us to de�ne the following interpolation operator. Given ' 2 Lip@(
), let

E2('; @
) be the viscosity solution of (12). Then

Theorem 5 The operator E2 de�ned above satis�es axioms (A1)� (A8).
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Proof. According to the previous results it su�ces to prove that (A3) is satis�ed. Let A 2 SM(2),

p 2 IR2; p 6= 0, c 2 IR. Without loss of generality we may take c = 0 and also x = 0. Let

Q(x) =
A(x; x)

2
+ < p; x > :

Let � = p
jpj . In the canonical basis f�; �?g the matrix A can be written

A =

0
@ a b

b c

1
A ; so that a = D2Q

�
DQ

jDQj
;
DQ

jDQj

�
and p = (jpj; 0):

Let us de�ne

Q"(x) =
A(x; x)� "x21

2
+ < p; x > :

Observe that on the boundary of D(0; r), r > 0,

Q"(x) =
a

2
r2 �

"

2
x21 + bx1x2 +

c� a

2
x22+ < p; x > : (16)

We look for a supersolution  of (12) such that  � Q" on @D(0; r) for r > 0 small enough. We

claim that

 (x) =
a

2
r2 + �(x)+ < p; x >;

where

�(x) = �
"

2
x21 + bx1x2 +

c� a

2
x22

is a supersolution of (12). According to (16)  � Q" on @D(0; r). Since

D2 (D ;D ) = D2�(p+D�; p+D�) = �"kpk2 +O(kxk) < 0

for r > 0 small enough, it follows that  is a supersolution of (12). Then, according to Theorem 2

E(Q"; @D(0; r)) �  in D(0; r); (17)
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sup
D(0;r)

jE(Q"; @D(0; r))�E(Q; @D(0; r))j � sup
D(0;r)

jQ" �Qj �
"

2
r2: (18)

Then, for r > 0 small enough

E(Q; @D(0; r))(0)�Q(0) �
"

2
r2 +E(Q"; @D(0; r))(0)�Q(0)

�
"

2
r2 +  (0) �

"

2
r2 +

a

2
r2:

Now, dividing by r2=2 and letting r ! 0 and "! 0 in this order we get

lim sup
r!0

E(Q; @D(0; r))(0)�Q(0)

r2=2
� a:

Similarly we prove that

lim inf
r!0

E(Q; @D(0; r))(0)�Q(0)

r2=2
� a:

Hence, (A3) holds with

F (A; p) = a = A(�; �): 2

For numerical reasons it is interesting to study the asymptotic behavior of the evolution problem

corresponding to Eq. (12). Then, under certain smoothness assumptions on the boundary data

we prove that the solution of the evolution problem converges to the solution of Eq. (12). Let us

consider the evolution equation

@u

@t
= D2u

�
Du

jDuj
;
Du

jDuj

�
in (0;+1)� 


u(0; x) = u0(x) x 2 


u(t; x) = '(x) (t; x) 2 (0;+1)� @


(19)

where we suppose that u0(x) = '(x) for all x 2 
. We say that u 2 C([0;+1)� 
) is a viscosity

subsolution of (19) if u(0; x) = u0(x), u(t; x) = '(x) for all (t; x) 2 (0;+1) � @
 and for any
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 2 C2((0;+1)� 
) and any (t0; x0) local maximum of u�  in (0;+1)� 


@ 

@t
(t0; x0) � D2 (t0; x0)

�
D (t0; x0)

jD (t0; x0)j
;
D (t0; x0)

jD (t0; x0)j

�
; (20)

if D (t0; x0) 6= 0 and

@ 

@t
(t0; x0) � supjvj�1D

2 (t0; x0)(v; v);

if D (t0; x0) = 0. Similarly we de�ne a viscosity supersolution. A viscosity solution is a viscosity

sub- and supersolution.

Theorem 6 Let 
 be a generalized domain in IR2 as described above. Suppose that @1
, C
+
i , C

�
i ,

i = 1; :::;m, have a bounded curvature, the initial condition u0(x) and the boundary data '(x)

have bounded second derivatives. Then there exists a unique continuous viscosity solution u(t; x)

of (19) such that u(t) is Lipschitz for all t > 0 with uniformly bounded Lipschitz norm. Moreover

u(t; :)! u1 where u1 is the unique viscosity solution of (15).

Geometric interpretation of Equation (13)

Proposition 2 Let u be C2 and satisfy D2u(Du;Du) = 0. We de�ne a gradient line as a curve

x(t), t 2 (a; b) such that

Du(x(t)) 6= 0 and x0(t) =
Du

jDuj
(x(t)):

Then, there is a constant C such that for every t 2 (a; b)

jDuj(x(t)) = C:

Proof: Let �(t) = jDuj2(x(t)). We di�erentiate � with respect to t and we obtain

�0(t) = D2u(Du; x0(t)) = D2u

�
Du;

Du

jDuj

�
= 0:

Thus, there exists a constant C such that �(t) = C on (a; b). 2
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Corollary 1 Viscosity solutions of (12) are not necessarily C2.

For example, let u be de�ned on the boundary of the square [0; 1]2 by u(0; 1) = 1 = u(1; 0),

u(0; 0) = 0 = u(1; 1) and u is a�ne on each side of the square. Let u0 the AMLE of u. Assume

by contradiction that u0 is C
2. By symmetry of the datum and uniqueness, u0

�
1
2 ;

1
2

�
= 1

2 . Thus,

there is some point y on the segment L joining (0; 1) and (1; 0) such that Du0(y) 6= 0, and therefore

a neighborhood of y in which Du0 6= 0. By symmetry again, Du0(y) is parallel to L. Thus, a

segment of L containing y is a gradient line. By Proposition 2, on this segment we have Du0(z) =

Du0(y). So we conclude that the maximal segment is the whole line L. This is a contradiction

with u(0; 1) = u(1; 0). 2

(0,1) (1,1)

y

(0,0) (1,0)

Du(y)L

Fig. 6. A point y on the diagonal with Du0(y) 6= 0.

Example 3. Our next example is concerned with the curvature operator. Let 
 be a domain in

IR2 with Lipschitz boundary and ' be a Lipschitz continuous function on @
. We consider the

equation

D2u

 
Du?

jDuj
;
Du?

jDuj

!
= 0 in 


uj@
 = '

(21)

We consider solutions of (21) in the viscosity sense, which can be de�ned in the same way as

solutions of (12) in Example 2. This model cannot be used as a model for interpolating data

because of the following facts

a) There is no uniqueness of viscosity solutions of (21).
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b) There are no viscosity solutions of (21) for general smooth curves @
 and boundary data ' 2

F(@
). This is easily deduced from techniques developped in [7].

Indeed, let 
 = D(0; 1), '(x) = �1x
2
1 + �2x

2
2, �1 > �2. Since on @D(0; 1), x

2
1 + x22 = 1 and

'(x1; x2) = '(�x1; x2) = '(x1;�x2);

the functions

u1(x1; x2) = '

�q
1� x22; x2

�
;

u2(x1; x2) = '

�
x1;
q
1� x21

�

are two viscosity solutions of (21) in D(0; 1) with the same boundary data.

Theorem 7 There are no viscosity solutions of (21) for general smooth curves @
 and boundary

data ' 2 F(@
)

The proof is based on simple heuristic arguments. A solution u of (21) is also a static solution

of the evolution problem

@v

@t
= D2v

 
Dv?

jDvj
;
Dv?

jDvj

!
in (0;+1)� 


v(0; x) = u(x) in 


v(t; x) = '(x) (t; x) 2 (0;+1)� @
;

(22)

which means that all level lines of u are moving by mean curvature. This is impossible unless the

level lines of u are straightlines. In general, this is not possible as can be seen in Fig. 7. Fig. 7

depicts a nonconvex smooth domain with boundary data ' such that ' increases when we go from

A to B along the boundary in the clockwise direction and then decreases symmetrically when going

from B to A.
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u > λ
A

B

Fig. 7. No viscosity solutions of (21) exist in this domain.

Example 4. Consider a set of points fxi : i = 1; :::; Ng in IR2. Shepard [23] proposed the following

formula

f(x) =

PN
i=1 fijx� xij

�2PN
i=1 jx� xij�2

x 6= xi; i = 1; :::; N

f(xi) = fi

(23)

to interpolate the values fi on xi. This formula can be extended to give the values of f on a curve.

Let 
 be a domain in IR2 whose boundary is a Lipschitz continuous simple Jordan curve and let f

be a continuous function on @
. If we parametrize @
 by its arclength x : [0; L] ! IR2, then the

function F : 
! IR given by

F (x) =

R L
0

f(x(s))
kx�x(s)k2dsR L

0
ds

kx�x(s)k2

if x =2 @
; F (x) = f(x) if x 2 @
 (24)

is continuous in �
. Moreover it is elementary to check that the operator E4(f; @
) = F satis�es

(A1),(A3) � (A8). Just mention that (A3) follows from the fact that (24) coincides with Poisson

formula for the Laplace equation when 
 is a disk. According to this, E4 does not satisfy (A2).

This explains why this operator is not contained in (5). In fact, if we iterate E4 on all disks, the

iterated interpolant will converge to a solution of the heat equation, but the boundary conditions

at isolated points gets lost by this process. Observe that we may use operator E2 to interpolate

data given on a �nite number of points and the complexity of this algorithm is independent of the

number of them, in contrast to Shepard's formula (23).
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4 Numerical analysis of the AMLE model

We shall use the AMLE model studied above as the basic equation to interpolate data given on

a set of curves and/or a set of points which may be irregularly sampled. Thus, we discretize the

equation

D2u

�
Du

jDuj
;
Du

jDuj

�
= 0:

It is easy to see that there is a relation between iterative methods for the solution of elliptic

problems and time stepping �nite di�erence methods for the solution of the corresponding parabolic

problems. Because of that and thanks to Theorem 6, we study the equation

@u

@t
= D2u

�
Du

jDuj
;
Du

jDuj

�
;

with corresponding initial and boundary data as in (19). Using an implicit Euler scheme we

transform this evolution problem into a sequence of nonlinear elliptic problems. Thus, we may

write the following implicit di�erence scheme in the image grid

u
(n+1)
i;j = u

(n)
i;j +�tD2u

(n+1)
i;j

0
@ Du

(n+1)
i;j

jDu
(n+1)
i;j j

;
Du

(n+1)
i;j

jDu
(n+1)
i;j j

1
A (25)

i; j = 1; : : : ; N . To solve the above nonlinear system we use a nonlinear over-relaxation method

(NLOR). Writing the system as a set of k = N2 algebraic equations, one for each unknown u
(n+1)
i;j

(i; j = 1; :::; N),

fp(x1; x2; : : : ; xk) = 0; p = 1; 2; : : : ; k;

the basic idea of NLOR is to introduce a relaxation factor ! and iteratively compute

x
(n+1)
i = x

(n)
i � !

fi(x
(n+1)
1 ; : : : ; x

(n+1)
i�1 ; x

(n)
i ; : : : ; x

(n)
k )

fii(x
(n+1)
1 ; : : : ; x

(n+1)
i�1 ; x

(n)
i ; : : : ; x

(n)
k )

; i = 1; 2; : : : ; k

where fii =
@fi
@xi

. The convergence criterion can be shown to be the same as the over-relaxation

method for linear systems, replacing the matrix by the Jacobian of the equations fp = 0, and

stability is guaranteed for values of the relaxation parameter 0 < ! < 2.
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5 Experimental Results

We display some experiments using the numerical scheme described in the previous section.

Figs. 8 and 9 show some experiments with synthetic images. Fig. 8a) displays the original image,

a single white point inside a rectangle. We impose u = 0 on the boundary of the rectangle. Fig.

8b) shows the result of the interpolation algorithm with Dirichlet boundary conditions. As one

would expect, the result is a pyramid whose levels sets are displayed in Fig. 8c). Fig. 9a) displays

a synthetic image where we combine open curves, closed curves and points. Fig. 9b) shows the

interpolant and Fig. 9c) shows the level lines of the interpolant.

Figure 8

Figure 9

;
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Fig. 10 shows how we can interpolate an image from the quantized level curves, obtaining a better

result than the corresponding quantized image. Fig. 10a) display the original image u which

takes integer values between 0 and 255. Then we quantize it by giving the grey levels between

r� � u < (r + 1)� the value r�, r = 0; :::;M , M = [255=�]. Figs. 10c) and 10e) display the result

of this operation on Fig. 10a) for values � = 20 and � = 30. Fig. 10b) displays the boundaries

of the level sets [u � r�] at the corresponding grey level r� (here, we have displayed the level sets

for � = 30). We de�ne the boundary values on the pixels belonging to the boundaries of the level

sets B and the neighbouring pixels belonging to the boundary of the complement B0. For each

pixel (i; j) we de�ne m(i; j) = inffr : u(i; j) � r�g, M(i; j) = supfr : u(i; j) � r�g. Then we set

u(i; j) = m(i; j)� if (i; j) 2 B0, u(i; j) = M(i; j)� if (i; j) 2 B, and we solve Eq. (25) with these

boundary data. The results are displayed in Figs. 10d) and 10f).

In practice, the interpolation must keep smooth the regular regions of the image. So if we

quantize the image at levels multiple of 30 (e.g.), the jump across the level line after quantization

is either 0 or 30; 60, etc. The behaviour of the algorithm is following: if the jump M(i; j)�m(i; j)

is just 0, it is likely that the region around is smoothly perceptual, so our interpolation maintains

it by giving a Lipschitz interpolation. If the jump across the level line is larger (e.g.) than 20, 30,

etc., our decision is to maintain the jump because we consider that there must be an edge here.

Since a jump larger than 20 is perceptible as edge, we maintain the existing edge by this choice,

without signi�cant attenuation or enhancement.
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Figure 10

27



Acknowledgement: We acknowledge partial support by EC project MMIP, reference ERBCHRXCT

930095. The �rst and third authors were also partially supported by DGICYT project, reference

PB94-1174. We would like to thank Pierre-Louis Lions for pointing out to us the work of R. Jensen

on the AMLE model.

References

[1] L. Alvarez, F. Guichard, P. L. Lions, and J. M. Morel, Axioms and fundamental equations of

image processing, Arch. Rational Mechanics and Anal. , 16, IX (1993), pp. 200-257.

[2] G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Math. 6, (1967), pp.

551-561.

[3] J. Canny, A computational approach to edge detection, IEEE PAMI 8 (6) 679-698, 1986.

[4] S. Carlsson, Sketch Based Coding of Grey Level Images, Signal Processing 15 (1988), pp 57-83.

[5] J.R. Casas, Image compression based on perceptual coding techniques, PhD thesis, Dept. of

Signal Theory and Communications, UPC, Barcelona, Spain, March 1996.

[6] J.R. Casas and L.Torres, Strong edge features for image coding, In R.W.Schafer P.Maragos

and M.A. Butt, editors, Mathematical Morphology and its Applications to Image and Signal

Processing, pages 443{450. Kluwer Academic Publishers, Atlanta, GA, May 1996.

[7] V. Caselles, F. Catte, B. Coll and F. Dibos, A geometric model for active contours in image

processing, Numer. Math. 66 (1993), pp. 1-31.

[8] V. Caselles, J.M. Morel and C. Sbert, An Axiomatic Approach to Image Interpolation,

Preprint, Ceremade 1997. Text containing all mathematical proofs.

28



[9] M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order

partial di�erential equations, Bull. Am. Math. Soc. 27 (1992) pp. 1-67.

[10] L. C. Evans and J. Spruck, Motion of level sets by mean curvature, J. Di�erential Geometry

33 (1991), pp. 635-681.

[11] O. Faugeras, Three-Dimensional Computer Vision: A Geometric Viewpoint, MIT Press,

Boston, 1993.

[12] D. Gilbarg and N.S. Trudinger, Elliptic Partial Di�erential Equations, Springer Verlag, 1983.

[13] F. Guichard and J.M. Morel, Introduction to Partial Di�erential Equations on image pro-

cessing, Tutorial, ICIP-95, Washington. Extended version to appear as book in Cambridge

University Press.

[14] W.S. Havens and J.C. Strikwerda, An improved operator for edge detection, 1984.

[15] R. Jensen, Uniqueness of Lipschitz extensions: Minimizing the Sup Norm of the Gradient,

Arch. Rat. Mech. Anal. 123 (1993), pp. 51-74.

[16] O. A. Ladyzhenskaja, V. A. Solonnikov and N.N. Ural'ceva, Linear and Quasilinear Equations

of Parabolic Type, Trans. Math. Monographs 23, American Math. Society, Rhode Island, 1968.

[17] H. Le Floch and C. Labit, Irregular Image Subsampling and Reconstruction by Adaptative

Sampling, Proceedings Int. Conf. Image Processing ICIP-96, 16-19 Sept. 1996, Lausanne,

Switzerland, vol. III, pp. 379-382.

[18] D. Marr, Vision, Freeman, New York, 1982.

[19] D. Marr and E. Hildreth, Theory of edge detection, Proc. Roy. Soc. Lond. B207, 187-217,

1980.

29



[20] M.J.D. Powell, A review of methods for multivariable interpolation at scattered data points,

Numerical Analysis Reports, NA11, DAMTP, University of Cambridge, 1996. To appear in

State of the Art in Numerical Analysis, Cambridge University Press.

[21] J.M. S. Prewitt, Object enhancement and extraction, Picture Processing and Psychopictorics,

B. Lipkin and A. Rosenfeld ed., Academic Press, N.Y. 75-149, 1970.

[22] X. Ran and N. Favardin, A perceptually motivated three-component image model. Part II:

Applications to image compression, IEEE Transactions on Image Processing, 4(4) (1995), pp.

430-447.

[23] D. Shepard, A Two Dimensional Interpolation Function for Irregularly Spaced Data, Proc.

23rd Nat. Conf. ACM, 1968, pp. 517-523.

[24] V. Torre and T.A. Poggio, On edge detection, IEEE PAMI, 8 (2), 147-163, 1986.

[25] A.L. Yuille and T. A. Poggio, Scaling theorems for zero-crossings, IEEE PAMI, 8, 15-25, 1986

30


