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WOLFGANG BALZER AND RICHARD MATTESSICH

AN AXIOMA TIC BASIS OF ACCOUNTING:

A STRUCTURALIST RECONSTRUCTION

ABSTRACf. Set-theoretic axiomatizations are given for a model of accounting with

double c1assification, and a general core-model for accounting. The empirical status, and

"representational" role of systems of accounts, as weIl as the problem of how to assign

"correct" values to the goods accounted, are analyzed in precise terms. A net of special

laws based on the core-model is described.

Keywords: Accounting, axiomatic model, theory, theory-net, v a l u ~ t i o n - p r o b l e m .

I. INTRODUCTION

During the last few decades many attempts to axiomatize accounting

have been undertaken, but ours seems to be the first collaboration in

this area between a philosopher of science (of structuralist

background) and an accounting theorist. We hope the reconstruction

to yield a viable way of catching the essence and basic structure of

accounting as rigorously as possible; furthermore, it offers a 'successful

application' of structuralist metatheory, putting special emphasis on

the semantic relationship between empirical data and conceptual repre

sentation. Finally, a picture of this structure should afford deeper

insight into the many aspects of accounting, particularly into its

epistemological status and the structure of its physical and socio

economic dualities - of which the 'double-entry is merely a technical

consequence. And although our formalization - being primarily an

intellectual exercise - is not likely to have immediate impact on the

thinking of practicing accountants,2 its potential significance for compu

ter application and information systems theory should not be under

rated. It is no coincidence that the first attempt of mathematical

axiomatization of accounting immediately led into the field of financial

and budgetary simulation - see Mattessich (1961, 1964/79).

Theory and Decision 30: 213-243, 1991.
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Our reconstruction shows that accounting has the same overall

structure as have other empirical theories, namely the form of a

theory-net consisting of a core model and a net of specializations of

this model. As in other cases, the core model itself is empirically

empty. But the physical duality, which arises out of the transfer of a

commodity from one entity to another, as weIl as the socio-economic

dualities, which reftect either investment - ownership relations or bor

rower-Iender relations, are all empirical phenomena; they become

normative when interpreted from the point of view of accountability:

every economic output has to be empirically accouI)ted for in terms of

every corresponding economic input or vice versa - even if the latter is

to some extent consumption (e.g. intermediate consumption as 'costs'

and final consumption as 'dividends'). Thus a symmetry emerges that is

not unlike the one arising from the conservation principle of energy in

physics: all energy output is accounted for in terms of the energy

inputs - even if some energy has become useless or dissipated. Such

assumptions as 'every input equals its corresponding output' may be

considered tautological, but how much of this input (or output) is

capital formation, how much is income, how much is income distribu

tion, etc., are empirical informations. Thus it would be incorrect to

believe that the basis of accounting is purely analytical, imposing

nothing but a debit-credit tautology upon economic reality.

II. THE EVOLUTION OF FORMALIZED ACCOUNTING THEORY

"Axiomatics does not burst upon the
scene unprepared. There will have been
a vast amount of preparatory exploration
and thinking, much of it tentative and in
parts. Some will have been in mathe
matical form, some not." O. Morgen
stern (1963), p. 24.

The earliest, purely verbal attempt of formulating accounting 'post

ulates' can be found by Paton (1922). Decades later Mattessich (1957

and 1964/77)3 presented his matrix-algebraic and set-theoretical ax

iomatizations of accounting together with an application to financial
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simulation (see Mattessich, 1961 and 1964/79) which ultimately led to

the present microcomputer spreadsheet programmes available in VISI

CALC, SUPER-CALC, LOTUS 1-2-3, and other best-selling soft

ware. Since this time, many attempts to axiomatize accounting have

been undertaken in America, Argentina, Australia, Canada, England,

Germany, Italy, and" Japan: e.g. Winbom (1962), Ijiri (1965, 1967,

1975, 1979, and 1989), Kosiol (1970), Schweitzer (1970), Saito (1972,

1973) with its response by Mattessich (1973), Galassi (1978), Orbach

(1978), Tippet (1978), Carlson and Lamb (1981), Tanaka (1982),

Deguchi and Nakano (1986), Avila, Bravo and Scarano (1988),

Nehmer (1988), DePree (1989) and, above aIl, aseries of papers by

Willett (1987, 1988, 1989). To this have to be added numerous

non-mathematical formulations of accounting postulates, trom Moonitz

(1961/82), Chambers (1966), and the American Accounting Associa

tion's (1966) A Statement of Basic Accounting Theory to the more

recent search for a Conceptual Framework by the Financial Account

ing Standards Board (1976, 1978-80) of the U.S.A. - cf. also Zeff

(1982).

The differences between various axiomatic systems are primarily due

to a difference in conceptual (mathematical) apparatus and a different

choice of undefined notions. Both of these problems hold for all

axiomatie systems (whether of mathematics, accounting or any other

kind), sinee the ehoice between the many coneeptual struetures avail

able, as weIl as that of the 'primitives', are both a matter of taste. In

order to overcome this trend toward individuaJism and diversity, a

strong ineentive is required. In this paper we offer sueh an ineentive in

the form of 'epistemie structuralism' or 'neostructuralism' which has

already undertaken the axiomatization of aseries of empirical theories

in other areas.

Apart trom the more rigorous formulation made possible by means

of set-theoretieal predicates, we here do not deal with a pure but an

applied or teleologie scienee. This is manifested in the various 'inter

pretations', or in strueturaJistic lingo, in the various 'speeializations' of

our accounting theory-net, the formulation of whieh now depends on a

specification of the relevant information objeetive (e.g. physical capital

maintenance vs. financial capital maintenanee, and nominal eapital
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maintenance vs. real capital maintenance). In other words, the various

specializations, which in a pure science serve a more detailed descrip

tion, might be used in an applied science to differentiate between

different goal assumptions and their consequences. Thus ours seems to

be one of the first axiomatization attempts for an applied science. But

it must be pointed out that here only the input-output basis is

involved, and not an expansion into the many behavioral aspects

nowadays modeled i!1 finance theory or in information-economics and

the agency theory of accounting (for an overview see Mattessich,

1984/89) - these are separate areas of formalization, and their integra

tion into an axiomatic framework belongs to the development of the

'theory nets', and must be postponed - yet a partial sketch of such

networks has been presented in Mattessich (1987a).
t

BI. THE ACCOUNTING DATA BASIS

The empirical events represented by accounting since prehistoric and

ancient times
4

are based on data about quantities and values of

economic objects, here called e-objects (physical assets as weil as

ownership claims and debt claims) which are transferred between and

within 'holders' hE H who may engage in such economic activities as

buying and selling, producing, consuming and distributing goods or

services, owing or owning debts, (i.e. lending or borrowing funds),

investing in equities, controlling, recording and keeping track of assets,

etc. The set 0 of all economic objects, e-objects, 0 E 0, is envisioned

to be partitioned into a collection K of kinds of objects k E K, each

kind being a set k ~ 0 of e-objects. Each e-object has to be envisaged

as a concrete manifestation with adefinite quantity (or even value).

The e-objects of some kinds have natural, discrete units, of others are

continuous, and of some are 'in between'. We will not address the

problem of the choice of a unit, and its predominantly conventional

nature here. In the standard literature about measurement
5

this prob

lem is solved by showing that different scales introduced with respect

to different units are equivalent in a precise sense. Thus it would be

possible to use equivalence classes to get rid of units altogether.

However, equivalence classes are mostly handled in terms of their

representatives; the use of equivalence classes in the present paper
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would only introduce additional complications. As mentioned above,

our term 'e-objects' comprises not only commodities (inventory, ma

chinery, buildings, etc.) but also such 'sodal' notions as debts (ac

counts receivable, payables, bonds, etc.) a ~ weIl as all aspects of

ownership claims (investment in stocks, owner's equity, etc.). The

three sets introduced above describe a kind of state (h, 0, k) with

hE H, 0 E 0, and k E K. In state (h, 0, k), holder h holds (owns or

owes or stores or controls, etc.) 0 numbers or units (or $-value) of

e-objects of kind k - hence 0 is a quantitative expression in the

broadest sense.

Dl: S is a state-space for accounting if there exist H, 0, K such that

S = H x 0 x K, and

(1) Hand 0 are finite, non-empty sets, and disjoint.

(2) K is a partition6 of O.

The main data of accounting concems economic transactions (we

denote by ET the set of all economic transactions) or e-transactions, of

which two major kinds ought to be distinguished: (1) transactions of

physical reality (e.g. transfer of inventory from one place or owner to

another - whether for production, distribution or consumption pur

poses); and (2) transactions of social reality (e.g. the creation or

termination of a debt claim or of an ownership claim). We may regard

an e-transaction as the transfer or conversion of an e-object 0 of kind k

held by holder hat time t, into an object 0', of kind k' held by h'. For

this we write

(t, h, 0, k, h', 0', k') E ET .

An exchange (or exchange transaction) has to be expressed by two

e-transactions.
7

An accounting transaction or a-transaction, must not be confused

with an economic or e-transaction. First of all , in contrast to an

e-transaction, an a-transaction is merely a description and belongs to

the realm of pure concepts; and secondly, it may describe either a

single e-transaction or, more frequently, an exchange or similar combi-
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nation of two e-transactions.
8

In the case of a composite accounting

transaction (e.g. the sale of finished goods, perhaps different types of

goods, partly against cash, partly against a debt claim), there may be

more than one entry on either side (i.e. either on the debt or input

side or on the credit or output side or on both).

lf we introduce a .set T of time instants, an e-transaction

(t, h, 0, k, h', 0', k')

may be considered as an element of

TxSxS

where S is astate space (s ES) as defined in D1 above. If the set of all

e-transactions of a given system is denoted by ET we may write:

ETk T x S x S.

By introducing an ordering relation -< for points of time, we offer

our definition of an accounting data system (ADS) as foUows:

D2: x is an accounting data system (x E ADS) iff there exist T, -<, S,

ET, and H, 0, K such that x = (T, -<, S, ET) and

(1) ( T, -<) is a finite linear ordering
9

(2) S = H x 0 x K is astate space for accounting (see Dl)

(3) ET k T x S x S

(4) for aU tE T: ET, restricted
lO

to t, is a one-one relation on

S.

(5) for all tE T and all sES: either there is s' E S such that

(t,s,s')EET or there is s'ES such that (t,s',s)EET.

Assumption D2-4 intuitively conveys that the two states involved in

an e-transaction correspond with each other in a unique way. lf state s

(h holds 0 of k) occurs in an e-transaction, then there is exactly one
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corresponding state s' which together with s (at time t) forms the

e-transaction. In other words, at some instance t it cannot happen that

two e-transactions take place involving one state s, on one side, but

two different states, on the other side. 02-5 requires that S be chosen

minimally with respect to ET. In an e-transaction astate s cannot

occur without its corresponding state s'. As indicated above, e-transac

tions may be modelIed or described in an accounting system by means

of a-transactions. We will first discuss the most important case of such

a system, an accounting system with double-classification.

IV. ACCOUNTS, ACCOUNTABILITY, AND

DOUBLE-CLASSIFICATION

The term 'account' has several meanings, but b a ~ i c a l l y it conveys a list

of numbers (positive or negative) to be used by a specific (accounting)

entity which aggregates these numbers such that at any point of time

(i.e. at the end of a stipulated accounting period or arbitrarily chosen

sub-period) a unique number, called the balance (of the pertinent

account, accumulated since the beginning of period Pn) can be de

termined.
lI

A formal explication of this notion will consist in specifying

the various items involved (time, list of numbers, balance) and specify

ing their relations. The 'inner structure' of an account obtained in this

way will be expressed in the form of a set-theoretic structure in D4

below.
12

The development of an account is rather trivial: new numbers

may accrue to the list at each point of time. The points and periods of

time are given by the physical and sodal reality of e-transactions to be

represented through the pertinent accounting system, i.e. by some

underlying ADS and the pertinent accoun/ itself.

Tbe balance or number assigned to this account at a specific time

point is usually expressed in a legal tender (e.g. $, !, DM) and

represents the monetary book value of this account. Since real systems

can distinguish only finite numbers of points and periods of time, we

may here safely work with finite sets. An account thus requires first of

all , a set of time points T = {/o, tl' ... , /n} and a set of periods

P = {Pt, Pz' ... , Pn} such that:

(i) /0 is the beginning of the accounting period Pn and usually of

all sub-periods PI' Pz' ... , Pn;
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(ii) t l is the end point of sub-period PI' t2 the end point of

sub-periods P2, etc. and tn the end point of the (total)

accounting period Pn'

(iii) Pn is therefore a (total) accounting period (usually, but not

necessarily, one year) beginning at time to (often, but not

necessarily, January 1) and ending at time tn (often De

cember 31).- Usually an accounting system continues over

several accounting periods.

In accounting a 'time point' is usually a day (hence actually a short

period), while, a 'period' is usually one or several month(s), or

quarters (sub-periods), or a year (customarily addressed as a total
~

period) . When accumulative sub-periods (first quarter, first two quar-

ters, first three quarters) are compared with each other, it is crucial

that the beginning point is always the same (e.g. to)' Tbe points of time

are linearly ordered by a sequence relation

The periods may then be defined as intervals in form of pairs of

instants:

and the sequence relation may be used to define various concepts of

comparison for periods <. For instance, period P;j is later than period

Pr. iff t; < tr, and P;j is longer than Pr. iff the number of points of time

between tr and t. is smaller than the number between t; and t
j

(this

assurnes an interpretation of 'points of time' as 'short unit periods' in

accordance with accounting practice).

Tbough aperiod, in accounting, is at least as important as a point of

time, we will (for reasons of conceptual economy) treat only the time

point, but not the period, as an independent or primitive notion. Since

periods can be explicitly defined as indicated, nothing is lost if they are

treated as defined notions. Note that under a natural interpretation our

points of time refer to extended events, like days.
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Next, a mapping c is used to represent the (finite) list of numbers

(entries) in the account. Formally such a list is a mapping from a finite

segment of the natural numbers Nn = {I, ... , n} into a set of num

bers. We take the set R of rational numbers as the range of values for

c; cU) = a is read as 'a is the ith entry in the account'. In order to

indicate the point of time (for the date at which an entry is made), we

use a function 5 assigning a point of time to each index i of an entry

a = cU). Formally, 5 IIl;aps the indices of N n into T (D4-3 below). The

connection between entries and their dates is then given by reading the

two equations a = cU), 5(i) = t from left to right. Note that at a given

point of time several transactions may be performed simultaneously,

and consequently several entries may bear the same date in an

account.

Finally, and most importantly, each account has 8 balance (which,

however, may be zero). The balance of account a at time t may be

defined as the sum of all its entries that occurred in the time span from

to to t. For reasons to be seen below, we will treat the notion of

balance as a primitive (instead of defined) notion, and express its

definition as a special axiom. That is to say, we introduce a primitive

function BQ' the balance of account a, which maps points of time into

numbers (D4-4). By using the 'time scale' 5, we can determine those

entries in the list c which have a date smaller than or equal ( ~ ) to

some given tE T, i.e. the set of entries of a = a i = cU) for which

5(i) ~ t. By summing up these entries we obtain the common definition

for balance at t (D4-6). For the sake of convenience we introduce the

following notational conventions:

D3: (a) Let (T, <::) be a finite, linear ordering. By ~ we abbreviate

the relation on T, defined by a ~ b iff (a <:: b or a = b), for all a, bE T.

By towe denote the minimal element of Tunder <::. If t E T is different

from to, we denote by t - 1 the maximal t* E T such that t* <:: t.

(b) By N and Nn we denote the set of natural numbers, and natural

numbers less or equal than n respectively; and by Rand R o the set of

rational numbers and non-zero rational numbers, respectively.

(c) By 1Ti we denote the projection of vector (Xi' ••• , x n ) on its ith

component, i.e. 1Ti ( (Xl' ... ,Xn » = Xi'
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D4: a is an account iff there exist T, n, R, -<, c, ß, Ba such that

a= (T, n, R, -<, c, 5, Ba> and

(1) n E N and (T, -<) is a finite linear ordering

(2) c: N n ~ R o

(3) ß: N n ~ T

(4) Ba: T~R

(5) for all i, jE Nn : i ~ j iff 5(i) ~ 8(j)

(6) for all tE T: Ba(t) = L c(i)
8(;)"'"

D4-5 states that the two orderings, ~ in the natural numbers, and ~

among time points, fit together under 5. The definition of Ba in D4-6 is
. I . 13Just one among many a ternatlves.

A single account is a rather simple device for merely describing

quantitatively and/or in monetary terms aseries of economic events

and their resulting monetary balance. Only the combination of several

accounts to a system gives rise to a more interesting structure, particu

larly under the aspect of double-entry or, more precisely, double

classification. Let us consider a simple, real-life situation: a firm (entity

e), in recording its transactions, uses the set of accounts A e =

{ai> az, aJ }, a; = (T;, nj> R, <i' Ci' 5;, B(a;, . », consisting of three

accounts: Inventory (al)' Cash (az), and Owner's Equity (a 3 ). Sup

pose at time t its economic state consists merely of an inventory worth

1,000 monetary units (we shall use the $ as monetary unit or omit it

where any misunderstanding is excluded), but no cash. The totality of

its accounts' balances (i.e. what accountants call the 'trial balance'

TB(t) = (B(al> t), ... , B(a3 , t» at twill then be: B(al , t) = +1,000,

B(az, t) =0, B(a 3 , t) = -1,000. In terms of c we have c l (l) = 1,000,

c3 (1) = -1,000 while cz(1) is as yet undefined (0 is not entered, except

as a balance). The positive figure +1,000 of inventory indicates in

which asset the capital is invested (inventory is here the only capital

good), the negative figure -1,000 indicates the source of this capital
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(here the only source is owner's equity, i.e. so far, capital derives only

from the owner, but not yet from creditors).

To render plausible the relationship between the purely convention

al use of the 'negative' (Cr: credit entry) and the 'positive' (Dr: debit

entry), one may imagine the investment activity of the owner: e.g. he

invests $1,000 (output from hirn, hence negative) into his firm as

inventory (where it is an input, hence positive).

o
Owner

(output)

$1000 inventory
>

Fig. 1.

+
o

Firm

(input)

Thus the owner's equity account held in the set of accounts A e of

firm or entity e reflects the output from the owner (which is his social

contribution or ownership claim) while the inventory account reflects

the physical input of some asset (e.g. inventory) by the owner.

If the firm seIls its total inventory for $1,500 at time t + 1, its

accountant will proceed as folIows: First, enter $1,500 positively in

cash account a2 , hence c2 (1) = 1,500 and B(a2 , t + 1) = B(a2 , t) +
1,500 = (0 + 15(0); second, there is an output (hence negative) of

inventory from the firm at cost value $1,000, hence c)(2) = -1,000 and

B(a j , t + 1) = B(al' t) - 1,000 = (1,000 - 1,(00) = 0, but simultaneous

ly one has to recognize that, due to this profitable sale (we assurne that

no other costs are involved), the ownership claim on the entity has

increased by $500, and since the owner's claim is recorded negatively

(Le. as a credit entry), c3(2) = -500 and the balance is B(a3 , t + 1) =
B(a3 , t)-500= (-1,000-500) = -1,500. Of course, alternative pro

cedures can be imagined. lustification for the one just described can be

given in terms of the notion of accountability.)4 Any set of debit values

is always accountable in terms of its corresponding set of credit values

and vice versa. But at this stage we do not so much focus on the

normative background as on the underlying logical structure.

As we have seen, the point of double-classification is that each

a-transaction is represented by two entries of opposite sign at least in

two different accounts 0/ the same firm. With few exceptions (e.g. in
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constructing consolidated financial statements) accountants concentrate

on a single entity at a time. However, e-transactions often involve

different entities. In order to obtain an adequate representation of

accounting data systems we have to consider systems of accounts

distributed over different entities. We introduce the notion of an

account belonging to entity e which we abbreviate by b(a, e). If A and

E denote a set of accounts and a set of entities respectively, we may

take b as a binary relätion bC A x E. In analogy to 02 we introduce a

state-space C(e) for a set of accounts of an entity e (05-c below), and

similarly for a set of accounts A, used by all members of a set of

entities E (e E E) - see 05-b. Intuitively astate (a, i, a) in C(e) as

weil as astate (e, a, i, a) in C(E, A) conveys the information that in

account a, belonging to entity e, the ith entry is a (or, put differently,

if a = (T, n, ... ,c, ... ) then i ~ n and c(i) = a).

D5: (a) If a = (T, n, . .. ,Ba> is an account, we write Ta, n
a
, ... ,Sa,

Ba to denote the components of a. Instead of Ba(t) we also write

B(a, t).

(b) If Ais a set of accounts, E a set of entities, and b C A xE, then

the state-space of A with respect to E (and b), C(E, A), is defined by

C(E, A) = {(e, a, i, a)leE E 1\ a E A 1\ b(a, e) 1\ i ~ n
a

1\ a = ca(i)}.

(c) Let A, E, and b be as in (b) and e E E. Tbe state space of e (in A

with respect to b), C(e), is defined by C(e)={(a,i,a) IaEAI\

b(a, e) 1\ i ~ n a 1\ a = ca(i)}. If d: C(E, A ) ~ C(E, A), then de:

C(e)~ C(e) is defined by de(a, i, a) = d(e, a, i, a).

To express double classification, we use a function d mapping states

into 'corresponding' states such that the d-image of state s is that state

which constitutes the counter-entry (bearing the same amount with the

opposite sign). We require that in the domain of accounts of each

entity e the states are mapped onto each other bijectively 06-7. Tbis

means that to each 'entry' (state) in some account of e there corre

sponds exactly one counter-entry in some other account of e. In 06-8

below, we state the requirements typical for double classification. Tbe

two accounts involved have to be different (06-8.1), the points of time

associated with the entries a, a' are the same (06-8.2), and the

numerical entries on both sides are the same apart from the opposite

sign (06-8.3).
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D6: x is a double c!assification accounting system (x E AS2) iff there

exist A, E, T, <, b, d such that x = (A, E, T, <, b, d) and

(1) A is a finite set of accounts.

(2) E is a finite, non-empty set.

(3) ( T, <) is a finite, linear ordering.

(4) bkAxE.·

(5) d: C(E, A ) ~ C(E, A) - see D5-b.

(6) for an a E A: (r, <a) = (T, <)

(7) for an e E E, the mapping d.: C ( e ) ~ C(e) is bijective - see

D5c

(8) for an e E E and all a, a', i, j, a, a' iff d. (a, i, a) =
(a', j, a /) then

(8.1) a:l' a', (8.2) Sa(i) = Sa'(j), and (8.3) a = -a'.

The reader acquainted with accounting may miss the central require

ment of 'accounting equilibrium' in D6, namely the stipulation that in

each entity e, the sum total of all balances is zero: (1) r.b(a.,,)B(a, t) =
O. But as already mentioned, the point of double dassification is that

this equilibrium is a consequnce of D6. This is expressed in:

THEOREM 1. Let x = {A, ... , d} E AS2, e E E and tE T, then

r . b ( a . , , ~ a , t) = O.

The proofs of this and the following theorems are given in the

Appendix. The converse, namely that r.B(a, t) = 0 implies D6-7 and

D6-8, does not hold, which may be seen from a counter example. It

ought to be stressed that D6 represents only a special dass of

accounting systems, namely those with double-dassification. In the

general case (to be treated in Section VI), the content of Tl would

have to be used as a central axiom. In the present case there is a strong

connection between the balances Ba occurring in different accounts

and the 'correspondence' function d" of states ('entries'). For each

entry in a, the function d. precisely locates the counter entry in the
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corresponding account, and by summing up all those counter entries

we obtain, of course, the same balance but with reverse sign. This we

may express in

THEOREM 2. Let x = (A, . .. , d) E AS2, e E E, tE T such that

b(a, e). Then

B(a, t) = -2: 7T3(de(a, i, ca(i)))
ßa(i)",at

Another theorem makes more explicit the accountability principle

which stipulates that all inputs have to be accounted for in terms of all

output (or vice versa). One of us has previously shown that this
~

principle has elose affinity with the conservation principles of physics

(which mayaiso be regarded as an accountability principle).15

THEOREM 3. Formal Accountability Principle, Version (a): Let x =

(A, . .. , d) E AS2, and e E E. For tE T let SE(e, t) be the sum of all

entries, ca(i) such that b(a, e) /\ 8
a
(i) = t. Then for all t, t' E T and all

e E E: SE(e, t) = SE(e, t')

Formal Accountability Principle, Version (b): Let x, e and t be as in

(a). Define SE(e, t, +) and SE(e, t, -) as the sum ofall ca(i) such that

b(a, e) /\ 8
a(i) = t /\ ca(i) > 0, and the sum of all ca(i) such that

_ b(a, e) /\ 8
a
(i) = t /\ ca(i) < 0, respectively, then S E ( ~ , t, +) =

SE(e, t, -).e

V. REPRESENTATION AND THE PROBLEM OF VALUE

Systems of accounts serve to maintain a chronological record of past

(and in "budgeting" even expected) economic events, and represent

the pertinent data that constitute an economic transaction system. We

are now in a position to describe in detail how this works. The

e-objects are represented in the accounts by their monetary value; the

way the e-objects are distributed within a specific entity is represented

by a corresponding elassification of accounts. In other words, to a

given ADS, x = (T, <, H x 0 x K, ET), we assign:
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(i) a set A of accounts such that to each kind of e-objects

k E K there corresponds at least one account a E A;

(ii) a set E of entities, let us assurne , one for each holder

hEH, and

(iii) to any two different e-objects 0, 0 ' occurring in an e

transaction of ET, two entries in A.

More precisely, we define an accounting morphism () from some given

x E ADS to some given y E AS2 as folIows:

D7: (a) Let x = (T, <, H x 0 x K, ET) E ADS and y =

(A, E, T', <', b, d) E AS2 such that T= T' anti< = <'. 8 is an

accounting morphism from x to y iff there exist q>, 1/1, and v such that:

(1) 8: ET ~ (T x C(E, A) x C(E, A»

(2) q>: H ~ E is bijective

(3) I / I : A ~ K

(4) v: O ~ R o

(5) for all tE T: 8, restricted to t, is one-one

(6) for all t, t ', h, h', 0, 0', e, e', a, a', i, j, a, ß: if

8(t, h, 0, k, h', 0 ' , k') = (t', e, a, i, a, e', a', j, ß), then:

(6.1) t=t'

(6.2) q>(h)=e and cp(h')=e'

(6.3) I/I(a) = k and I/I(a ' ) = k'

(6.4) v(o) = a and v(o') = ß

(6.5) b(a, e) and b(a', e')

(6.6) i ~ na, j ~ na' and l)a(i) = l)a'(j) = t

(6.7) ca(i)=a and ca'(j)=ß

(b) We say that y E AS2 represents x E ADS iff there is some

accounting morphism 8 from x to y.
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In part (a) of this definition the function I/J assigns to each account a

specific kind of economic object or objects, namely the kind for which

this account is held in the pertinent entity. Usually I/J will be a

many-one function, since different accounts will be held by different

entities for the same kind of goods. We may think of E as the

collection {c,o(h) IhE H} of entities e held by some holder in H. The

accounting morphisDl () is required to operate one-one at each point of

time. To each instant t and to any two states (h, 0, k), (h', 0', k')

forming an e-transaction, () assigns a tripie consisting of the same

instant (D7a-6.1) and two states s = (e, a, i, a) and s' =
(e', a', j, ß). By D7-6.2 the corresponding holders and entities h, h'

and e, e' are mapped onto each other by means ~f c,o; and by D7a-6.3

the accounts a, a' are mapped onto their corresponding kinds of goods

k, k' by I/J respectively. Function v now assigns explicitly to each object

or quantity in x a number v(o), the value of o. By D7a-6.4 the

numbers a, ß occurring on the right-hand side of () are required to be

just the values of 0 and 0' respectively. D7a-6.5 to D7a-6.7 say that s,

s', are states as defined in D5. Finally, D7a-6.6 expresses the identity

of tbe instants pertaining to the two entries a and ß in a and a'

respectively. Note that we assurne the time-orderings in x and y to be

the same, which (by D6-6) implies that all accounts of y also have the

same time-ordering.

Tbe question whether any system of e-transactions (i.e. anyaccount

ing data system ADS) can be represented through a double classifica

tional accounting system (AS2) is answered in the affirmative by the

following theorem.

THEOREM 4. For each xE ADS there exists some y E AS2 such that

y represents x.

Tbe second, more difficult question, is: how many different double

classificational accounting systems can be constructed representing one

given x E ADS, how can these alternative systems be transformed into

each other, and how can they be compared with each other regarding

cost-efficiency? It is one of the major empirical problems of accounting

to determine relevant values, i.e., the numbers v(o), in a cost-efficient

way for representing economic transactions and their results. Innumer

able decisions (from resource allocation, ownership and income de-
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termination, debt control, the monitoring of stewardship, liquidity and

bankruptcy issues, etc. to taxation) depend on those values. But as the

items A, E, T, <, b, d are all determined more or less directly by the

ADS, the only items not yet determined are the numerical (or $)
values to be written into the accounts and financial statements. And

this we address as "the valuation problem to be referred to shortly in

Section VII. Since the internal structure of accounting data systems

and the requirements on representation do not narrow down the range

of values in any interesting way, we can prove the following theorem:

THEOREM 5. Let xE ADS, y E AS2 be suc~ that y represents x.

Change the v-values used in the accounting morphism to y as folIows:

to each 0 E 0 such that, for some t, h, k, h', k', 0',

(t, h, 0, k, h', 0', k') E ET, replace the value ofv(o) by some arbitrary

positive number v*(o) and -v(o') by -v*(J). Then there is some y' ~

and some representation extending v* which is an accounting morphism

of x into y'.

In other words, the only restriction imposed on the v* values by our

axioms is about 'corresponding pairs': if one v-value is chosen, the

'corresponding' value has to be fixed accordingly. But the choice of

one of the two is not restricted at all.

We can easily transform the prevous definitions into the format

of what is called a theory-element in structuralist meta-theory.16 We

may define an accounting model to be a 'mixed' structure

(T, <, H, 0, K, ET, A, E, b, d, (J) such that x= (T, <, H x 0 x

K, ET) E ADS, y = (-A, T, <, 13, d) E AS2 and (J is an accounting ~

morphism from x into y. If this use of the term 'model' is acceptable

(despite the preference of one of us for restricting this term to

conceptual, i.e. 'representational', items only) then a potential model is

a structure of the same type but satisfying only 02, 04-1 to 04-4,

06-1 to 06-4, and 07a-1 to 07a-4. The 'representing' components

A, E, d, (J in such a model may then be regarded as theoretical terms,

and by omitting them from potential models one obtains partial

potential models that correspond to our ADSs. If we assurne that

certain concrete ADSs are delineated to form the basis for intended

applications of the present formalism, then we have specified all items

making up a theory-element (neglecting various constraints and links).

JP 4A,E,T,-J.,b/e.t,>
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According to the structuralist account, the empirical claim associated

with a theory-element is such that each intended application can be

augmented by theoretical terms so that the resulting structure is a

model. In our case this would be the claim that each intended ADS i.e.

x = (T, <, H x 0 x K, ET) can be made to correspond to a model by

means of suitable A, E, b, d, 8. That is, to each intended ADS we can

find a representing system of accounts.

Summarizing this discussion we may say that the basis of accounting

is representable in die form of an empirical theory; but because of its

teleological nature (i.e. its purpose orientation) it has not so much a

positive but rather a normative-empirical content. This feature (as weIl

as its historical origin) is shared with some mathematical and other

conditionally normative theories (e.g. in operations research and

economics). Roughly, the difference between theories of the latter

type and theories in the natural sciences is this: in theories like

accounting, the applicability of the non-theoretical conceptual ap

paratus to a real system or situation already entails that the system

comes out as a proper model of the theory. In other words, the

theoretical models add very little to what is imposed on a given

situation by applying the non-theoretical concepts to it. This is the

reason why 'basic accounting' and other teleological theories, seem to

hold a position in between mathematical theories and positive empiri

cal theories.

To shortly illustrate further aspects, we refer to the example of Sec.

IV of a firm using the accounts a
1

(Inventory), az (Cash) and a
3

(Owners' Equity) with balances B(a p t + 1) = 0, B(az, t + 1) = 1,500,

B(a3 , t + 1) = -1,500. Suppose at time t + 2 the firm might borrow

cash in the amount of $2,000 and at t + 3 buy inventory for $1,300. In

this case we have to open first a new account, called 'creditors' or

'payables' a4 and credit the borrowed amount to this account, which

then will show a balance B(a4 , t + 2) = -2,000 - its balance is 'nega

tive' since payables is a credit account like owner's equity from which

an output is derived for an input to the firm:

$2,000 +
0----""1»1>------00

payables cash
(output) (input)

Fig.2.
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Tbe counter entry will be an equivalent positive (Or) amount to the

cash account, the balance of which will be B(a2 , t + 2) = B(a
2

, t + 1) +
2,000 = 1,500 + 2,000 = 3,500. Then we have to record the purchase of

inventory, hence a positive (Or) entry of $1,300 to the inventory

account, the balance of which will be B(a 1 , t + 3) = B(al' t + 2) +
1,300 = B(al' t + 1) + 1,300 = 0 + 1,300 = +1,300, while its counter

entry is in the cash account, the balance of which will be B(a2 , t + 2) 

1,300 = 3,500 - 1,3OQ = 2,200. Since the transaction of borrowing (e.g.

$2,000) is here quite separate from that of buying inventory, several

time points and accounts are involved. Even more complex situations

arise in cases where the cost of fixed assets, like machinery (e.g.

account as), have to be depreciated, i.e. allocated over several ac

counting periods (including present and future periods).
f

VI. GENERALIZED SYSTEMS OF ACCOUNTS

Oouble classification accounting systems form only a special case of

accounting systems - though by far the most important one. In order

to achieve a completely general characterization we may essentially use

the formalism of 06 but generalize the axioms.
17

Accordingly, we

generalize the function d used in 06, and replace d by a relation g

relating whole sets of states with each other. Tbe particular description

of two such sets of states (sets of 'entries') is obtained from, and

corresponds to, a particular procedure in the sense used before. We

therefore call g a generalized procedure. Formally, g will be a relation

between sets of states, i.e. a relation on the power set Po of C(E, A):

g ~ Po(C(E, A» x Po(C(E,A»

Tbe points of time associated with different entries occurring in g

now may be different, and the requirement of one-one correspond

ence between two single entries under d within one firm (D6-7) has to

be dropped. Instead, we require that all states occurring in sets related

by g refer to the same entity (08-7 below). Furthermore, the charac

terization of double classification (06-8), which is just one special

procedure, no longer needs to be maintained in a more general

presentation. Instead, we require the general principle of balance or

equilibrium within each entity e (see 08-8 below). We are then led to

the following definition:
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D8: x is an accounting system (in general) iff there exist A, E, T, <,
b, g such that x = (A, E, T, <, b, g) and

(1) A is a finite set of accounts

(2) E is a non-empty, finite set

(3) (T, <) is a finite linear ordering

(4) b ~ A x E

(5) g ~ Po(C(E, A» x Po(C(E,A»

(6) for all aE A: (r, <a) = (T, <)

(7) for all X, Y, zp ... ,Z4' ep ... , e4 : if g(X, Y), zp Z2 EX,

Z3' Z4 E Yand Zj = (ei"') for i ~ 4 then e j = ej , for all i,

j ~ 4

(8) for all e E E and tE T 2: B(a, t) = 0 .
b(a,e)

The systems of data represented by such systems of accounts are the

same as before, and so is the concept of an accounting morphism.

The situation with respect to empiricity is unchanged. We can

formulate analoga to Theorems 4 and 5 stating that each ADS can be

represented by some system of accounts, and that within each cluster

of g-related values, one value may be changed arbitrarily and the

others adjusted so that the result still is a system of accounts represent

ing the same system of data.

By putting together the previous definitions we obtain the core

model for accounting. We speak of a core model because it does not

yet contain accounting in all its specializations - specializations corre

spond to accounting interpretations; for the latter see Mattessich

(1972). The model provides a core from which further specifications of

accounting can be obtained. The picture we have here in mind is that

of a theory-net consisting of a core element and various specializations

of the core. Recent metatheoretical studies suggest that the form of

such nets (in contrast to an 'unstructured' set ofaxioms) is appropriate

to represent empirical theories.
18

D9: x is a core model 0/ accounting iff there exist T, <, H, 0, K, ET,

A, E, b, g and e such that x = (T, <, H, 0, K, ET, A, E,

b, g, 0) and
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(1) (T, <, H x 0 x K, ET) is an ADS

(2) (A, E, T, <, b, g) is an accounting system

(3) 8 is an accounting morphism from (T, <, H x 0 x K, ET)

to (A, E, T, t, b, g).
~

YII. SPECIALIZATIONS

We close this paper by considering some specializations of the core

model described in Section VI. For reasons of space the different

specializations can only be outlined in a rather sketchy way. A full

treatment has to be reserved for future work. We claim that all special

methods and procedures used by accountants can be ~ b t a i n e d from the

core model by appropriate specializations. By putting together our

core model and all those specializations one would obtain a 'theory

net' of nearly the same type as those extracted from theories of other

sciences.

The specializations proceed mostly along one of three lines. One

type of speciaIization works by putting further requirements on the

procedure-relation g in such a way that special procedures of account

ing can be characterized in detail. The second kind locks in at the

accounting morphism 8, and the value function v. These speciaIizations

mainly consist of methods of how to determine or adjust values (e.g. of

durable equipment over time). A third line of specialization consists in

requiring a certain minimal (or other more complicated) structure of

special accounts. Let us look at these three branches in turn.

We start by indicating how D8 has to be specialized in order to

obtain double classification. This is done in three steps. First, the

procedure g is required to operate on singletons: g({( e, a, i, oe)} =
{( e', a', j, ß)}) which of course correspond precisely to the states

used in D6. Second, g restricted to each e is required to be bijective on

the set of such singletons, and third, double classification is expressed

as in D6-8, i.e., if g({(e,a,i, oe)})={(e,a',j,ß)}, then a ~ a ' ,

Sa(i) = Sa'(j) and oe = -ß. It may be noted that this kind of 'speciaIi

zation' is somewhat more general than the standard notion.19

A second specialization is obtained by describing the procedure of

depreciation accounting. As an example, consider the purchase (cash)

of machinery for $10,000 with depreciation of machinery (linearly)
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over 4 years ($2,500 each year). Tbe corresponding procedure in

accounting terminology may be represented like this:

Pr.
al. - - I Kachin. 10.000

lal.Sh.
Cash

Kach ner
10.000 Papr. 2,500 

lal.Sh. 7.500

2,500 -+

Profit 60 La..
2,500 I O.t.Dapr.2.500

D.pr.ciation
2,500 I "L- Kach.

".....,.-:-_-:Own"":'::.==-r....• .,.!it'!!igu~i~tyt...- _
- • & L . 2.500 I aa.

Bal. Sh. --
Cash
Kach.

lalancf Sh•• t
- - O.E.

7.500

By collecting the debit entries in these six accounts to yield a set of

states X and the credit entries to yield another set of states Y we may

subsurne the overall procedure under pur core model by writing

g(X, Y). Tbe relation g now might be precisely described just by going

through the above schemes and abstracting from the particular num

bers involved (4, 10,000,2,500, 7,5(0). Of course, the procedure might

be extended to future periods in which case the sets X and Y,

corresponding to the entries involved, become larger and spread over

time. Realistically, this is involved in depreciation whereby the accoun

tant may obtain information that depreciation is continued in the

following period at the same rate.

Another special procedure is given by accruaJ (and deferraJ) ac

counting. Consider the payment of wages (Dec. 27-Jan. 2) of $15,000

such that $3,000 (for Jan. 1 and 2) are deferred. The accountant's

scheme looks like this:

- - I Vag.. 15.000 Cash
"...

15,000 D.f.lI. 3,000 
•• & L. 12,000

-Ilag.. 3,000 I Ba1.Sh..t 3,000 L

Ownar'. E ui
P. 'L. 12,000 BB.
lal.Sh.

12,000
'roflt 60 La••

lIag.. 12,000 I O.t.

~ : - _ . . . l ! B a ! ! J 1 " , a n w : c J w S ! ! ! h i ! ! J ••!.Et _
Ca.h - - O.t.
n.r.lI. 3,000
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Again, the debit entries involved yjeld a set X and the credit entries a

set Y of states such that g(X, Y), and a precise generalized description

of the procedure could be extracted from the example.

The second line of specializations is given by various valuation

methods. Here, we have first the historical (acquisition) cost method.

The original amount spent for an item is used as its value (it may be

adjusted for depreciation at the end of the period, provided it is a

depreciable item like Machinery, Building, or even Accounts Receiv

able). Land or Inventory usually do not fall under regularly depreci

able items.

Second, there is the current (entry) or replacement value method

which adjusts (by specific price indices or more directly) the acquisi

tion cost such that at the end of aperiod the balance corresponds to

the replacement value (i.e. to the amount which would have to be paid

if that asset, or group of assets, in its present state were presently

acquired by the firm). SimiIar to this is the third or current exit value

method which adjusts the acquisition cost such that at the end of a

period the balance corresponds to the net amount for which the firm

could seIl this assel.

A fourth method of valuation is the general price-level adjustment or

constant dollar method which adjusts the balances of all 'non-financial'

accounts (i.e. excluding cash, receivables, payables, mortgages and

other obligations) with a general inflation/deflation index - usually at

the end of aperiod. This method is occasionally combined with the

second method.

Fifth, we mention the present value method which adjusts the

acquisition cost such that the ending balance corresponds to the

subjectively evaluated discounted future net-revenues of the respective

asset. This 'economic method' has mainly significance in finance and

managerial accounting, but has only limited use in the practice of

public financial statement presentation. Sometimes the current value

method is considered as an approximation to it.

These five valuation methods can be made precise by reference to

the value function v which is part of the accounting morphism 8.

Essentially, they bring in new features not explicitly definable in the

core model, namely the different ways in which values are determined

and adjusted. This, however, is also the case in other theory-nets, and
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is compatible with the notion of specialization appropriate for such

nets (in mechanics, for instance, Hooke's Law refers to the spring

constant which is not a primitive in the core model given by Newton's

laws). Gf course, these five methods do not exhaust all possibilities,

and sometimes combinations of them and other empirical aspects are

encountered. Gf particular importance are the various types of gains

which may arise (e ..g. operating gains versus holding gains, monetary

holding gains versus non-monetary gains, realized versus unrealized

holding gains).

Finally, a third kind of specialization requires the specification of the

types of accounts and statements needed and to be used in a particular

accounting system (these are usually found in the charts and master

charts of accounts, among which Schmalenbach's"Kontenrahmen' has

attained particular prominence) - see Mattessich (1964/77), pp. 66-68,

517.

All those methods, procedures, and hypotheses arise in the domain

of specializations of the core model; for this reason the core model

itself is a purely analytical, and in a way, 'trivial' model. But this

('trivial' core model versus 'interesting' special applications) is typical

of mature and developed theories in general. And the aim of this

paper was to bring out the details and the structure of the core model;

for it is the core model that provides the unity for the net of

specializations, and thus constitutes the prerequisite for any further

work.

APPENDIX

Prool 01 Theorem 1

Let x, e, t be given. Let A* = {al"'" am} be the set of those

accounts for which b(a, e) holds, and J = {jj, ... h} be the set of all

pairs (a, i) fOT which Sa(i) ~ t, a E A *. For any (a, i) E J, there is, by

D6-7, exactly one (a*, j) E J such that de(a, i, ca(i» = (a*, j, ca'(j»

and ca(i) = _ca'(j).

This defines a function I: J ~ J such that

(1) ca'(j) = -ca(i) whenever I(a, i) = (a', j).
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Clearly, / is bijective. Let J* k J be such that (cQU) > 0 iff (a, i) E

J*). Now consider

2: R(a, t) = 2: 2: cau)
b(a,e) b(a,e) öa(i)""

= 2: caU) = 2: ca(i)m + L ca(i).
JEJ JEJ' JEJ\J'

j~ (a,i) j~ (Q,i)

To each summation index j = (a, i) in the first sum there is exactly one

index j* = (a*, i*) such that/(a, i) = (a*, i*), and by this correspond

ence all indices of the second sum are used up. We therefore may write

the second sum in the form E(Q,i)EJ' ca'U*) which, by (1) is equal to
and f(a,i) t

~(a' ,i')

This may seem to be a complicated way of proving such a simple,

pretty selfevident, theorem; but this proof shows the minute structural

relations, not unlike the details revealed by a microscope.

Pro%f Theorem 2

For (a, i, cQU» with i)aU) "" t there exists exactly one (a*, j, a) such

that de(a, i, cau» = (a*, j, a), and by D6-8 a = 1T3(dAa, i, cau») =
-cQ(i). So R(a, t) = Eöa(i)",/(i) = -Eöa(i)",,1T3(de(a, i, cau»). •

Proof of Theorem 3

(a) Let J be the set of all pairs (a, i) with b(a, e) and i)aU) = t,

J* = {j I j = (a, i) E J /\ cau) > O}. Then, as in the proof of Theorem

1, Eb(a,e)"öa(i)~,ca(i) = E(a.i)EJCa(i) = (a,irEJ'CaU ) + (a,irEJ' - ca(i) = 0

by D6-8.2. This holds for any tE T •

(b) Is proved by the same method of splitting up the set of indices.
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Proof of Theorem 4

Let x=(T,<,HXOXK, ET)EADS. We define y=

(A, E, T', <, b, d) as folIows: T' = T, <' = <, E = H. For each

e E E, k E K we introduce two accounts aCe, k, +) and aCe, k, -), and

we define b(a(e, k, .), e) for all those. Since 0 and H (and tberefore

K) are finite, the set A of accounts tbus introduced is also finite.

Starting from some arbitrary enumeration of tbe tuples

(t, h, 0, k, h', 0', k') e: ET we define the entries of tbe accounts as

follows. For each fuple <t, ... , k') E ET we choose two positive
numbers v(o) and v(o'), and we set CQ(t,k'+)(i) = v(o), CQ(t,k'-)(i) =
-v(o), cQ(t',k"+)(i) = v(o') and CQ(t',k"-)(i) = -v(o') wbere i in each

case is the smallest natural number that has not yet been used as an

index in tbe corresponding account, and ßf(i) = t for x =
aCe, k, +), ... , aCe', k', -). We define d: C(E, A ) ~ C(E, A) by

d(e, x, i, a) = (e, y, j, - a) wbere y is aCe, k, -) if x = aCe, k, +) and

y = aCe, k, +) if x = aCe, k, -) and i, j are the corresponding minimal

indices. By construction d
t

: C(e)~ C(e) is bijective for eacb e E E,

and 06-8 is satisfied. So y = (A, E, T, <, b, d) E AS2.

For eacb x=(t,e,o,k,e',o',k')eET we define 8(x) = (t,e,

aCe, k, +), i, v(o), e', aCe', k', +), j, v(o'» wbere i, j are chosen as in

tbe construction above. Further, we define "': A ~ K by ",(a) = k if a

has the form a = aCe, k, .), and "'; H ~ E to be identity. To e-objects

o not occurring in e-transactions we assign arbitrary numbers v(o). By

construction 8, restricted to t, is one-one, and 07a-6 is satisfied. •

Proof of Theorem 5

Let x E ADS and y E AS2 be given such that y represents x, and let y*

be tbe modification of y as described in the Theorem. Clearly, D7 is

not affected by this modification. We bave to show tbat y* still satisfies,
D6. This is seen by replacing a and a' in D6-8 by v*(o) and v*(o),

respectively. Under the assumption of tbe Theorem, v*(o) = -v*(o'),

so 06-8.3 is satisfied also after tbe replacement. •
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1 W. Balzer is Professor at the Seminar for Philosophy, Logic and Epistemology of the

University of Munich, and R. Mattessich is Arthur Andersen & Co. Professor emeritus

of the Faculty of Commerce and Business Administration of the University of British
Columbia, Vancouver (Canada). The latter wishes to acknowledge support for his

contribution by the Social Sciences and Humanities Research Council of Canada. We are

also grateful to Dr. AJfred Wagenhofer, of the University of Technology of Vienna, for

reading a draft of this manuscript and making some valuable suggestions.
2 The reason for this pessimism does not lie in the limitations of the axiomatic method,

but in those of practicing aceountants. Axiomatic systems of aceounting might prove

highly useful for the creation of the Conceptual Framework - cf. Moonitz (1961/82) and

Sprouse and Moonitz (1962/82) - on which the Financial Accounting Standards Board

(FASB) of the USA has been working for over a decade. But sophisticated scientific
tools have rarely, if ever, been taken into consideration by the FASB or other

professional accounting bodies.

) For a German version, see Mattessich (1970), and a Japanese translation was

published in 1972 and 1974.
4 For details see Mattessich (1987b, 1989a,b) and Schmandt-Besserat (1982, 1988).
S Some e-objects, such as wheat, petrol, etc., are bulk goods, and their quantities are

measured on a continuous scale (at least theoretically), while the quantities of individual

goods, like apples or cars, are measured in discrete units. But the values of aIl of them
are measured in terms of a legal tender or similar 'monetary' unit. E.g. Krantz et al.

(1971).

• A panition of 0 is a collection of non-empty, disjoint subsets of 0 which, together,

exhaust all of O.

7 Thus an e-transaction is something more basic than abarter: in the latter, an e-object 0

of kind k is handed over, in quid pro quo, from one holder to another (hence h -F h', but

0= 0' and k = k'), but in a sale (exchange against money or a debt claim) a commodity

is transferred horn holder h to h' (hence h -F h') and e-object 0 (e.g. a commodity) of

kind k is exchanged against e-object 0' of kind k' (a debt claim). Whether k = k' or

k"" k' cannot be said at this stage; if 0 expresses the sales value of the seiler, and 0' the

cost value (not the resale value) of the buyer it is likely that 0 = 0'.

S For example, the double entry:

Dr: Cr:

(1) Work in Process - Material 5,000

Inventory - Material 5,000

is an a-transaction describing a single physical e-transaction, while the folIowing entry is

an a-transaction that does not correspond to a single e-transaction:
(2) Inventory - Finished Goods 8,000

Accounts Payable 8,000

The latter entry is the combination of half of an e-transaction belonging to sodal reality

(the creation of a debt in compensation of some commodity) with half of one belonging

to physical reality (our firm receiving finished goods from its supplier) - this haIf-and-half

combination iIIustrates why an a-transaction is an abstraction and lacks the reality status

of an e-transaction. For further details see Mattessich (1989a,b), pp. 11-31.
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9 I.e. < is a binary relation on T which is transitive, anti-reflexive and connected.

10 Tbe restriction of ET to t, ET n ({t} x S x S), is obtained from ET by omitting all
'parts' of ET referring to instants different from t.

11 For further details see Mattessich (1964177), pp. 452-454.

J2 For the notion of set-theoretic structure see, for example, Balzer, Moulines, and

Sneed (1987), Ch. 1.
13 But the aggregation problem must not be confused with the valuation problem. Tbe

linear aggregation in D4-6 is determined by the fact that monetary amounts, by their

very nature, possess linear aggregation. Tbis is independent from the valuation problem,

because even in accounting non-linear valuation is possible (see Mattessich 1964177, pp.

224-231) and, in an indirect way, does occur routinely (e.g. through non-linear

depreciation). Tbe present notation in D4 deliberately neglects but implies references to
entity e for which the account is kept - yet we could, of course, write a =

(T, n, R, c , ~ , B., e) and B.(t, e).
I' Cf. Mattessich (1989a), pp. 217-219 for a fUller discussion of the principle of

accountability.
IS Mattessich (1989a), pp. 217-219.

16 Cf. Balzer, Moulines, and Sneed (1987) for reference to tecfJ.nical terms used in the

following.
J1 Ijiri's (1982, 1989) triple-entry bookkeeping is a typical case of a multi-entry system,

and justifies the need for a more general formalization of accounting as presented in this

section.
18 Cf. Balzer, Moulines, and Sneed (1987), Chap. IV.
19 Precisely speaking, D6 cannot be applied here because the d function used in D6 is of

a different type than that of g. However, since neither d nor gare here involved
explicitly, D6 may be trivially adjusted to the present case.
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