
SigPL Winter School 2005

An Axiomatic Basis for
Computer Programming

C. A. R. Hoare
October, 1969



2

Computer Programming and Science

Computer Programming = Exact Science

�What is Programming

Programming: The writing of a computer program
Program: A set of coded instructions that enables a machine, espe-

cially a computer, to perform a desired sequence of operations

�What is Science

Science: The observation, identi�cation, description, experimental in-
vestigation, and theoretical explanation of phenomena



3

Reasoning on a Program

Input Data → Computer
Operations

→ Result

� Reasoning on What?

– Reasoning on the relations between the involved entities
– The involved entities are the input data and the result



4

Computer Arithmetic

(Pure) Arithmetic 6= Computer Arithmetic

� Computer Arithmetic

– Typically supported by a speci�c computer hardware
– Could only deal with some �nite subsets of integers (or real numbers)
→ Overow

� Overow Handling Examples (for Integer Operations)

– Strict Interpretation: an overow operation never completes
– Firm Boundary: take the maximum or the minimum
– Modulo Arithmetic: modulo n, where n is the size of the set



5

Strict Interpretation



6

Firm Boundary



7

Modulo Arithmetic



8

A Selection of Axioms for Integers

A1 x + y = y + x

A2 x× y = y× x

A3 (x + y) + z = x + (y + z)

A4 (x× y)× z = x× (y× z)

A5 x× (y + z) = x× y + x× z

A6 y 6 x ⊃ (x − y) + y = x

A7 x + 0 = x

A8 x× 0 = 0
A9 x× 1 = x



9

An Example of Theorem

x = x + y× 0

Proof.

x = x + 0 (A7)
= x + y× 0 (A8)



10

Another Example of Theorem

y 6 r ⊃ r + y× q = (r − y) + y× (1 + q)

Proof.

(r − y) + y× (1 + q) = (r − y) + (y× 1 + y× q) (A5)
= (r − y) + (y + y× q) (A9)
= ((r − y) + y) + y× q (A3)
= r + y× q provided y 6 r (A6)



11

Some Remarks

� The premise (y 6 r) is required because the addition is de�ned for
non-negative integers

� In this respect, additional restrictions are needed for the previous the-
orems

0 6 x 6 n ∧ 0 6 y 6 n ⊃ x = x + y× 0



12

Axioms for Finiteness

� The 10th Axiom for In�nite Arithmetic

A10I ¬∃x ∀y (y 6 x)

� The 10th Axiom for Finite Arithmetic

A10F ∀x (x 6 max)

But, what about ∞?



13

Axioms for Overow Handling

A11S ¬∃x (x = max + 1)

A11B max + 1 = max

A11M max + 1 = 0



14

Modelling of Program Execution

\If P is true before initiation of a program Q,
then R will be true on its completion."

P{Q}R

where
P : precondition (predicate)
Q : program (sequence of statements)
R : postcondition (predicate)

cf. If no preconditions are imposed,

true{Q}R



15

An Axiomatic System

� An axiomatic system for program veri�cation will be developed

� The axiomatic system consists of:

– Axioms which are true without any premises
– Rules which are used to derive a theorem from existing theorems



16

Axiom of Assignment (D0)

P[f/x] {x := f} P

where
x is a variable identi�er
f is an expression without side e�ects
P[f/x] is obtained from P by substituting f for all occurrences

of x



17

Rules of Consequences (D1)

�Weakening the postcondition

If P{Q}R and R ⊃ S then P{Q}S

� Strengthen the precondition

If P{Q}R and S ⊃ P then S{Q}R

Another notation:
P{Q}R, R ⊃ S

P{Q}S

S ⊃ P, P{Q}R

S{Q}R



18

Rule of Composition (D2)

If P{Q1}R1 and R1{Q2}R then P{Q1; Q2}R

� Sequencing the Statements

P{Q1}R1, R1{Q2}R

{Q1; Q2}R

� Zero Composition (empty statement)

P{skip}P



19

Rule of Iteration

If P ∧ B{S}P then P{while B do S}¬B ∧ P

Another notation:
P ∧ B{S}P

P{while B do S}¬B ∧ P

� P is called a loop invariant.

– P is true on initiation of the loop (or of S)
– P is true on completion of the loop
– P is true on completion of S



20

An Example
Program

Compute the quotient and the remainder when we divide x by y.

Q : ((r := x; q := 0);
while y 6 r do (r := r − y; q := 1 + q))

Program Property

true {Q} ¬y 6 r ∧ x = r + y× q

Lemma 1.

true ⊃ x = x + y× 0

Lemma 2.

x = r + y× q ∧ y 6 r ⊃ x = (r − y) + y× (1 + q)



21

Proving Steps (1/3)

1 true ⊃ x = x + y× 0 Lemma 1
2 x = x + y× 0 {r := x} x = r + y× 0 D0
3 x = r + y× 0 {q := 0} x = r + y× q D0
4 true {r := x} x = r + y× 0 D1 (1,2)
5 true {r := x; q := 0} x = r + y× q D2 (4,3)



22

Proving Steps (2/3)

6 x = r + y× q ∧ y 6 r

⊃ x = (r − y) + y× (1 + q) Lemma2
7 x = (r − y) + y× (1 + q)

{r := r − y} x = r + y× (1 + q) D0
8 x = r + y× (1 + q)

{q := 1 + q} x = r + y× q D0
9 x = (r − y) + y× (1 + q)

{r := r − y; q := 1 + q} x = r + y× q D2 (7,8)
10 x = r + y× q ∧ y 6 r

{r := r − y; q := 1 + q} x = r + y× q D1 (6,9)



23

Proving Steps (3/3)

11 x = r + y× q

{while y 6 r do (r := r − y; q := 1 + q)}

¬y 6 r ∧ x = r + y× q D3 (10)
12 true {((r := x; q := 0);

while y 6 r do (r := r − y; q := 1 + q))}

¬y 6 r ∧ x = r + y× q D2 (5,11)



24

Additional Rules

� Conditional 1
P ∧ B {S} Q

P {if B then S} Q

� Conditional 2
P ∧ B {S1} Q, P ∧ ¬B {S2} Q

P {if B then S1 elseS2} Q



25

Proving During Coding

input variables → PROGRAM → output variables

� Think of Assertions

– The assertions (including preconditions and postconditions) are de-
scribed in terms of variables

– The PROGRAM may de�nes additional intermediate variables

� Kinds of Assertions

– The input variables should satisfy some preconditions.
– The output variables should satisfy some postconditions.
– The intermediate variables should satisfy some invariants.



26

Coding and Proving Steps

Coding Proving

determining input/output vari-
ables

determining precondi-
tions/postconditions (problem
speci�cation)

determining intermediate vari-
ables

formulating assertions on the
intermediate variables (the pur-
pose of the variables)

determining the initial values
for the intermediate variables

checking the assertions

re�nement



27

The Program \Find"

� Find an element of an array A[1..N] whose value is f-th in order of
magnitude, i.e.:

A[1], A[2], . . . , A[f − 1] 6 A[f] 6 A[f + 1], . . . , A[N]

� An Algorithm for Find

1. For a speci�c element r (say, A[f]), split A[m..n] into two parts:

A[m], . . . , A[k], A[k + 1], . . . A[n]

where A[m], . . . , A[k] 6 r and A[k + 1], . . . A[n] > r

2. If f ∈ [m, k], n := k and continue.
3. If f ∈ [k + 1, n], m := k + 1 and continue.
4. If m = n = k, terminates.



28

The Algorithm (1/2)



29

The Algorithm (2/2)



30

Stage 1: Problem De�nition

� (Precondition) Given A[1..N] and 1 6 f 6 N

� (Postcondition) Make A into

∀p, q(1 6 p 6 f 6 q 6 N ⊃ A[p] 6 A[f] 6 A[q]) (FOUND)



31

Stage 2: Finding the Middle Part (1/4)

� Identifying intermediate variables m and n

where A[m] is for the �rst element of the middle part
and A[n] is the last element of the middle part

� The purpose of m and n

m 6 f ∧ ∀p, q(1 6 p < m 6 q 6 N ⊃ A[p] 6 A[q]) (m-inv.)
f 6 n ∧ ∀p, q(1 6 p 6 n < q 6 N ⊃ A[p] 6 A[q]) (n-inv.)

� Determining the initial values for m and n:
m := 1; n := N



32

Stage 2: Finding the Middle Part (2/4)

� Check the invariants for the initial values

1 6 f ∧ ∀p, q(1 6 p < 1 6 q 6 N ⊃ A[p] 6 A[q])

(Lemma 1 = m-inv.[1/m])

f 6 N ∧ ∀p, q(1 6 p 6 N < q 6 N ⊃ A[p] 6 A[q])

(Lemma 2 = n-inv.[N/n])

Lemma 1 and Lemma 2 are trivially true because 1 6 f 6 N



33

Stage 2: Finding the Middle Part (3/4)

� Re�ne further (identifying a loop)
while m < n do \reduce the middle part"

� Does the loop accomplishes the objective of the program?

m-inv. ∧ n-inv. ∧ ¬(m < n)

⊃ m = n = f ∧ ∀p, q(1 6 p 6 f 6 q 6 N ⊃ A[p] 6 A[f] 6 A[q])

(Lemma 3)



34

Stage 2: Finding the Middle Part (4/4)

� The current program structure:

m := 1; n := N

while m < n do

\reduce the middle part"



35

Stage 3: Reduce the Middle Part (1/6)

� Variables

i, j : the pointers for the scanning
r : an discriminator

� Invariants

m 6 i ∧ ∀p(1 6 p < i ⊃ A[p] 6 r) (i-inv.)
j 6 n ∧ ∀q(j < q 6 N ⊃ r 6 A[q]) (j-inv.)

� Initial values
i := m; j := n



36

Stage 3: Reduce the Middle Part (2/6)

� Check the Invariants

m-inv. ⊃ i-inv.[m/i]

n-inv. ⊃ j-inv.[n/i]

Speci�cally,

1 6 f ∧ ∀p, q(1 6 p < 1 6 q 6 N ⊃ A[p] 6 A[q])

⊃ m 6 m ∧ ∀p(1 6 p < m ⊃ A[p] 6 r) (Lemma 4)
f 6 N ∧ ∀p, q(1 6 p 6 N < q 6 N ⊃ A[p] 6 A[q])

⊃ n 6 n ∧ ∀q(n < q 6 N ⊃ r 6 A[q]) (Lemma 5)



37

Stage 3: Reduce the Middle Part (3/6)

� Changing i and j (Scanning)

while i 6 j do

\increase i and decrease j"

� Updating m and n

if f 6 j then n := j

else if i 6 f then m := i

else go to L



38

Stage 3: Reduce the Middle Part (4/6)

� Checking the Invariants

j < i ∧ i-inv. ∧ j-inv.
⊃ (f 6 j ∧ n-inv.[j/n]) ∨ (i 6 f ∧ m-inv.[i/m])

Speci�cally,

j < i ∧ ∀p(1 6 p < i ⊃ A[p] 6 r)

∧ ∀q(j < q 6 N ⊃ r 6 A[q])

⊃ (f 6 j ∧ ∀p, q(1 6 p 6 j < q 6 N ⊃ A[p] 6 A[q])) ∨

(i 6 f ∧ ∀p, q(1 6 p < i 6 q 6 N ⊃ A[p] 6 A[q]))

(Lemma 6)



39

Stage 3: Reduce the Middle Part (5/6)

The Destination of go to

�When the loops terminates, j < f < i

� This means that `FOUND' is satis�ed:

1 6 f 6 N ∧ j < f < i ∧ i-inv. ∧ j-inv. ⊃ FOUND

Speci�cally,

1 6 f 6 N ∧ j < f < i ∧ ∀p(1 6 p < i ⊃ A[p] 6 r)

∧ ∀q(j < q 6 N ⊃ r 6 A[q])

∀p, q(1 6 p 6 f 6 q 6 N ⊃ A[p] 6 A[f] 6 A[q]) (FOUND)



40

Stage 3: Reduce the Middle Part (6/6)

� The Resulting Program:

r := A[f]; i := m; j := n

while i 6 j do

\increase i and decrease j"
if f 6 j then n := j

else if i 6 f then m := i

else go to L



41

Stage 4: Increase i and Decrease j (1/4)

� Increase i

while A[i] < r do i := i + 1

� Check the i-inv.

A[i] < r ∧ i-inv. ⊃ i-inv.[i + 1/i]

Speci�cally,

A[i] < r ∧ m 6 i ∧ ∀p(1 6 p < i ⊃ A[p] 6 r)

⊃ m 6 i + 1 ∧ ∀p(1 6 p < i + 1 ⊃ A[p] 6 r) (Lemma 8)



42

Stage 4: Increase i and Decrease j (2/4)

� Decrease j

while r < A[j] do j := j − 1

� Check the j-inv.

r < A[j] ∧ j-inv. ⊃ j-inv.[j − 1/j]

Speci�cally,

r < A[j] ∧ j 6 n ∧ ∀q(j < q 6 N ⊃ r 6 A[q])

⊃ j − 1 6 n ∧ ∀q(j − 1 < q 6 N ⊃ r 6 A[q]) (Lemma 9)



43

Stage 4: Increase i and Decrease j (3/4)

� On termination of the loops,

A[j] 6 r 6 A[i]

� If i and j have not crossed over (i 6 j), A[i] and A[j] should be ex-
changed

� That means:

if i 6 j then

\exchange A[i] and A[j]"



44

Stage 4: Increase i and Decrease j (4/4)

� The Resulting Program:

while A[i] < r do i := i + 1
while r < A[j] do j := j − 1
if i 6 j then

\exchange A[i] and A[j]"



45

Stage 5: Exchange A[i] and A[j] (1/3)

� The code for the exchange:

w := A[i]; A[i] := A[j]; A[j] := w

� Let A ′ stands for the array A after exchange, then

A ′[i] = A[j] ∧ A ′[j] = A[i] ∧

∀k(1 6 k 6 N ∧ k 6= i ∧ k 6= j ∧ A ′[k] = A[k])



46

Stage 5: Exchange A[i] and A[j] (2/3)

� Checking the i-inv.: i 6 j ∧ i-inv. ⊃ i-inv.[A ′/A] i.e:

m 6 i 6 j ∧ ∀p(1 6 p < i ⊃ A[p] 6 r)

⊃ ∀p(1 6 p < i ⊃ A ′[p] 6 r) (Lemma 10)

� Checking the j-inv.: i 6 j ∧ j-inv. ⊃ j-inv.[A ′/A] i.e:

m 6 j 6 n ∧ ∀q(j < q 6 N ⊃ r 6 A[q])

⊃ ∀q(j < q 6 N ⊃ r 6 A ′[q]) (Lemma 11)



47

Stage 5: Exchange A[i] and A[j] (3/3)

� Checking the m-inv.: i 6 j ∧ m-inv. ⊃ m-inv.[A ′/A] i.e:

m 6 i 6 j ∧ ∀p, q(1 6 p < 1 6 q 6 N ⊃ A[p] 6 A[q])

⊃ ∀p, q(1 6 p < 1 6 q 6 N ⊃ A ′[p] 6 A ′[q]) (Lemma 12)

� Checking the n-inv.: i 6 j ∧ n-inv. ⊃ n-inv.[A ′/A] i.e:

i 6 j 6 n ∧ ∀p, q(1 6 p 6 N < q 6 N ⊃ A[p] 6 A[q])

⊃ ∀p, q(1 6 p 6 N < q 6 N ⊃ A ′[p] 6 A ′[q]) (Lemma 13)



48

The Whole Program

m := 1; n := N

while m < n do

r := A[f]; i := m; j := n

while i 6 j do

while A[i] < r do i := i + 1
while r < A[j] do j := j − 1
if i 6 j then

w := A[i]; A[i] := A[j]; A[j] := w

if f 6 j then n := j

else if i 6 f then m := i

else go to L

L :



49

Summary

� Axiomatic system is constructed

– The relation between the precondition the postcondition of a pro-
gram fragments can be exactly constructed

– The program proof can be constructed using the axioms and rules
which prescribes these relations

� Proving during Coding

– Observe the nature of data
– Formulate invariants for the data (or variables)
– Coding (altering variables)
– Proving that the invariants are preserved
– Reconsidering the earlier decisions if the assertions cannot be proved



50

References and ...

� References

– C. A. R. Hoare, \An Axiomatic Basis for Computer Programming,",
CACM, 12(10), 1969.

– C. A. R. Hoare, \Proof of a Program: FIND,", CACM, 14(1), 1971.

� Further References

– Axiomatic Semantics Section of Various Programming Language Text-
book

– H. R. Nielson and F. Nielson, Semantics with Applications: A
Formal Introduction, John Wiley & Sons, 1992.

– D. Gries, The Science of Programming, Springer, 1981.


