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Abstract

Personalized ranking systems and trust systems are
an essential tool for collaboration in a multi-agent
environment. In these systems, trust relations be-
tween many agents are aggregated to produce a per-
sonalized trust rating of the agents. In this paper we
introduce the first extensive axiomatic study of this
setting, and explore a wide array of well-known and
new personalized ranking systems. We adapt sev-
eral axioms (basic criteria) from the literature on
global ranking systems to the context of personal-
ized ranking systems, and prove strong properties
implied by the combination of these axioms.

1 Introduction

Personalized ranking systems and trust systems are an essen-
tial tool for collaboration in a multi-agent environment. In
these systems, agents report on their peers performance, and
these reports are aggregated to form a ranking of the agents.
This ranking may be either global, where all agents see the
same ranking, or personalized, where each agent is provided
with her own ranking of the agents. Examples of global
ranking systems include eBay’s reputation system[Resnick
and Zeckhauser, 2001] and Google’s PageRank[Page et al.,
1998]. Examples of personalized ranking systems include the
personalized version of PageRank[Haveliwala et al., 2003]

and the MoleTrust ranking system[Avesani et al., 2005]. Fur-
thermore, trust systems which provide each agent with a set of
agents he or she can trust, can be viewed as personalized rank-
ing systems which supply a two-level ranking over the agents.
Many of these systems can be easily adapted to provide a
full ranking of the agents. Examples of trust systems include
OpenPGP(Pretty Good Privacy)’s trust system[Callas et al.,
1998], the ranking system employed by Advogato[Levien,
2002], and the epinions.com web of trust.

A central challenge in the study of ranking systems, is to
provide means and rigorous tools for the evaluation of these
systems. This challenge equally applies to both global and
personalized ranking systems. A central approach to the eval-
uation of such systems is the experimental approach. In the
general ranking systems setting, this approach was success-
fully applied to Hubs&Authorities[Kleinberg, 1999] and to
various other ranking systems[Borodin et al., 2005]. In the

trust systems setting, [Massa and Avesani, 2005] suggest a
similar experimental approach.

A more analytical approach to the evaluation of ranking
systems is the axiomatic approach. In this approach, one
considers basic properties, or axioms, one might require a
ranking system to satisfy. Then, existing and new systems
are classified according to the set of axioms they satisfy. Ex-
amples of such study in the global ranking systems literature
include [Cheng and Friedman, 2005; Borodin et al., 2005;
Tennenholtz, 2004; Altman and Tennenholtz, 2006b]. Typ-
ical results of such study are axiomatizations of particular
ranking systems, or a proof that no ranking system satisfying
a set of axioms exists. For example, in [Altman and Tennen-
holtz, 2005b]we provide a set of axioms that are satisfied by
the PageRank system and show that any global ranking sys-
tem that satisfies these axioms must coincide with PageRank.

While the axiomatic approach has been extensively applied
to the global ranking systems setting, no attempt has been
made to apply such an approach to the context of personal-
ized ranking systems. In this paper, we introduce an exten-
sive axiomatic study of the personalized ranking system set-
ting, by adapting known axioms we have previously applied
to global ranking systems[Altman and Tennenholtz, 2005a;
2006a]. We compare several existing personalized ranking
systems in the light of these axioms, and provide novel rank-
ing systems that satisfy various sets of axioms. Moreover, we
prove a characterization of the personalized ranking systems
satisfying all suggested axioms.

We consider four basic axioms. The first axiom, self confi-
dence, requires that an agent would be ranked at the top of his
own personalized rank. The second axiom, transitivity, cap-
tures the idea that an agent preferred by more highly trusted
agents, should be ranked higher than an agent preferred by
less trusted agents. The third axiom, Ranked Independence
of Irrelevant Alternatives, requires that under the perspective
of any agent, the relative ranking of two other agents would
depend only on the pairwise comparisons between the rank of
the agents that prefer them. The last axiom, strong incentive
compatibility, captures the idea that an agent cannot gain trust
by any agent’s perspective by manipulating its reported trust
preference.

We show a ranking system satisfying all four axioms, and
ranking systems satisfying every three of the four axioms (but
not the fourth). Furthermore, we provide a characterization
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proving that any ranking system satisfying all four axioms
must satisfy a strong property we call maximum-transitivity.

This paper is organized as follows. Section 2 introduces the
setting of personalized ranking systems and discusses some
known system. In section 3 we present our axioms, and clas-
sify the ranking systems shown according to these axioms. In
section 4 we provide a characterization of the ranking systems
satisfying all of our axioms, and in section 5 we study ranking
systems satisfying every three of the four axioms. Section 6
presents some concluding remarks and suggestions for future
research.

2 Personalized Ranking Systems

2.1 The Setting

Before describing our results regarding personalized ranking
systems, we must first formally define what we mean by the
words “personalized ranking system” in terms of graphs and
linear orderings:

Definition 1. Let A be some set. A relation R ⊆ A × A
is called an ordering on A if it is reflexive, transitive, and
complete. Let L(A) denote the set of orderings on A.

Notation 2. Let � be an ordering, then � is the equality pred-
icate of �, and ≺ is the strict order induced by �. Formally,
a � b if and only if a � b and b � a; and a ≺ b if and only if
a � b but not b � a.

Given the above we can define what a personalized ranking
system is:

Definition 3. Let Gs
V be the set of all directed graphs G =

(V, E) such that for every vertex v ∈ V , there exists a di-
rected path in E from s to v. A personalized ranking sys-
tem(PRS) F is a functional that for every finite vertex set V
and for every source s ∈ V maps every graph G ∈ Gs

V to an

ordering �F
G,s∈ L(V ).

We require that there is a path of trust from the source to
every agent, because agents that have no path from s cannot
be ranked, as no agent trusted by s to any level has any con-
nection with these agents. This assumption is satisfied when
G is strongly connected. As it turns out, in most practical trust
systems and social networks, a large portion of the agents are
part of a strongly connected component. Our study also ap-
plies in cases where such paths do not exist, however for the
ease of exposition we elect to keep this assumption.

2.2 Some personalized ranking systems

We shall now give examples of some known PRSs. A basic
ranking system that is at the basis of many trust systems ranks
the agents based on the minimal distance of the agents from
the source.

Notation 4. Let G = (V, E) be some directed graph and
v1, v2 ∈ V be some vertices, we will use dG(v1, v2) to de-
note the length of the shortest directed path in G between v1

and v2.

Definition 5. The distance PRS FD is defined as follows:
Given a graph G = (V, E) and a source s, v1 �FD

G,s v2 ⇔

dG(s, v1) ≥ dG(s, v2)

Another family of PRSs can be derived from the well-
known PageRank ranking system by modifying the so-called
teleportation vector in the definition of PageRank[Haveliwala
et al., 2003]. These system can be defined as follows:

Definition 6. Let G = (V, E) be a directed graph, and as-
sume V = {v1, v2, . . . , vn}. The PageRank Matrix AG (of
dimension n × n) is defined as:

[AG]i,j =

{
1/|SG(vj)| (vj , vi) ∈ E

0 Otherwise,

where SG(v) is the successor set of v in G.

The Personalized PageRank procedure ranks pages accord-
ing to the stationary probability distribution obtained in the
limit of a random walk with a random teleportation to the
source s with probability d; this is formally defined as fol-
lows:

Definition 7. Let G = (V, E) be some graph, and assume
V = {s, v2, . . . , vn}. Let r be the unique solution of the
system (1−d)·AG·r+d·(1, 0, . . . , 0)T = r. The Personalized
PageRank with damping factor d of a vertex vi ∈ V is defined
as PPRd

G,s(vi) = ri. The Personalized PageRank Ranking

System with damping factor d is a PRS that for the vertex set

V and source s ∈ V maps G to �PPRd

G,s , where �PPRd

G,s is

defined as: for all vi, vj ∈ V : vi �PPRd

G,s vj if and only if

PPRd
G,s(vi) ≤ PPRd

G,s(vj).

We now suggest a variant of the Personalized PageRank
system, which, as we will later show, has more positive prop-
erties than Personalized PageRank.

Definition 8. Let G = (V, E) be some graph and assume
V = {s, v2, . . . , vn}. Let BG be the link matrix for G. That
is, [BG]i,j = 1 ⇔ (i, j) ∈ E. Let α = 1/n2 and let r be the

unique solution of the system α ·BG · r+(1, 0, . . . , 0)T = r.
The α-Rank of a vertex vi ∈ V is defined as αRG,s(vi) =
ri. The α-Rank PRS is a PRS that for the vertex set V and
source s ∈ V maps G to �αR

G,s, where �αR
G,s is defined as:

for all vi, vj ∈ V : vi �αR
G,s vj if and only if αRG,s(vi) ≤

αRG,s(vj).

The α-Rank system ranks the agents based on their dis-
tance from s, breaking ties by the summing of the trust values
of the predecessors. By selecting α = 1/n2, it is ensured that
a slight difference in rank of nodes closer to s will be more
significant than a major difference in rank of nodes further
from s.

Additional personalized ranking systems are presented in
Section 5 as part of our axiomatic study.

3 Some Axioms

A basic requirement of a PRS is that the source – the agent
under whose perspective we define the ranking system – must
be ranked strictly at the top of the trust ranking, as each agent
implicitly trusts herself. We refer to this property as self con-
fidence.

Definition 9. Let F be a PRS. We say that F satisfies self
confidence if for all graphs G = (V, E), for all sources s ∈ V
and for all vertices v ∈ V \ {s}: v ≺F

G,s s.
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We have previously defined[Altman and Tennenholtz,
2005a] a basic property of (global) ranking systems called
strong transitivity, which requires that if an agent a’s voters
are ranked higher than those of agent b, then agent a should
be ranked higher than agent b. We adapt this notion to the per-
sonalized setting, and provide a new weaker notion of transi-
tivity as follows:

Definition 10. Let F be a PRS. We say that F satisfies quasi
transitivity if for all graphs G = (V, E), for all sources s ∈ V
and for all vertices v1, v2 ∈ V \ {s}: Assume there is a 1-1
mapping f : P (v1) 
→ P (v2) s.t. for all v ∈ P (v1):v � f(v).
Then, v1 � v2. F further satisfies strong quasi transitivity if
for all v ∈ P (v1): v ≺ f(v), then v1 ≺ v2. F further
satisfies strong transitivity if when either f is not onto or for
some v ∈ P (v1): v ≺ f(v), then v1 ≺ v2.

This new notion of transitivity requires that agents with
stronger matching predecessors be ranked at least as strong
as agents with weaker predecessors, but requires a strict
preference only when all matching predecessors are strictly
stronger.

A standard assumption in social choice settings is that an
agent’s relative rank should only depend on (some property
of) their immediate predecessors. Such axioms are usually
called independence of irrelevant alternatives(IIA) axioms. In
the ranking systems setting, we require that the relative rank-
ing of two agents must only depend on the pairwise com-
parisons of the ranks of their predecessors, and not on their
identity or cardinal value. Our IIA axiom, called ranked IIA,
differs from the one suggested by [Arrow, 1963] in the fact
that ranked IIA does not consider the identity of the voters,
but rather their relative rank. We adapt this axiom of ranked
IIA to the setting of PRSs, by requiring this independence for
all vertices except the source.

To formally define this condition, one must consider all
possibilities of comparing two nodes in a graph based only
on ordinal comparisons of their predecessors. [Altman and
Tennenholtz, 2005a] call these possibilities comparison pro-
files:

Definition 11. A comparison profile is a pair 〈a,b〉
where a = (a1, . . . , an), b = (b1, . . . , bm),
a1, . . . , an, b1, . . . , bm ∈ N, a1 ≤ a2 ≤ · · · ≤ an,
and b1 ≤ b2 ≤ · · · ≤ bm. Let P be the set of all such profiles.

Let PG(v) denote the predecessor set of v in a graph G.
A PRS F , a graph G = (V, E), a source s ∈ V , and a pair
of vertices v1, v2 ∈ V are said to satisfy such a compari-
son profile 〈a,b〉 if there exist 1-1 mappings f1 : P (v1) 
→
{1 . . . n} and f2 : P (v2) 
→ {1 . . .m} such that given
f : ({1} × P (v1)) ∪ ({2} × P (v2)) 
→ N defined as:

f(1, v) = af1(v)

f(2, u) = bf2(u),

f(i, x) ≤ f(j, y) ⇔ x �F
G,s y for all (i, x), (j, y) ∈ ({1} ×

P (v1)) ∪ ({2} × P (v2)).

We now require that for every such profile the personalized
ranking system ranks the nodes consistently:

Definition 12. Let F be a PRS. We say that F satisfies ranked
independence of irrelevant alternatives (RIIA) if there exists

a mapping f : P 
→ {0, 1} such that for every graph G =
(V, E), for every source s ∈ V and for every pair of vertices
v1, v2 ∈ V \ {s} and for every comparison profile p ∈ P that
v1 and v2 satisfy, v1 �F

G,s v2 ⇔ f(p) = 1. We will sloppily

use the notation a � b to denote f〈a,b〉 = 1.

This IIA axiom intuitively means that the relative ranking
of agents must be consistent across all comparisons with the
same rank relations.

Personalized ranking systems do not exist in empty space.
Agents may wish to manipulate their reported preferences in
order to improve their trustworthiness in the eyes of a spe-
cific agent. Therefore, the incentives of these agents should in
many cases be taken into consideration. We have previously
defined the notion of strong incentive compatibility[Altman
and Tennenholtz, 2006a], which requires that agents will not
be ranked better for stating untrue preferences, under the as-
sumption that the agents are interested only in their own rank-
ing, with a strong preference with regard to rank. This notion
is also natural when adapted to the personalized setting, as
follows:

Definition 13. Let F be a PRS. F satisfies strong incentive
compatibility if for all true preference graphs G = (V, E), for
all sources s ∈ V , for all vertices v ∈ V , and for all prefer-
ences Vv ⊆ V reported by v: Let E′ = E \ {(v, x)|x ∈ V }∪
{(v, x)|x ∈ Vv} and G′ = (V, E′) be the reported preference
graph. Then, |{x ∈ V |v ≺F

G′ x}| ≥ |{x ∈ V |v ≺F
G x}|;

and if |{x ∈ V |v ≺F
G′ x}| = |{x ∈ V |v ≺F

G x}| then

|{x ∈ V |v �F
G′ x}| ≥ |{x ∈ V |v �F

G x}|.

3.1 Satisfication

We will now demonstrate these axioms by showing which
axioms are satisfied by the PRSs mentioned in Section 2.2.

Proposition 14. The distance PRS FD satisfies self confi-
dence, ranked IIA, strong quasi transitivity, and strong in-
centive compatibility, but does not satisfy strong transitivity.

Proof. Self-confidence is satisfied by definition of FD . FD

satisfies RIIA, because it ranks every comparison profile con-
sistently according to the following rule:

(a1, a2, . . . , an) � (b1, b2, . . . , bm) ⇔ an ≤ bm.

That is, any two vertices are compared according to their
strongest predecessor. FD satisfies strong quasi transitivity,
because when the 1-1 relation of predecessors exists, then
also the strongest predecessors satisfy this relation.

To prove that FD satisfies strong incentive compatibility,
note the fact that an agent x cannot modify the shortest path
from s to x by changing its outgoing links since any such
shortest path necessarily does not include x (except as target).
Moreover, x cannot change the shortest path to any agent y
with d(s, y) ≤ d(s, x), because x is necessarily not on the
shortest path from s to y. Therefore, the amount of agents
ranked above x and the amount of agents ranked equal to x
cannot change due to x’s manipulations.

To prove FD does not satisfy strong transitivity, consider
the graph in Figure 1a. In this graph, x and y are ranked the
same, even though P (x) � P (y), in contradiction to strong
transitivity.

IJCAI-07
1189



s y

x

(a)

s x

(b)

s

a

a

b

b

c

(c)

Figure 1: Graphs proving PRS do not satisfy axioms.

Proposition 15. The Personalized PageRank ranking systems
satisfy self confidence if and only if the damping factor is set
to more than 1

2 . Moreover, Personalized PageRank does not
satisfy quasi transitivity, ranked IIA or strong incentive com-
patibility for any damping factor.

Proof. To prove the that PPR does not satisfy self-confidence
for d ≤ 1

2 , consider the graph in Figure 1b. For any damping
factor d, the PPR will be PPR(s) = d and PPR(x) = 1−d.
If d ≤ 1

2 then PPR(s) ≤ PPR(x) and thus s �PRd x, in
contradiction to the self confidence axiom.

PPR satisfies self-confidence for d > 1
2 because then

PPR(s) ≥ d > 1
2 , while for all v ∈ V \ {s}, PPR(v) ≤

1 − d < 1
2 .

To prove that PPR does not satisfy strong quasi transitivity
and ranked IIA, consider the graph in Figure 1c. The PPR of
this graph for any damping factor d is as follows: PPR(s) =

d; PPR(a) = d(1−d)
2 ; PPR(b) = d(1−d)2

4 ; PPR(c) =
d(1−d)2

2 . Therefore, the ranking of this graph is: b ≺ c ≺ a ≺
s. quasi transitivity is violated because b ≺ c even though
P (b) = P (c) = a. This also violates ranked IIA because
the ranking profile 〈(1), (1)〉 must be ranked as equal due to
trivial comparisons such as a and a.

Strong incentive compatibility is not satisfied, because, in
the previous graph, if any of the b agents b′ would have voted
for themselves, they would have been ranked b ≺ b′ ≺ c ≺
a ≺ s, which is a strict increase in b′ rank.

Strong transitivity is also satisfied by a natural PRS — the
α-Rank system:

Proposition 16. The α-Rank system satisfies self confidence
and strong transitivity, but does not satisfy ranked IIA or
strong incentive compatibility

4 A Characterization Theorem

In order to characterize the systems satisfying the aforemen-
tioned axioms, we need to define some stronger properties
that, as we will show, are implied by the combination of the
axioms.

We start by defining stronger notions of transitivity:

Definition 17. Let F be a PRS. We say that F satisfies weak
maximum transitivity if for all graphs G = (V, E), for all
sources s ∈ V and for all vertices v1, v2 ∈ V \ {s}: Let
m1, m2 be the maximally ranked vertices in P (v1), P (v2)

1

a

04 3
2

b
s

4’
3’

2’
1’ 0’

Figure 2: Example of graph from proof of Theorem 20.

respectively. Assume m1 � m2. Then, v1 � v2. F fur-
ther satisfies strong maximum transitivity if when m1 ≺ m2

then also v1 ≺ v2.

The distance PRS FD can be seen as a member in a family
of PRSs that rank the agents first according to their distance
from the source. We define this property below:

Definition 18. Let F be a PRS. We say that F satisfies the
distance property if for all graphs G = (V, E), for all sources
s ∈ V and for all vertices v1, v2 ∈ V \ {s}, if d(s, v1) <
d(s, v2) ⇒ v1 � v2.

The distance property and distance PRS are strongly linked
to the new notions of strong quasi transitivity:

Proposition 19. Let F be a PRS that satisfies weak maximum
transitivity and self confidence. Then, F satisfies the distance
property. Furthermore, a PRS F satisfies strong maximum
transitivity and self confidence if and only if F is the distance
system FD .

We now claim that weak maximum transitivity is implied
by the combination of the axioms presented above.

Theorem 20. Let F be a PRS that satisfies self confidence,
strong quasi transitivity, RIIA and strong incentive compati-
bility. Then, F satisfies weak maximum transitivity.

The proof of Theorem 20 is involved, and thus we only
supply a sketch of the proof.

Proof. (Sketch) In order to show that F satisfies weak max-
imum transitivity, we will show that for every comparison
profile 〈(a1, a2, . . . , ak), (b1, b2, . . . , bl)〉 where ak �= bl the
ranking must be consistent with weak maximum transitivity.
We do this by building a special graph for each profile. Figure
2 contains such a graph for the profile 〈(1, 4), (2, 2, 3)〉.

We shall now demonstrate the proof for this graph. Assume
for contradiction that (1, 4) � (2, 2, 3). Note that by strong
quasi transitivity and self confidence, 0 � 0′ ≺ · · · ≺ 4 �
4′ ≺ s. Therefore a and b satisfy this comparison profile, and
from our assumption a � b. By strong quasi transitivity, a �
3, and thus from our assumption also b � 3. Now consider
the point of view of agent 3. She can perform a manipulation
by not voting for b. This manipulation must not improve her
relative rank. As the relative ranks of the numbered agents
and s are unaffected by this manipulation, it cannot affect the
ranks of a and b relative to 3, and thus after the edge (3, b)
is removed, we still have b � 3. The same is true for agent
2 with regard to the edge (2, b), maintaining b � 2. After
removing these links, b is pointed to by only agent 2′ and
thus is ranked b � 1′ ≺ 2, in contradiction to b � 2.
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The same idea could be applied to any comparison profile
〈(a1, a2, . . . , ak), (b1, b2, . . . , bl)〉 where ak �= bl, thus com-
pleting the proof.

Theorem 20 provides us with an important result where a
set of simple and basic axioms lead us to the satisfication of
a strong property. This theorem is especially important since
this property limits our scope of PRSs to those that satisfy the
distance property:

Corollary 21. Let F be a PRS that satisfies self confidence,
strong quasi transitivity, RIIA and strong incentive compati-
bility. Then, F satisfies the distance property.

5 Relaxing the Axioms

We shall now prove the conditions in Theorem 20 are all nec-
essary by showing PRSs that satisfy each three of the four
conditions, but do not satisfy weak maximum transitivity.
Some of these systems are quite artificial, while others are
interesting and useful.

Proposition 22. There exists a PRS that satisfies strong quasi
transitivity, RIIA and strong incentive compatibility, but not
self confidence nor weak maximum transitivity.

Proof. Let F−

D be the PRS that ranks strictly the opposite of

the depth system FD. That is, v1 �
F−

D

G,s v2 ⇔ v2 �FD

G,s v1.

The proof F−

D satisfies strong quasi transitivity, RIIA and
strong incentive compatibility follows the proof of Proposi-
tion 14, with the following rule for ranking comparison pro-
files:

(a1, a2, . . . , an) � (b1, b2, . . . , bm) ⇔ a1 ≤ b1.

F−

D does not satisfy self confidence, because, by definition
s is weaker than all other agents, and does not satisfy weak
maximum transitivity because in graph from Figure 1a, F−

D

ranks x and y equally even though the strongest predecessor
of y, which is x, is stronger than the strongest predecessor of
x, which is s.

This PRS is highly unintuitive, as the most trusted agents
are the ones furthest from the source, which is by itself the
least trusted. Relaxing strong quasi transitivity leads to a PRS
that is almost trivial:

Proposition 23. There exists a PRS that satisfies self confi-
dence, ranked IIA and strong incentive compatibility, but not
strong quasi transitivity nor weak maximum transitivity.

Proof. Let F be the PRS which ranks for every G = (V, E),
for every source s ∈ V , and for every v1, v2 ∈ V \ {s}:
v1 � v2 ≺ s. That is, F ranks s on the top, and all of the other
agents equally. F trivially satisfies self confidence, RIIA and
strong incentive compatibility, as s is indeed stronger than all
other agents and every comparison profile is ranked equally.
F does not satisfy strong quasi transitivity or weak maximum
transitivity, because in a chain of vertices starting from s all
except s will be ranked equally,

5.1 Relaxing Ranked IIA

When Ranked IIA is relaxed, we find a new ranking system
that ranks according to the distance from s, breaking ties ac-
cording to the number of paths from s. This system can be
seen as a version of PGP’s trust system, when manipulating
certificate levels and trust ratings globally to convert the bi-
nary trust system to a PRS.

Notation 24. Let G = (V, E) be some directed graph and
v1, v2 ∈ V be some vertices, we will use nG(v1, v2) to denote
the number of simple directed paths in G between v1 and v2.

Definition 25. The Path Count PRS FP is defined as follows:
Given a graph G = (V, E) and a source s, for all v1, v2 ∈
V \ {s}:

v1 �FP

G,s v2 ⇔ dG(s, v1) > dG(s, v2) ∨

(dG(s, v1) = dG(s, v2) ∧

∧nG(s, v1) ≥ nG(s, v2))

Proposition 26. The path count PRS FP satisfies self confi-
dence, strong quasi transitivity and strong incentive compat-
ibility, but not ranked IIA nor weak maximum transitivity.

5.2 Relaxing incentive compatibility

When we relax incentive compatibility we find an interest-
ing family of PRSs that rank the agents according to their in-
degree, breaking ties by comparing the ranks of the strongest
predecessors. These recursive in-degree systems work by as-
signing a rational number trust value for every vertex, that
is based on the following idea: rank first based on the in-
degree. If there is a tie, rank based on the strongest predeces-
sor’s trust, and so on. Loops are ranked as periodical rational
numbers in base (n + 2) with a period the length of the loop,
only if continuing on the loop is the maximally ranked option.

The recursive in-degree systems differ in the way different
in-degrees are compared. Any monotone increasing mapping
of the in-degrees could be used for the initial ranking. To
show these systems are well-defined and that the trust values
can be calculated we define these systems algorithmically as
follows:

Definition 27. Let r : {1, . . . , n} 
→ {1, . . . , n} be a mono-
tone nondecreasing function. The recursive in-degree PRS
with rank function r is defined as follows: Given a graph
G = (V, E) and a source s,

v1 �IDr

G,s v2 ⇔ value(v1, r,0) ≥ value(v2, r,0),

where value is the function defined in Algorithm 1, and 0 is
the function V 
→ N that maps every vertex in G to zero.

Fact 28. The recursive in-degree PRS IDr with rank function
r, when r is constant (r ≡ r0) is exactly equal to the distance
PRS (IDr ≡ FD).

An example of the values assigned for a particular graph
and source when r is the identity function is given in Figure
3. As n = 8, the values are decimal. Note that the loop (b, d)
generates a periodical decimal value(b, r,0) = 0.32 by the
division in step 5 in Algorithm 1 (where h′(b) = 32; m =
99).
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Algorithm 1 The recursive in-degree algorithm

Procedure value(x, r, h) – returns numeric trust of node x un-
der weight function r given previously seen nodes h:

1. If x = s: return n
n+2 .

2. Let d := r(|P (x)|).

3. Let

h′(y) :=

{
0 h(y) = 0 ∧ y �= x
(n + 2) · h(y) + d Otherwise.

4. If h(x) = 0:

(a) Return 1
n+2 [d + max{value(x, h′, r)|p ∈ P (x)}]

5. Otherwise:

(a) Let m = min{(n + 2)k − 1|(n + 2)k > h′(x)}.

(b) Return h′(x)/m.

s
0.9

a
0.19

b
0.3232...

e
0.219

d
0.2323...

c
0.13232...

f
0.113232...

g
0.213232...

Figure 3: Values assigned by the recursive in-degree algo-
rithm

Proposition 29. For every nondecreasing rank function r :
{1, . . . , n} 
→ {1, . . . , n} which is not constant, the recur-
sive in-degree PRS IDr satisfies self confidence, strong quasi
transitivity and ranked IIA, but not strong incentive compati-
bility nor weak maximum transitivity.

6 Concluding Remarks

We have presented a method for the evaluation of personal-
ized ranking systems by using axioms adapted from the rank-
ing systems literature, and evaluated existing and new person-
alized ranking systems according to these axioms. As most
existing PRSs do not satisfy these axioms, we have presented
several new and practical personalized ranking systems that
satisfy subsets, or indeed all, of these axioms. We argue that
these new ranking systems have a more solid theoretical ba-
sis, and thus may very well be successful in practice.

Furthermore, we have proven a characterization theorem
that limits the scope of the search for ranking systems satis-
fying all axioms, and shows that any system which satisfies
all these axioms, must have certain strong properties, and in-
deed must rank according to the distance rule.

This study is far from exhaustive. Further research is due
in formulating new axioms, and proving representation theo-
rems for the various PRSs suggested in this paper. An addi-
tional avenue for research is modifying the setting in order to
accommodate for more elaborate input such as trust/distrust

relations or numerical trust ratings, as seen in some existing
personalized ranking systems used in practice.
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