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Abstract  

Standard models of knowledge have the unrealistic property that agents are logically 
omniscient in the sense that they know all logical implications of their information. While 
many nonstandard logics have been proposed to avoid this problem, none has an obvious 
claim as the "right" logic to use. I show how to derive such a logic as part of a representation 
of an agent's preferences. In this sense, the agent's logic is given the same basis as a utility 
function or subjective probability. I provide necessary and sufficient conditions for a given 
logic to be part of a representation of preferences. Unfortunately, the conditions are not 
easily interprettable in general. To illustrate them further, I summarize some of my earlier 
results (Lipman [1993a]) on when the agent's logic is a version of the logic of inconsistency 
proposed by Rescher and Brandom [1979]. I also discuss the difficulties of representing an 
agent as using Levesque's logic of implicit belief (Levesque [1984]) or some form of resource- 
bounded computation. 

1 I n t r o d u c t i o n  

It has long been known that  the standard possible worlds approach to representing knowledge 
and beliefs has one very important  implication, dubbed by Hintikka [1975] the problem of logical 
omniscience. The possible worlds approach says that  an agent knows that  ~ is true if and only 
if ¢2 is t rue in every world the agent conceives of as possible. Suppose the agent learns tha t  
is true where ~ --~ ¢ is a tautology. If every world the agent conceives of as possible is logically 
consistent, then ~ ~ ~ must be true in every such world. Hence in any such world, if ~ is true, 

is true as well. Therefore, an agent who learns that  ~ is true must recognize that  ¢ is true. 
In this sense, the agent knows every logical implication of his knowledge. While this is a very 
attractive property for the study of ideal reasoners, it is unpalatable as an assumption about 
real people. 

I believe tha t  game theorists should also be very interested in relaxing the logical omniscience 
assumption.  Many of the examples said to be "paradoxical," such as the centipede game 
(Rosenthal [1981], Reny [1986], Binmore [1987])or van Damme's  [1989] dollar-burning example, 
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rely on a complex deduction from a simple and plausible set of hypotheses. The paradox arises 
because we believe that the hypotheses may well be known to a real agent, but we are reluctant 
to believe that a real agent would reach the conclusion. It is precisely the assumption of logical 
omniscience which makes this view difficult to formalize in standard models. 

Fortunately, there is a simple - -  even obvious - -  solution to the problem. If some of 
the worlds the agent conceives of as possible are not logically consistent, then the chain of 
reasoning above is broken. If the agent conceives of a world in which cp ~ ¢ is true, ~p is true, 
but ~b is false, then learning to does not lead the agent to recognize that  ¢ is true, even if he 
already knows that to ~ ¢ is true. I will refer to such worlds interchangably as nonstandard 
possible worlds (following Rescher and Brandom [1979]) or impossible possible worlds (following 
Hintikka [1975]). 

The difficulty with this solution, unfortunately, is also quite obvious: what should we assume 
about the impossible possible worlds? Put differently, exactly which nonstandard logic should 
we use to describe the reasoning of real agents? It is quite clear what "perfect reasoning" 
entails; it is not at all obvious how to give a precise formulation of "imperfect reasoning." 

In this paper, I propose an approach to this problem (see also Lipman [1992, 1993a]). 
The idea is to derive the agent's "logic" by analyzing his preferences. In a sense, then, the 
agent's logic is derived as a representation of preferences in the same way a utility function or 
subjective probabilities would be derived. Intuitively, if the agent's reasoning does indeed affect 
his choices, this effect must be observable in some fashion. The natural place to look for this 
effect is the agent's preferences, or, more specifically, the way the agent's preferences vary with 
his information. 

The simplest way to see this clearly is to suppose that  T and ¢ are logically equivalent 
propositions, yet the agent does not respond to these pieces of information in the same way. 
That is, his preferences if he is told that ~p is true (and is told nothing about ¢ directly) 
differ from the preferences he has if he is told that ~, is true (and is told nothing about ~, 
directly). Then we can infer that the agent does not recognize the fact that  ~ and ¢ are 
logically equivalent. Put  differently, there must be at least one impossible possible world for 
this agent in which one of the two propositions is true and the other is not. 

The rest of this paper is organized as follows. In Section 2, I give the basic framework for 
relating the agent's logic to his preferences via impossible possible worlds. I also state a simple 
theorem (proved in Lipman [1993a]) which shows that this approach allows us to "rationalize" 
virtually any preferences. More precisely, given any preferences satisfying a relatively weak con- 
dition, we can represent those preferences as arising from some form of nonstandard reasoning. 
One way to view this result is that nonstandard logics which are rarely or never part of such a 
representation of preferences have few or no useful behaviorial implications. As I discuss later, 
this view has its limitations. 

Next I discuss how the characteristics of a nonstandard logic relate to the set of preferences 
which can be represented as arising from that form of reasoning. I show that there are two 
key considerations. First, if in the nonstandard logic two propositions are equivalent, then the 
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agent's preferences must respect this fact if he is to be represented as using this logic. 

Second, the preferences in response to certain pieces of information must  satisfy special 
conditions. These pieces of information fall into two categories: propositions which lead the 
agent to infer perfectly and sets of propositions which are true in the same set of impossible 
possible worlds. Clearly, the agent's preferences in response to propositions in the ibrmer 
category must  be more structured since we cannot use imperfect reasoning to help represent 
the agent's response. Propositions in the latter category must lead to preferences which are 
"symmetric" in an unfortunately awkward sense. 

In Section 3, I illustrate the use of the framework. First, I use the results of Section 2 
to as an alternative approach to some results in Lipman [1993a]. Specifically, I give three 
logics based on the logic of inconsistency proposed by Rescher and Brandom [1979]. The least 
restrictive of these turns out to have no propositions in either of the two categories above, so 
that  an agent can be represented as using this logic as long as his preferences respect the logic's 
notion of equivalence. The more restrictive of the logics do have certain propositions in the two 
problematic categories, but  fortunately are propositions with particularly nice features. As a 
second illustration, I discuss the difficulties of representing an agent as using Levesque's [1984] 
logic of implicit belief (as reinterpreted by Fagin, Halpern, and Vardi [1990]). These difficulties 
are related to the critique of this logic noted by Fagin, Halpern, and Vardi. Finally, I discuss the 
difficulties of representing an agent as using some form of resource-bounded reasoning. Proofs 
are omit ted for brevity. 

Related Literature: There are several papers which bear very strong connections to this work. 
Gilboa and Schmeidler [1992] show that  Choquet expected utility - -  that  is, expected utility 
with respect to a nonadditive probability measure - -  is equivalent to expected utility on an 
enlarged state space. Similarly, it is well-known that  Shafer's [1976] belief functions - -  in- 
troduced as an alternative to probability for representing uncertainty - -  can be derived from 
additive functions on a larger state set. Both enlargements of the state space can be seen as 
introducing impossible possible worlds. Also, Morris [1992] provides an axiomatic derivation of 
nonpart i t ional  information structures which has some similarities to my work. In particular, 
he also uses the way preferences vary with information to derive s ta tements  about the agent 's 
reasoning. For more details on the relationship between Morris' work and my own, see Lipman 
[1993b]. 

2 Framework for Analysis  

N o t a t i o n a l  C o n v e n t i o n s .  For any sets A and B, A B denotes the set of all functions f:  B -+ A, 
2 s the set of all subsets of B, and # B  the cardinality of B. If B is a collection of sets, then 
NB is the intersection of all the sets in B and 10B is the union of all the sets in B. 

To model the way preferences vary with information, I need a model of information which 
does not presume logical omniscience. Hence I begin with propositions as abstract  variables, 
rather than sets of possible worlds. Let ~0 denote the set of atomic propositions. For simplicity, 
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I assume that iI~o is finite and contains at least two elements. The set of all propositions, ~,  is 
the smallest set containing ¢0 which is closed under -~, V, A, and ~ (which are "not," "or," 
"and," and "implies" respectively). That is, if ~ E if, then - ~  E iI~ and if ~ , ¢  E q~, then 
qaV¢ E if, qoA ¢ E ~,  and qo ~ ~b E ¢1i. Note that while ~o is finite, ¢ must be infinite. Since I 
study agents who reason imperfectly, I introduce all of these operations separately rather than 
relating them according to the usual definitions. 

The next ingredient I require is a notion of what "correct" logical deduction is. This is 
modeled as follows. A state of the world is a collection of propositions which constitutes a 
complete and logically consistent description of how the world might be. That  is, a state is 
a maximal logically consistent subset of ¢.  More formally, s C_ ¢ is a state of the world or a 
possible world if for all ~, ¢ E ~, 

Es  if and only if -~qo~s 

q a V C E s  if and only if q o E s o r C E s  

~ p A C E s  if and only if ~ 0 E s a n d C E s  

~ p ~ ¢ E s  if and only if ~ o E s o r ~ b E s  

Let S denote the set of all possible worlds. A possible world is completely determined by the 
atomic propositions it contains; hence the finiteness of ¢0 implies that  S is finite. Of course, 
each element of S contains infinitely many propositions. 

Fix a finite number K > 1. The agent's information will take the form of a set of K or fewer 
propositions) For any P C/I~ such that # P  < K,  let S(P) = {s E S I P C s}. That is, S(P) 
is the collection of states of the world in which all the K or fewer propositions in P are true. If 
S(P) ~ 0, then P is called an information set. Let P denote the collection of information sets. 
For notational ease, I often write the singleton {qa} as qa. 

If S(qv) = S, then ~ is a tautology. If S(~) = 0, then ~p is a contradiction. For convenience, 
I assume that there is a special proposition true E ¢ such that true is a tautology and a special 
proposition false E/I~ such that  false is a contradiction. 

Let X be the set of consequences. As in Savage [1954], the interpretation of a consequence 
is that it is as complete a specification of the outcome of a choice as is necessary to describe an 
agent's evaluation of that outcome. For simplicity, I will take X = R.  Let F = X s denote the 
set of acts. That  is, an act is a function from states into consequences, so a choice is viewed 
in terms of the relationship it creates between external events (which propositions hold) and 
consequences. 

For each P E 79, we have a preference relation on F,  ~p ,  to be interpreted as the agent's 
preferences given information set P.  That is, f ~p  g is interpreted as saying that  the agent 
strictly prefers act f to act g if he learns that all the propositions in the set P were true. Let 
PttE~ denote the collection of these preference orderings and let ~- = ~tme. I emphasize that 
I make no assumption about the agent's self-awareness. I assume that  we, as modellers, know 

1 Because the agents here may not carry out conjunction properly, a set of propositions is not equivalent to 

the conjunction of the propositions in the set. 
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how the agent would respond to each possible piece of information, not that the agent himself 
knows this ex ante. Note also that I do not ask for information about the agent's prefhrences 
in response to nonsensical pieces of information such as qa A -~qa. Finally, I emphasize that  these 
preferences are interpretted as the preferences the agent has after whatever deduction he carries 
out. Hence they should reflect whatever processing of this information he carries out. 

A natural way to represent these preferences is with expected utility. Say that an information 
set P E 79 is null if f ~ p  g for all f ,  g C t7. 

Def in i t i on  1 PREF is expected utility representable (EUR) if there is a function u: X ~ R 
and a probability measure # on S such that for all nonnull information sets P E 79, # (S (P) )  > 0 

and 
f p-p g if and only if E,[u( f ( s ) )  I s e S(P)] > E,[u(g(s))  I s e S(P)],  

where E,[. I s E S(P)] denotes the expectation with respect to the measure # conditional on the 

event s E S(P) .  

It is straightforward to restate the Savage [1954] axioms in this framework to give sufficient 
conditions for such a representation. 2 

There is one necessary condition for an expected utility representation which is implicit in 
the usual framework and so is not normally discussed. Say that P and Q are logically equivalent 
if S ( P ) =  S(Q). 

Def in i t ion  2 PREF is equivalence respecting (ER) if for all information sets P and Q, S(P)  = 
S(Q) implies ~-p = ~-q. 

Clearly, if PREF is EUR, then for any logically equivalent P and Q, expected utility condi- 
tional on s E S(P)  must be the same as expected utility conditional on s E S(Q). Hence we 
must have N-p : N-Q, so  PREF satisfies ER. 

ER is an implausible assumption because agents are unlikely to always recognize logical 
equivalence. The problem is not that the agent knows that S(P)  = S(Q) and wishes to behave 
differently when receiving information P than when receiving Q. Instead, the agent simply 
doesn't realize that S(P)  = S(Q). This suggests the following approach. 

Let S denote the set of all subsets of 2 ¢. Given any S' E ,5 and P c_ ¢,  let S' (P)  = {s E 
S' I P c_ s}. Let ,5* denote the set of S' E S such that S C S', S'(true) = S', and S'(false) = 0. 

Def in i t ion  3 P R E F  i8 extended expected utility representable (XEUR) if there exist 

1. a set S* E S*; 

ZThe finiteness of the state space does complicate matters. See Gul [1992] and Chew and Karni [1992]. 
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2. a function h: F ~ X s• with h(f)(s)  = f (s)  for all s e S; 

3. a function u: X ~ R and a probability measure # on S* such that #(S(P))  > 0 for all 
nonnull information sets P 

where for all f ,  g E F, 

f ~ p  g if and only if Eu[u(h( f ) (s ) ) l s  e S*(P)] > Eu[u(h(g)(s))ls ~ S*(P)]. 

Call (S*, h, u ,#)  an XEU representation of PREF and S* a part of an XEU representation. 

In other words, PREF is XEUR if we can extend the state set from S to S* - -  i.e., introduce 
impossible possible worlds - -  and extend all acts to the new state set (via the function h) in 
such a way that  the preferences are represented by expected utility on the larger state set. 

The following is an obviously necessary condition for PREF to be XEUR. 

Def in i t i on  4 P R E F  i8 representable (REP) if for every nonnull information sets P,  there exists 
a function up: F --~ R such that 

f N-p g if and only if up ( f )  > up(g). 

Obviously, when P R E F  is not REP, some nonnuU P E 79 has no utility function, and, 
consequently, it is not XEUR. Necessary and sufficient conditions for REP are well known. 
Note, however, that ttEP is vastly weaker than EUR. 

The following theorem follows from Lipman [1993a]. 

T h e o r e m  1 If  PKEF iS REP and has finitely many distinct elements, then it is XEUR. 

Theorem 1 implies that  large class of preferences cart be represented by some kind of im- 
perfect reasoning. Given this, one could argue that nonstandard logics which cannot be used 
to represent preferences this way are of questionable usefulness in predicting behavior. Later, 
though, I will point out a limitation on this interpretation. 

Assume a nonstandard logic in the form of a set of possible worlds S* E S*. We wish to 
know the set of preferences such that an agent can be represented as using this logic. Unfortu- 
nately, the conditions I give to answer this refer to preferences only in an indirect fashion. The 
implications for preferences are easy to see for some logics but not so easy for others. 

De f in i t i on  5 Two collections of information sets 791, 792 C_ 79 are partitionally equivalent with 

respect to S I E S* if 

1. St(P) \ S is nonempty for every P E 791 U 792 
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2. the sets {S'(P) \ S}pep, are mutually disjoint for i = 1, 2 

Note that if S*(P) = S*(Q) and S*(P) \ S ¢ O, then {P} and {Q} are partitionatly 
equivalent with respect to S*. 

T h e o r e m  2 Let S* C $* be part of an XEU representation of P R E F .  Then there exist: 

1. a function u: X ~ R 

2. a probability measure # on S* such that #(S(P))  > 0 for all nonnull information sets P 

3. for each nonnull information set P, a function up: F ~ R representing ~ p 

such that 

C1 For all nonnull P with S*(P) = S(P),  

f ~p  g if and only if E~[u( f (s ) ) l s  e S(P)] > Eu[u(g(s)) ls  E S(P)]. 

C2 For all 7~1,P2 C P such that Pl and P2 are partitionally equivalent with respect to S*, for 
all f E F, 

Z up(f)- Z up(f)- . 

Moreover, if S* is finite and u is onto R then S* is part of an XEU representation of P R E F .  

A few remarks on this theorem are needed. First, the necessary condition of Theorem 2 re- 
quires existence of utility functions representing the individual ~p orders and so, unsurprisingly, 
requires REP. 

Second, the necessity of condition (C1) is clear: given any information set which leads the 
agent to rule out all impossible worlds, imperfect reasoning cannot help explain preferences. 

Third, condition (C2) is more intuitive than it may appear. For example, suppose S*(P) = 
S*(Q), so that  {P} and {Q} are partitionally equivalent with respect to S*. Then (C2) implies 
that for all f E F, 

u p ( f ) -  ~ # ( s ) u ( f ( s ) ) = u Q ( f ) -  ~ #(s)u(f(s)) .  
seS(P) seS(Q) 

But if S*(P) = S*(Q), then S(P) = S(Q), so this implies up( f )  = uq( f )  for all f - -  that  is, 
~p = ~q.  Hence (C2) implies that the agent recognizes those logical equivalences preserved 
by the nonstandard logic. 

188 



The necessity of (C2) is easily proven. Suppose we have an XEU representation (S*, h, u, #). 
For each information set P ,  define 

up( f ) :  
~s*(P) 

Clearly, up must represent ~p.  Note that 

up(f) = + 
sES(P) seS*(P)\S 

SO 

(1) ~ #(s)u(h(f)(s)) = up( f ) -  ~ #(8)u(f(s)).  
seS*(P)\S sES(P) 

Consider any partitionally equivalent Pl  and P2 and let S = Upe~o 1S*(P) \ S. Clearly, 

~#(s)u(h( f (s))= ~ [ .~  #(s)u(h(f)(s))] = 
seR PeP~ ses (P)\S PET'2 L, eS (e)\s J 

Substituting from (2) yields condition (C2). 

While the conditions of this theorem do not immediately convey a great deal of intuition, 
the result makes it clear how to check what preferences can be represented by certain logics. For 
example, it provides a very quick way to derive the results shown in Lipman [1993a] regarding 

Rescher and Brandom's [1979] logic of inconsistency. 

3 The Agent's Logic 

Theorems 1 and 2 focus on the set of worlds the agent considers possible. It is often more 
intuitive to interpret such a set in terms of the inference rules it generates. Given any S ~ E 8", 

define a relation on sets of propositions P, Q c ~ by 

S I 
P ,--, Q if and only if ~ S'(~)C_ 

~ E P  

U s'(¢). 
ce@ 

S I 

That is, if S ~ is the set of worlds the agent considers possible and P '-~ Q, then an agent 
learning that  all the propositions in P are true will infer that at least one of the propositions 

S 
i n Q i s t r u e .  Let ~ denote ~ .  

Below are some properties one may the agent's inference rule to satisfy. 

Def in i t ion  6 S* E 3" satisfies simple inference (SI) if for all ~, ¢ E ~, ~ ~ ¢ implies that 
S* 
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Intuitively, if S* satisfies SI, then an agent learning the single premise ~2 infers any one 
conclusion tautologically imphed by it. This is similar to the rule of generalization typically 
used in modal logic. It is not hard to show that SI implies S*(~) = S* for all tautologies 
and S*(~b) = 0 for all contradictions g,. In this sense, SI requires that the agent knows all 
tautologies and rules out every contradiction. 

Def in i t ion  7 S* satisfies the rule of conjunction (ROC) if for all ~, ~ C ~, 
S* 

1. ~, g, E P implies P ~ ~ A ¢ 

S* S* 
2. ~ A ¢ E P implies P ¢-~ ~ and P ~ ~. 

Note that if S* satisfies SI, then the second condition is redundant.  

Def in i t ion  8 S* satisfies the rule of disjunction (ROD) if for all ~, ¢ C ~, 
S* S* 

1. ~ C P implies P ~ ~ V g, and P ~ g, V 

S* 
2. ~ V C E P implies P ~ {~,¢}.  

Note that if S* satisfies SI, then the first condition is redundant. 

Rescher and Brandom [1979] propose constructing the new worlds in S* \ S from the old 
ones in S in a particularly simple way: forming unions or intersections of the original states. 
The simplest way to allow such possibifities is the following. Recall that for any collection of 
sets B, MB denotes the intersection of the sets in B and UB denotes the union. Given any 
S' E $,  let 

I ( S ' ) =  {s* _C ,,p ] s* = N B  for s o m e B  C S'} 

and 

U ( S ' ) = { s * C ~ l s * = U B  for someB_CS '} .  

Finally, let r (S ' )  denote the smallest topology on US' containing S'. (See Kelly [1955], pp. 
46-48.) The natural alternatives to consider are I (S) ,  U(S), and r (S) ,  which I will simply 
denote I ,  U, and r respectively. It is easy to show that the finiteness of S implies r = U(I).  

The following theorem is proved in Lipman [1993a]. 

T h e o r e m  3 

1. S* satisfies SI  if and only if S* C T. 

2. SS* satisfies SI  and R O C  iff 5'* C I.  

3. S* satisfies SI  and ROD iff S* C U. 
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For example, suppose ~o : {P, q} and S = {sl, s2, 83,84} where 

p,q C sl; p,-~q E s2, -~p,q E 83, and -~p, ~q E s4. 

E x a m p l e  1 Suppose that S* = { 8 1 , s 2 , s 3 ,  s4 ,81  U 82}. By Theorem 3, E1 and ROD hold. 
However, R O C  does not hold since S*(q)N S*(~q) = {sl U s2} ~ 0 = S*(q A ~q), so we do not 

s* 
have {q,~q} ~ q A~q.  

E x a m p l e  2 Suppose S* = {Sl,S2,s3, s4,81 f"t 82}. S* C I implies that SI  and R O C  hold. 
s* 

However, ROD does not hold since S*(qV-q)  = S* ~ S = S*(q)US*(~q), so q V - q  ~ {q , -q}  
is not satisfied. 

E x a m p l e  3 Suppose S* = { s 1 , s 2 , s 3 ,  s4 ,  s 2 (.J s4}. As in Example 1, S I  and ROD hold but not 
ROC. Recall that p ~ q E s wheneverp ~ s or q e s. Hence S*(p -+ q) f3 S*(p) = {Sl, s2Us4} 

s* 
{Sl,S3} = S*(q), so { p , p ~  q} ~ q fails to hold. On the otherhand, S*(p A ( p ~  q ) )=  {sl} 
so an agent who simultaneously learns p and p ~ q does infer q. 

Theorem 3 allows characterization of the set of preferences which can be represented by 
attributing inference rules satisfying these simple criteria to the agent. These results, contained 
in Theorems 4, 5, and 6, are derived by a series of lemmas. 

L e m m a  1 I f  U C_ S*, then for all information sets P E 79, S ' (P )  # S(P) .  

Lemma 1 implies that  condition (C1) is irrelevant whenever U C S*. 

Say that  information sets P and Q are strongly equivalent, written P ~ Q if for all ~ E P,  
there is a ¢ E Q such that ~p ~ !l' and vice versa for all ¢ E Q. Clearly, strong equivalence 
implies logical equivalence but the converse is not true. Also, if P and Q are strongly equivalent, 

s* 
then for any S* satisfying SI, P ~ Q and conversely. 

L e m m a  2 I f  U, I C S* C_ v, then Pl and 792 are partitionally equivalent only if 791 = {P},  
P2 = {Q}, P ~ Q, and S * ( P ) =  S*(Q). 

Hence if we let S* = r,  the fact that U, I C r implies that (C2) is relevant only when 
P ~ Q. In this case, S*(P) = S*(Q) and S(P)  = S(Q). Therefore, (C2) reduces to the 
following simpler condition. 

Def in i t i on  9 P R E F  is strong equivalence respecting (SER) if for all information sets P and 
Q, P ~ Q implies ~ p = ~Q. 
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Clearly, SER is weaker than ER since ER requires ~p  = ~Q for more pairs of information 

sets. 

T h e o r e m  4 There is an S* E S* satisfying SI which is part of an XEU representation of PREF 

iff PREF satisfies REP and SER. 

Even though SER would seem to allow the possibility that the agent correctly recognizes cer- 
tain equivalences but occasionally makes errors regarding certain simple implications, Theorem 
4 implies that this distinction has no behaviorial content. On the other hand, it is possible, at 
least in principle, that the distinction could be important if one wishes to find a representation 
that  satisfies certain other properties as well. 

L e m m a  3 Assume S* = I. Then each of the following holds. 

1. For every information set P, S*(P) = S(P) if and only if # S ( P )  < 1. 

2. Condition (C2) is satisfied if and only if it is satisfied whenever -PI -~ { P } ,  ~2 • {Q}, 

and S * ( P ) =  S*(Q). 

3. For every pair of information sets P and Q, S*(P) = S*(Q) if and only if S (P)  = S(Q). 

Lemma 3 implies that when S* = I,  condition (C1) is relevant only when S(P) consists of 
a single state. In this case, it is not hard to show that (C1) reduces to the following condition. 

Def in i t ion  10 PREF satisfies weak state independence (WSI) if there exists u: X ~ R such 
that for all s E 5' and every nonnull P such that S(P)  = {s}, f ~.-p g iff u( f (s))  > u(g(s)). 

This condition is a substantial weakening of Savage's [1954] state independence axiom, P3, 
and is much weaker than the usual expected utility conditions. 

Lemma 3 also implies that when S* = I ,  condition (C2) is again only relevant when each 
partition has only a single element and these two are equivalent in the S* logic. However, unlike 
the result with S* = r,  now two information sets are equivalent in the S* logic if and only if 
they are logically equivalent. This yields the following theorem. 

T h e o r e m  5 If  there is an S* E S* satisfying SI and ROC which is part of an XEU represen- 
tation of PREF, then PREF is REP, ER, and satisfies WSI. If  the u in WSI is onto R,  then 
such an S* exists. 

L e m m a  4 If S* = U, then 

1. Pl and P2 are partitionally equivalent if and only if P1 = {P} and P~ = {Q} where either 
(a) S*(P) = S*(Q) or (b) # S  \ S(P) <_ 1 and # S  \ S(Q) <_ 1. 
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2. S*(P) = S*(Q) if and only if P ~ Q. 

By Lemma 1, we know that  (C1) is irrelevant when S* = U. Lemma 4 says that  (C2) is 
relevant only in very restricted cases. First, it is relevant when it reduces to SER. The second 
case, where # S \  E(P1) < 1 and # S \  S(Q1) < 1 but S*(P1) 7 ~ S*(Q1), reduces to the following 
condition. 

Def in i t ion  11 PKEF satisfies dual weak state independence (DWSI) /f there exist 

1. Utrue representing 

2. a function u: X ~ R and a probability measure # on S 

3. for each s E S and each information set P with S(P)  = S \ {8} ,  a function up representing 
~p  

such that for every f E F, every s E S, and every P e 79 with S(P)  = S \ {s}, 

=  truo(f)- up(f) .  

Weak state independence requires a function u(x) that  represents preferences conditional 
on a single state. DWSI is the dual to WSI in the sense that it requires a function #(s)u(x) 
representing the difference in utility associated with a single state. 

T h e o r e m  6 I f  there is an S* E S* satisfying SI  and ROD which is part of an X E U  represen- 
tation of PREF, then PagF is REP, SER, and satisfies DWSI. If  the u in D W S I  is onto R ,  then 
such an S* exists. 

Summarizing, Theorem 4 implies that whenever PRBF is t tEP and SER, we can represent 
these preferences using some form of ttescher and Brandom's logic. How much more structure 
we can put on the logic depends on the additional structure of the preferences, t tEP is the 
weakest condition I can consider. SER, however, is not at all trivial - -  it requires the agent to 
recognize logical equivalence in many complex circumstances. This suggests that a logic which 
does not require SI might be more useful. 

One candidate is Levesque's [1984] logic of implicit belief. This logic seems like a natural 
alternative to Rescher and Brandom since their logic always assumes SI and may add one or 
both of ROC and ROD, while Levesque's logic always satisfies I~OC and ROD, only adding SI 
to generate standard logic. 

Levesque constructs a set of worlds as follows. (This construction differs from Levesque's, 
but was shown to be equivalent by Fagin, Halpern, and Vardi [1990]. 3 ) Let L denote the 

aMy treatment of --~ differs from Levesque's and is equivalent to what Fagin, Halpern, and Vardi [1090] call 
strong implication. 
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largest subset of ,5* such that  there exists a function rl: L ~ L with '~(rl(s)) = s for all s C L 
and 

~90Es  if and only if ~ ' r l ( s  ) 

90A~bCs if and only if ~ C s a n d  g, C s  

90V~bcs  if and only if 9 0 E s o r ~ b c s  

90-+'~bEs if and only if 9 9 ~ s o r ~ b E s  

When U(s) = s, we have s E S. Otherwise, s is an impossible possible world. 

The difficulty with setting E* = L is that  there will be very many information sets at which 
the antecedents of conditions (C1) and (C2) will hold. This problem arises because learning a 
tautology can be very informative when S* = L. The following theorem is a slight modification 
of results in Fagin, Halpern, and Vardi [1990]. 

T h e o r e m  7 If S* = L, then 

1. there exists a tautology ~ E • such that for all information sets P, we have S*(P U {9o}) = 
S ( P  U {¢2}). 

2. for each pair of information sets P and Q with S(P)  c_ S(Q), there assists a tautology ~o' 
such that 

S*(P) \ S = S*(Q u {~'}) \ S -if- O. 

Since the antecedents of (C1) and (C2) will be satisfied for very large classes of information 
sets, the set of preferences which can be represented with S* = L is relatively small. 

It is worth noting that  the tautology ¢2 referred to in the first s ta tement  in Theorem 7 
simply says that  for any atomic proposition p, exactly one of p or -~p must  hold. Similary, the 
tautology ¢p' of the second statement  of the theorem says the same thing except only for certain 
of the atomic propositions. As Fagin, Halpern, and Vardi point out,  it seems implausible that  
such s tatements  would convey information to an agent. Interestingly, precisely this odd aspect 
of Levesque's logic implies that  it is part of a representation of preferences only for special 
preferences. 

Another  approach to nonstandard logics is based on some notion of resource b o u n d e d  com- 
putat ion,  where the agent carries out deduction until he runs out  of time, energy, or some 
other resource. While this notion is very intuitive, it is very unlikely to be par t  of an XEU 
representation of preferences. Presumably, the inference rules generated by resource-bounded 
computat ion will be nontransitive. That  is, there will be ~Pl, ~02, and ~3 such that  the agent 
infers ¢22 from T1, infers ~3 from T2, but fails to infer qoa from T1 because this takes "too long." 

S' 
But for any S ~ E S,  ~ must be transitive. 4 One interpretation is that  resource-bounded 
computa t ion  has no behaviorial implications. 

4This problem is not a necessary feature of resource-bounded reasoning. For example, if an agent is assumed 
able to carry out any polynomial time calculation, the implied inference relation is transitive. 
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Such a conclusion is premature, however. While the h function - -  which extends the acts 
to S* - -  has largely been in the background here, this part of the representation is crucial. 
Since it models the way the agent views the available acts, it is hardly an innocuous bit of 
technicality. Hence it is important to find useful and intuitive restrictions on this function. 
(Some possibilities are discussed in Lipman [1992].) With such restrictions, it may be necessary 
to extend the notion of an XEU representation and notions like resource-bounded reasoning 
may be more relevant to such an extension. 
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