An Axiomatic Basis for
 Computer Programming

C. A. R. Hoare

Остоber, 1969

Computer Programming and Science

Computer Programming $=$ Exact Science

- What is Programming

Programming: The writing of a computer program
Program: A set of coded instructions that enables a machine, especially a computer, to perform a desired sequence of operations

- What is Science

Science: The observation, identification, description, experimental investigation, and theoretical explanation of phenomena

Reasoning on a Program

$$
\text { Input Data } \rightarrow \begin{aligned}
& \text { Computer } \\
& \text { Operations }
\end{aligned} \rightarrow \text { Result }
$$

- Reasoning on What?
- Reasoning on the relations between the involved entities
- The involved entities are the input data and the result

Computer Arithmetic
(Pure) Arithmetic \neq Computer Arithmetic

- Computer Arithmetic
- Typically supported by a specific computer hardware
- Could only deal with some finite subsets of integers (or real numbers) \rightarrow Overflow
- Overflow Handling Examples (for Integer Operations)
- Strict Interpretation: an overflow operation never completes
- Firm Boundary: take the maximum or the minimum
- Modulo Arithmetic: modulo n, where n is the size of the set

Strict Interpretation

1. Strict Interpretation

$+$	0	1	2	3	\times	0	1	2	3
0	0	1	2	3	0	0	0	0	0
1	1	2	3	*	1	0	1	2	3
2	2	3	*	*	2	0	2	*	*
3	3	*	*	*	3	0	3	*	*

* nonexistent

Firm Boundary

$+$	2. Firm Boundary								
	0	1	2	3	\times	0	1	2	3
0	0	1	2	3	0	0	0	0	0
1	1	2	3	3	1	0	1	2	3
2	2	3	3	3	2	0	2	3	3
3	3	3	3	3	3	0	3	3	3

Modulo Arithmetic
3. Modulo Arithmetic

+	0	1	2	3		
0	0	1	2	3		
1	1	2	3	0		
2	2	3	0	1		
3	3	0	1	2	\quad	\times
:---:						
0	\quad	0	1	2	3	
---:	---:	---:	---:			
0	0	0	0			
0	1	2	3			
0	2	0	2			
0	3	2	1			

A Selection of Axioms for Integers

$$
\begin{array}{ll}
\text { A1 } & x+y=y+x \\
\text { A2 } & x \times y=y \times x \\
\text { A3 } & (x+y)+z=x+(y+z) \\
\text { A4 } & (x \times y) \times z=x \times(y \times z) \\
\text { A5 } & x \times(y+z)=x \times y+x \times z \\
\text { A6 } & y \leqslant x \supset(x-y)+y=x \\
\text { A7 } & x+0=x \\
\text { A8 } & x \times 0=0 \\
\text { A9 } & x \times 1=x
\end{array}
$$

An Example of Theorem

$$
x=x+y \times 0
$$

Proof.

$$
\begin{align*}
x & =x+0 \tag{A7}\\
& =x+y \times 0 \tag{A8}
\end{align*}
$$

Another Example of Theorem

$$
y \leqslant r \supset r+y \times q=(r-y)+y \times(1+q)
$$

Proof.

$$
\begin{align*}
(r-y)+y \times(1+q) & =(r-y)+(y \times 1+y \times q) \tag{A5}\\
& =(r-y)+(y+y \times q) \tag{A9}\\
& =((r-y)+y)+y \times q \tag{A3}\\
& =r+y \times q \quad \text { provided } y \leqslant r \tag{A6}
\end{align*}
$$

Some Remarks

- The premise $(y \leqslant r)$ is required because the addition is defined for non-negative integers
- In this respect, additional restrictions are needed for the previous theorems

$$
0 \leqslant x \leqslant n \wedge 0 \leqslant y \leqslant n \supset x=x+y \times 0
$$

Axioms for Finiteness

- The 10th Axiom for Infinite Arithmetic

$$
\mathbf{A 1 0}_{\mathrm{I}} \quad \neg \exists \mathrm{x} \forall \mathrm{y} \quad(\mathrm{y} \leqslant x)
$$

- The 10th Axiom for Finite Arithmetic

$$
\mathbf{A 1 0}_{\mathrm{F}} \quad \forall x \quad(x \leqslant \max)
$$

But, what about ∞ ?

Axioms for Overflow Handling

$$
\begin{array}{ll}
\mathbf{A 1 1}_{S} & \neg \exists \mathrm{x}(x=\max +1) \\
\mathbf{A 1 1}_{\mathrm{B}} & \max +1=\max \\
\mathbf{A 1 1}_{M} & \max +1=0
\end{array}
$$

Modelling of Program Execution

"If P is true before initiation of a program Q, then R will be true on its completion."

$$
P\{Q\} R
$$

where
P : precondition (predicate)
Q : program (sequence of statements)
R : postcondition (predicate)
cf. If no preconditions are imposed, true $\{Q\} R$

An Axiomatic System

- An axiomatic system for program verification will be developed
- The axiomatic system consists of:
- Axioms which are true without any premises
- Rules which are used to derive a theorem from existing theorems

Axiom of Assignment (D0)

$$
P[f / x]\{x:=f\} P
$$

where
x is a variable identifier
f is an expression without side effects
$P[f / x]$ is obtained from P by substituting f for all occurrences of x

Rules of Consequences (D1)

- Weakening the postcondition If $P\{Q\} R$ and $R \supset S$ then $P\{Q\} S$
- Strengthen the precondition

If $P\{Q\} R$ and $S \supset P$ then $S\{Q\} R$

Another notation:

$$
\frac{P\{Q\} R, R \supset S}{P\{Q\} S} \frac{S \supset P, P\{Q\} R}{S\{Q\} R}
$$

Rule of Composition (D2)

If $P\left\{Q_{1}\right\} R_{1}$ and $R_{1}\left\{Q_{2}\right\} R$ then $P\left\{Q_{1} ; Q_{2}\right\} R$

- Sequencing the Statements

$$
\frac{P\left\{Q_{1}\right\} R_{1}, R_{1}\left\{Q_{2}\right\} R}{\left\{Q_{1} ; Q_{2}\right\} R}
$$

- Zero Composition (empty statement)

$$
P\{s k i p\} P
$$

Rule of Iteration

If $P \wedge B\{S\} P$ then $P\{$ while B do $S\} \sqsupset B \wedge P$

Another notation:

$$
\frac{P \wedge B\{S\} P}{P\{\text { while } B \text { do } S\} \neg B \wedge P}
$$

- P is called a loop invariant.
- P is true on initiation of the loop (or of S)
$-P$ is true on completion of the loop
$-P$ is true on completion of S

An Example

Program

Compute the quotient and the remainder when we divide x by y.
$\mathrm{Q}: \quad((r:=x ; q:=0)$;

$$
\text { while } y \leqslant r \text { do }(r:=r-y ; q:=1+q))
$$

Program Property

$$
\text { true }\{Q\} \neg y \leqslant r \wedge x=r+y \times q
$$

Lemma 1.

$$
\text { true } \supset x=x+y \times 0
$$

Lemma 2.

$$
x=r+y \times q \wedge y \leqslant r \supset x=(r-y)+y \times(1+q)
$$

Proving Steps (1/3)

1	true $\supset x=x+y \times 0$	Lemma 1
2	$x=x+y \times 0 \quad\{r:=x\} \quad x=r+y \times 0$	D0
3	$x=r+y \times 0 \quad q:=0\} \quad x=r+y \times q$	D0
4	true $\{r:=x\} \quad x=r+y \times 0$	D1 $(1,2)$
5	true $\{r:=x ; q:=0\} x=r+y \times q$	D2 $(4,3)$

Proving Steps (2/3)

$$
\begin{array}{lll}
6 & x=r+y \times q \wedge y \leqslant r & \\
& \supset x=(r-y)+y \times(1+q) & \text { Lemma2 } \\
7 & x=(r-y)+y \times(1+q) & \\
& \{r:=r-y\} x=r+y \times(1+q) & \text { D0 } \\
8 & x=r+y \times(1+q) & \\
& \{q:=1+q\} x=r+y \times q & \text { D0 } \\
9 & x=(r-y)+y \times(1+q) & \\
& \{r:=r-y ; q:=1+q\} x=r+y \times q & \text { D2 }(7,8) \\
10 & x=r+y \times q \wedge y \leqslant r & \\
& \{r:=r-y ; q:=1+q\} x=r+y \times q & \text { D1 }(6,9)
\end{array}
$$

Proving Steps (3/3)
$11 \quad \mathrm{x}=\mathrm{r}+\mathrm{y} \times \mathrm{q}$
$\{$ while $y \leqslant r$ do $(r:=r-y ; q:=1+q)\}$
$\neg \mathrm{y} \leqslant \mathrm{r} \wedge \mathrm{x}=\mathrm{r}+\mathrm{y} \times \mathrm{q}$
D3 (10)
12 true $\{((r:=x ; q:=0)$;
while $y \leqslant r$ do $(r:=r-y ; q:=1+q))\}$

$$
\neg \mathrm{y} \leqslant \mathrm{r} \wedge \mathrm{x}=\mathrm{r}+\mathrm{y} \times \mathrm{q} \quad \mathrm{D} 2(5,11)
$$

Additional Rules

- Conditional 1

$$
\frac{\mathrm{P} \wedge \mathrm{~B}\{\mathrm{~S}\} \mathrm{Q}}{\mathrm{P}\{\mathbf{i f} \mathrm{~B} \text { then } \mathrm{S}\} \mathrm{Q}}
$$

- Conditional 2

$$
\frac{\mathrm{P} \wedge \mathrm{~B}\left\{\mathrm{~S}_{1}\right\} \mathrm{Q}, \mathrm{P} \wedge \neg \mathrm{~B}\left\{\mathrm{~S}_{2}\right\} \mathrm{Q}}{\mathrm{P}\left\{\text { if } \mathrm{B} \text { then } \mathrm{S}_{1} \text { else } \mathrm{S}_{2}\right\} \mathrm{Q}}
$$

Proving During Coding

$$
\text { input variables } \rightarrow \text { PROGRAM } \rightarrow \text { output variables }
$$

- Think of Assertions
- The assertions (including preconditions and postconditions) are described in terms of variables
- The PROGRAM may defines additional intermediate variables
- Kinds of Assertions
- The input variables should satisfy some preconditions.
- The output variables should satisfy some postconditions.
- The intermediate variables should satisfy some invariants.

Coding and Proving Steps

Coding	Proving
determining input/output vari- ables	determining precondi- tions/postconditions (problem specification)
determining intermediate vari- ables	formulating assertions on the intermediate variables (the pur- pose of the variables)
determining the initial values for the intermediate variables	checking the assertions
refinement	

The Program "Find"

- Find an element of an array $A[1 . . N]$ whose value is f-th in order of magnitude, i.e.:

$$
A[1], A[2], \ldots, A[f-1] \leqslant A[f] \leqslant A[f+1], \ldots, A[N]
$$

- An Algorithm for Find

1. For a specific element r (say, $\mathcal{A}[f])$, split $\mathcal{A}[m . . n]$ into two parts:

$$
A[m], \ldots, A[k], \quad A[k+1], \ldots A[n]
$$

where $A[m], \ldots, A[k] \leqslant r$ and $A[k+1], \ldots A[n] \geqslant r$
2. If $f \in[m, k], n:=k$ and continue.
3. If $f \in[k+1, n], m:=k+1$ and continue.
4. If $\mathrm{m}=\mathrm{n}=\mathrm{k}$, terminates.

The Algorithm (1/2)

move large values right
(b)

The Algorithm (2/2)

(d)

Stage 1: Problem Definition

- (Precondition) Given $\mathcal{A}[1 . . \mathrm{N}]$ and $1 \leqslant \mathrm{f} \leqslant \mathrm{N}$
- (Postcondition) Make \mathcal{A} into

$$
\forall p, q(1 \leqslant p \leqslant f \leqslant q \leqslant N \supset A[p] \leqslant A[f] \leqslant A[q])
$$

Stage 2: Finding the Middle Part (1/4)

- Identifying intermediate variables m and n where $A[m]$ is for the first element of the middle part and $A[n]$ is the last element of the middle part
- The purpose of m and n

$$
\begin{aligned}
& m \leqslant f \wedge \forall p, q(1 \leqslant p<m \leqslant q \leqslant N \quad \mathcal{m}[p] \leqslant A[q]) \quad \text { (m-inv.) } \\
& \mathrm{f} \leqslant \mathrm{n} \wedge \forall \mathrm{p}, \mathrm{q}(1 \leqslant \mathrm{p} \leqslant \mathrm{n}<\mathrm{q} \leqslant \mathrm{~N} \supset \mathcal{A}[\mathrm{p}] \leqslant \mathcal{A}[\mathrm{q}]) \quad \text { (} \mathrm{n} \text {-inv.) }
\end{aligned}
$$

- Determining the initial values for m and n :

$$
m:=1 ; n:=N
$$

Stage 2: Finding the Middle Part (2/4)

- Check the invariants for the initial values

$$
\begin{aligned}
1 \leqslant f \wedge \forall p, q(1 \leqslant p<1 \leqslant q \leqslant & \sim \supset A[p] \leqslant A[q]) \\
& (\text { Lemma } 1=m \text {-inv. }[1 / m]) \\
\mathrm{f} \leqslant \mathrm{~N} \wedge \forall \mathrm{p}, \mathrm{q}(1 \leqslant \mathrm{p} \leqslant \mathrm{~N}<\mathrm{q} \leqslant & \mathrm{N} \supset A[\mathrm{p}] \leqslant A[\mathrm{q}]) \\
& (\text { Lemma } 2=\mathrm{n} \text {-inv. }[\mathrm{N} / \mathrm{n}])
\end{aligned}
$$

Lemma 1 and Lemma 2 are trivially true because $1 \leqslant f \leqslant N$

Stage 2: Finding the Middle Part (3/4)

- Refine further (identifying a loop)
while $\mathrm{m}<\mathrm{n}$ do "reduce the middle part"
- Does the loop accomplishes the objective of the program?

$$
\begin{gathered}
\text { m-inv. } \wedge \text { n-inv. } \wedge \neg(m<n) \\
\supset m=n=f \wedge \forall p, q(1 \leqslant p \leqslant f \leqslant q \leqslant N \supset A[p] \leqslant A[f] \leqslant A[q])
\end{gathered}
$$

Stage 2: Finding the Middle Part (4/4)

- The current program structure:

$m:=1 ; n:=N$
while $\mathrm{m}<\mathrm{n}$ do
"reduce the middle part"

Stage 3: Reduce the Middle Part (1/6)

- Variables
$i, j:$ the pointers for the scanning
$r:$ an discriminator
- Invariants

$$
\begin{align*}
& \mathrm{m} \leqslant \mathrm{i} \wedge \forall \mathrm{p}(1 \leqslant \mathrm{p}<\mathrm{i} \supset A[\mathrm{p}] \leqslant \mathrm{r}) \tag{i-inv.}\\
& \mathfrak{j} \leqslant \mathrm{n} \wedge \forall \mathrm{q}(\mathrm{j}<\mathrm{q} \leqslant \mathrm{~N} \supset \mathrm{r} \leqslant A[\mathrm{q}]) \tag{j-inv.}
\end{align*}
$$

- Initial values

$$
\mathfrak{i}:=m ; j:=n
$$

Stage 3: Reduce the Middle Part (2/6)

- Check the Invariants

$$
\begin{array}{lll}
\text { m-inv. } & \supset \text { i-inv. }[m / i] \\
n-i n v . & \supset j \text {-inv. }[n / i]
\end{array}
$$

Specifically,

$$
\begin{aligned}
& 1 \leqslant \mathrm{f} \wedge \forall \mathrm{p}, \mathrm{q}(1 \leqslant \mathrm{p}<1 \leqslant \mathrm{q} \leqslant \mathrm{~N} \supset A[\mathrm{p}] \leqslant A[\mathrm{q}]) \\
& \supset \mathrm{m} \leqslant \mathrm{~m} \wedge \forall \mathrm{p}(1 \leqslant \mathrm{p}<\mathrm{m} \supset A[\mathrm{p}] \leqslant \mathrm{r}) \quad \text { (Lemma 4) } \\
& \mathrm{f} \leqslant \mathrm{~N} \wedge \forall \mathrm{p}, \mathrm{q}(1 \leqslant \mathrm{p} \leqslant \mathrm{~N}<\mathrm{q} \leqslant \mathrm{~N} \supset A[\mathrm{p}] \leqslant A[\mathrm{q}]) \\
& \supset \mathrm{n} \leqslant \mathrm{n} \wedge \forall \mathrm{q}(\mathrm{n}<\mathrm{q} \leqslant \mathrm{~N} \supset \mathrm{r} \leqslant A[\mathrm{q}]) \quad \text { (Lemma 5) }
\end{aligned}
$$

Stage 3: Reduce the Middle Part (3/6)

- Changing \mathfrak{i} and \mathfrak{j} (Scanning)
while $i \leqslant j$ do
"increase i and decrease j "
- Updating m and n

```
if f\leqslantj then n:= j
```

else if $i \leqslant f$ then $m:=i$
else go to L

Stage 3: Reduce the Middle Part (4/6)

- Checking the Invariants

$$
\begin{gathered}
\mathfrak{j}<i \wedge \text { i-inv. } \wedge \text { j-inv. } \\
\supset(f \leqslant j \wedge n-i n v \cdot[j / n]) \vee(i \leqslant f \wedge \quad m \text {-inv. }[i / m])
\end{gathered}
$$

Specifically,

$$
\begin{aligned}
\mathfrak{j}<\mathrm{i} & \wedge \forall p(1 \leqslant p<i \supset A[p] \leqslant r) \\
& \wedge \forall \mathrm{q}(\mathrm{j}<\mathrm{q} \leqslant \mathrm{~N} \supset \mathrm{r} \leqslant A[\mathrm{q}]) \\
\supset & (\mathrm{f} \leqslant \mathfrak{j} \wedge \forall p, q(1 \leqslant p \leqslant j<q \leqslant N \supset A[p] \leqslant A[q])) \quad \vee \\
& (i \leqslant f \wedge \forall p, q(1 \leqslant p<i \leqslant q \leqslant N \supset A[p] \leqslant A[q]))
\end{aligned}
$$

(Lemma 6)

Stage 3: Reduce the Middle Part (5/6)

The Destination of go to

- When the loops terminates, $\mathfrak{j}<\mathrm{f}<\mathrm{i}$
- This means that 'FOUND' is satisfied:

$$
1 \leqslant f \leqslant N \wedge j<f<i \wedge \text { i-inv. } \wedge \text { j-inv. } \supset F O U N D
$$

Specifically,

$$
\begin{align*}
& 1 \leqslant \mathrm{f} \leqslant \mathrm{~N} \wedge j<\mathrm{f}<\mathrm{i} \wedge \forall p(1 \leqslant p<i \supset A[p] \leqslant \mathrm{r}) \\
& \wedge \forall \mathrm{q}(\mathrm{j}<\mathrm{q} \leqslant \mathrm{~N} \supset \mathrm{r} \leqslant A[\mathrm{q}]) \\
& \forall \mathrm{p}, \mathrm{q}(1 \leqslant \mathrm{p} \leqslant \mathrm{f} \leqslant \mathrm{q} \leqslant \mathrm{~N} \supset A[\mathrm{p}] \leqslant A[\mathrm{f}] \leqslant A[\mathrm{q}]) \tag{FOUND}
\end{align*}
$$

Stage 3: Reduce the Middle Part (6/6)

- The Resulting Program:

```
r:=A[f];i:=m;j:=n
while i\leqslantj do
    "increase i and decrease j"
if f\leqslantj then n:= j
else if i\leqslantf then m:= i
else go to L
```

Stage 4: Increase i and Decrease $\mathfrak{j}(1 / 4)$

- Increase i
while $A[i]<r$ do $i:=i+1$
- Check the i-inv.

$$
A[i]<r \wedge i \text {-inv. } \supset i \text {-inv. }[i+1 / i]
$$

Specifically,

$$
\begin{gathered}
A[i]<r \quad \wedge \mathfrak{m} \leqslant i \quad \wedge \forall p(1 \leqslant p<i \supset A[p] \leqslant r) \\
\supset m \leqslant i+1 \quad \wedge \forall p(1 \leqslant p<i+1 \supset A[p] \leqslant r) \quad(L e m m a 8)
\end{gathered}
$$

Stage 4: Increase i and Decrease $\mathfrak{j}(2 / 4)$

- Decrease j
while $\mathrm{r}<\mathrm{A}[\mathrm{j}]$ do $\mathrm{j}:=\mathfrak{j}-1$
- Check the j-inv.

$$
\mathrm{r}<\mathrm{A}[\mathrm{j}] \wedge \mathrm{j} \text {-inv. } \supset \mathrm{j} \text {-inv. }[\mathrm{j}-1 / \mathrm{j}]
$$

Specifically,

$$
\begin{aligned}
r<A[j] & \wedge j \leqslant n \wedge \forall q(j<q \leqslant N \supset r \leqslant A[q]) \\
\supset \mathfrak{j}-1 \leqslant n & \wedge \forall q(j-1<q \leqslant N \supset r \leqslant A[q]) \quad \text { (Lemma } 9)
\end{aligned}
$$

Stage 4: Increase \mathfrak{i} and Decrease $\mathfrak{j}(3 / 4)$

- On termination of the loops,

$$
A[j] \leqslant r \leqslant A[i]
$$

- If i and j have not crossed over $(i \leqslant j), A[i]$ and $A[j]$ should be exchanged
- That means:

if $i \leqslant j$ then

"exchange $\mathcal{A}[i]$ and $A[j] "$

Stage 4: Increase i and Decrease $j(4 / 4)$

- The Resulting Program:
while $A[i]<r$ do $i:=\mathfrak{i}+1$
while $r<A[j]$ do $\mathfrak{j}:=\mathfrak{j}-1$
if $\mathfrak{i} \leqslant \mathfrak{j}$ then
"exchange $A[i]$ and $A[j]$ "

Stage 5: Exchange $A[i]$ and $A[j](1 / 3)$

- The code for the exchange:

$$
w:=A[i] ; A[i]:=A[j] ; A[j]:=w
$$

- Let A^{\prime} stands for the array A after exchange, then

$$
\begin{aligned}
A^{\prime}[i]=A[j] & \wedge A^{\prime}[j]=A[i] \wedge \\
& \forall k\left(1 \leqslant k \leqslant N \wedge k \neq i \wedge k \neq j \wedge A^{\prime}[k]=A[k]\right)
\end{aligned}
$$

Stage 5: Exchange $A[i]$ and $A[j](2 / 3)$

- Checking the i-inv.: $i \leqslant j \wedge i-i n v . ~ \supset i-i n v .\left[A^{\prime} / A\right]$ i.e:

$$
\begin{aligned}
& m \leqslant i \leqslant j \quad \wedge \forall p(1 \leqslant p<i \supset A[p] \leqslant r) \\
& \supset \forall p\left(1 \leqslant p<i \supset A^{\prime}[p] \leqslant r\right)
\end{aligned}
$$

(Lemma 10)

- Checking the \mathfrak{j}-inv.: $\mathfrak{i} \leqslant \mathfrak{j} \wedge$ j-inv. $\supset \mathfrak{j}$-inv. $\left[A^{\prime} / A\right]$ i.e:

$$
\begin{aligned}
& \mathrm{m} \leqslant \mathrm{j} \leqslant \mathrm{n} \quad \wedge \quad \forall \mathrm{q}(\mathrm{j}<\mathrm{q} \leqslant \mathrm{~N} \supset \mathrm{r} \leqslant A[\mathrm{q}]) \\
& \supset \forall \mathrm{q}\left(\mathrm{j}<\mathrm{q} \leqslant \mathrm{~N} \supset \mathrm{r} \leqslant A^{\prime}[\mathrm{q}]\right)
\end{aligned}
$$

Stage 5: Exchange $A[i]$ and $A[j](3 / 3)$

- Checking the m-inv.: $i \leqslant j \wedge m$-inv. $\supset m$-inv. $\left[\mathcal{A}^{\prime} / \mathcal{A}\right]$ i.e:

$$
\begin{align*}
& m \leqslant i \leqslant j \wedge \quad \forall p, q(1 \leqslant p<1 \leqslant q \leqslant N \supset A[p] \leqslant A[q]) \\
& \supset \forall p, q\left(1 \leqslant p<1 \leqslant q \leqslant N \supset A^{\prime}[p] \leqslant A^{\prime}[q]\right) \quad \text { Lemm } \tag{Lemma12}
\end{align*}
$$

- Checking the n-inv.: $i \leqslant j \wedge n$-inv. $\supset n$-inv. $\left[\mathcal{A}^{\prime} / \mathcal{A}\right]$ i.e:

$$
\begin{align*}
& i \leqslant j \leqslant n \quad \wedge \quad \forall p, q(1 \leqslant p \leqslant N<q \leqslant N \supset A[p] \leqslant A[q]) \\
& \supset \forall p, q\left(1 \leqslant p \leqslant N<q \leqslant N \supset A^{\prime}[p] \leqslant A^{\prime}[q]\right) \quad(L e m m \tag{Lemma13}
\end{align*}
$$

The Whole Program

```
m:= 1;n:=N
while m}<\textrm{n}\mathrm{ do
    r:=A[f];i:=m;j:= n
    while i}\leqslantj\mathrm{ do
        while }A[i]<r\mathrm{ do i}:={\mp@code{i
        while r<A[j] do j:= j-1
        if i\leqslantj then
        w:=A[i];A[i]:=A[j];A[j]:=w
    if f\leqslantj then n:=j
    else if i\leqslantf then m:= i
    else go to L
L :
```


Summary

- Axiomatic system is constructed
- The relation between the precondition the postcondition of a program fragments can be exactly constructed
- The program proof can be constructed using the axioms and rules which prescribes these relations
- Proving during Coding
- Observe the nature of data
- Formulate invariants for the data (or variables)
- Coding (altering variables)
- Proving that the invariants are preserved
- Reconsidering the earlier decisions if the assertions cannot be proved

References and ...

- References
- C. A. R. Hoare, "An Axiomatic Basis for Computer Programming,", CACM, 12(10), 1969.
- C. A. R. Hoare, "Proof of a Program: FIND,", CACM, 14(1), 1971.
- Further References
- Axiomatic Semantics Section of Various Programming Language Textbook
-H. R. Nielson and F. Nielson, Semantics with Applications: A Formal Introduction, John Wiley \& Sons, 1992.
- D. Gries, The Science of Programming, Springer, 1981.

