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An Axiomatic Design of a Multi-Agent

Reconfigurable Mechatronic System Architecture
Amro M. Farid, Senior Member, IEEE, and Luis Ribeiro, Member, IEEE

Abstract—In recent years, the fields of reconfigurable manufac-
turing systems, holonic manufacturing systems, and multi-agent
systems have made technological advances to support the ready
reconfiguration of automated manufacturing systems. While
these technological advances have demonstrated robust operation
and been qualitatively successful in achieving reconfigurability,
their ultimate industrial adoption remains limited. Amongst the
barriers to adoption has been the relative absence of formal
and quantitative multi-agent system design methodologies based
upon reconfigurability measurement. Hence, it is not clear 1.) the
degree to which these designs have achieved their intended level
of reconfigurability 2.) which systems are indeed quantitatively
more reconfigurable and 3.) how these designs may overcome
their design limitations to achieve greater reconfigurability in
subsequent design iterations. To our knowledge, this paper is the
first multi-agent system reference architecture for reconfigurable
manufacturing systems driven by a quantitative and formal
design approach. It is rooted in an established engineering design
methodology called axiomatic design for large flexible engineering
systems and draws upon design principles distilled from prior
works on reconfigurability measurement. The resulting archi-
tecture is written in terms of the mathematical description used
in reconfigurability measurement which straightforwardly allows
instantiation for system-specific application.

Index Terms—multi-agent system, reconfigurability, reconfig-
urable manufacturing systems, axiomatic design

I. INTRODUCTION

Manufacturing has become increasingly characterized by

continually evolving and ever more competitive marketplaces.

In order to stay competitive, manufacturing firms have had to

respond with a high variety of products of increasingly short

product lifecycle [1], [2]. One particularly pertinent problem

is the need to quickly and incrementally adjust production

capacity and capability. To fulfill the needs of enterprises with

extensive automation, reconfigurable manufacturing systems

have been proposed as a set of possible solutions [3].

Definition 1. Reconfigurable Manufacturing System [4]: [A

System] designed at the outset for rapid change in structure,

as well as in hardware and software components, in order

to quickly adjust production capacity and functionality within

a part family in response to sudden changes in market or

regulatory requirements.

Over the last decade, many technologies and design ap-

proaches have been developed to enable reconfigurability in
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manufacturing systems [5]–[7]. Modular and distributed sys-

tem design has been consistently acknowledged as a pillar of

modern automation practices. Standard automation technology

has been following this rationale with the introduction of

object orientation in the IEC 61131, subsequent agent oriented

developments [8], [9] and the development of IEC 61499 [10].

This technological oriented development has also included

modular machine tools [11]–[15] and distributed automation

[16]–[18]. Additionally, a wide set of IT-based paradigms such

as Multi-Agent Systems [19]–[25], Holonic Manufacturing

Systems [26]–[29], Evolvable Assembly Systems [30], and

Fractal Factories [31] have emerged. They include a number

of notable reference architectures including PROSA [32]–[34],

HCBA [35] and ADACOR [22], [36]. While these technolog-

ical advances have demonstrated robust operation and been

qualitatively successful in achieving reconfigurability, their

ultimate industrial adoption remains limited [37].

Fig. 1. A Five Stage MAS Design Methodology

Amongst the barriers to adoption, and the primary motiva-

tion for this work, has been the relative absence of quantitative

multi-agent system design methodologies based upon reconfig-

urability measurement. In fact, the research in quantitatively

supported design methodologies has been lagging behind in

comparison with more technology grounded research specially

when compared with the developments around the IEC 61499

for which several design patterns have been documented [38].

Although these design patterns are a fundamental contribution

to later stages of the design process, as shown in Figure 1, a

design methodology based on reconfigurability measurement

would facilitate a logical and seamless transition between

five stages of design: 1.) high level design principles (e.g.

bionic, holonic, fractal) 2.) a reference architecture that is

sufficiently general to apply to the scope of the manufacturing

systems it seeks to address 3.) the associated instantiation as

a system-specific architecture 4.) the development of multi-
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agent system behavior as a control approach and 5.) a detailed

implementation with connected hardware. Previous work on

the reconfigurability of automated manufacturing systems has

shown that reconfigurability depends primarily on architectural

decisions made in Stages I, II, III, and V and much less

so Stage IV [39]–[43]. That said, the manufacturing system

designer must still take care to consider the manufacturing

system’s operational performance (e.g. makespan, throughput

etc) after a reconfiguration has already occurred. The relative

absence of such a quantitative design methodology based upon

reconfigurability measurement has left it relatively unclear 1.)

the degree to which these existing designs have achieved their

intended level of reconfigurability, 2.) which systems are in-

deed quantitatively more reconfigurable 3.) how these designs

may overcome their inherent design limitations to achieve

greater reconfigurability in subsequent design iterations.

This paper contributes a multi-agent system reference archi-

tecture for reconfigurable manufacturing systems driven by a

quantitative and formal design approach directly in line with

Figure 1. In doing so, it demonstrates the design approach as

well as the design result. First, it roots itself in an established

engineering design methodology: axiomatic design for large

flexible engineering systems which was has been previously

used to develop quantitative reconfigurability measures [39]–

[48]. Second, these quantitative measures are distilled into

qualitative high level design principles. The qualitative design

principles and quantitative reconfigurability measures are then

demonstrated in order to produce the reference architecture

in the mathematics of reconfigurability measurement – thus

facilitating implementation. Finally, the reference architecture

and its associated mathematical description straightforwardly

address instantiation for system-specific implementation. The

subsequent discussion is described as a demonstration of the

high level design principles. These specific advantages have

yet to be demonstrated in existing reference architectures such

as PROSA [32]–[34], HCBA [35] and ADACOR [22], [36].

A. Paper Outline

The remainder of the paper proceeds as follows. Section II

qualitatively articulates the the design strategy and rationale

for the architecture. Section III details the underlying mathe-

matical description of the architecture. Section IV then details

the architecture’s data model implementation. Section VI then

discusses the merits of the architecture relative to the existing

literature. Finally, Section VII brings the work to a conclusion.

B. Scope of Work

This paper restricts its reconfigurability discussion to the

shop-floor activities of discrete-part automated manufacturing

system as defined in Levels 0-3 of ISA-S95 [49] where

Definition 2. Reconfigurability [47]: The ability to add, re-

move and/or rearrange in a timely and cost-effective manner

the components and functions of a system which can result in

a desired set of alternate configurations; chosen here to be the

addition/removal of new products and resources.

II. ARCHITECTURE DESIGN STRATEGY & RATIONALE

The aim of this work is to develop an Axiomatic De-

sign of a Multi-Agent Reconfigurable Mechatronic System

(ADMARMS) Architecture. To this end, the central goal

of the design is to conceive a multi-agent (control) system

architecture that enables a highly reconfigurable manufacturing

system when it is integrated with its physical devices. Here,

reconfigurability is understood as the principle life cycle

property which enables the desired behaviors described in

the previous section. It is dependent upon the characteristics

of the productions system structure [39], [42]. That said,

Axiomatic Design states generally [50] and previous works

on this subject [39], [42], [43] have discussed that a well

conceptualized architecture is also a necessary prerequisite

for excellent production system performance. Furthermore, as

a design methodology, Axiomatic Design is able to highlight

potential design flaws at an early conceptual stage; well before

final implementation where production system performance

data becomes available.

The architecture design strategy and rationale directly fol-

low Figure 1. It begins with the identification of high level

design principles which are directly distilled from recent work

in the reconfigurability measurement of discrete-part auto-

mated manufacturing systems [39]–[48]. These works showed

that a high degree of reconfigurability could be achieved by

fostering greater reconfiguration potential (i.e. the number of

possible configurations of the system) as well as greater re-

configuration ease (i.e the effort required to change from one

configuration to another). The associated design principles for

reconfiguration potential and reconfiguration ease are treated

in turn and are actively used in the discussion of Section III.

While a deep treatment of reconfigurability measurement is

not feasible here, the interested reader is referred to these

background references for the details of the mathematical

developments in this work. The necessary aspects of these

mathematical developments are revisited in Section III.

A. Design Principles for Reconfiguration Potential

The aspects of reconfigurability measurement related to

reconfiguration potential were founded upon axiomatic design

theory in which reconfigurable manufacturing systems may be

classified as large flexible engineering systems.

Definition 3. Large Flexible Engineering System (LFES) [50]:

an engineering system with many functional requirements (i.e.

production processes) that not only evolve over time, but

also can be fulfilled by one or more design parameters (i.e.

production resources).

Furthermore, according to Axiomatic Design, this mapping

of system processes to system resources requires adherence to

the Independence Axiom.

Axiom 1. The Independence Axiom: Maintain the indepen-

dence of the functional requirements [50].

In practice, this axiom means that the identified production

processes must be mutually exclusive and collectively exhaus-

tive. Furthermore, each production process must be matched to
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its associated production resource. Once this match occurs at

a high level of design, Axiomatic Design proceeds to lower,

more detailed, levels of design where greater specialization

and decomposition can occur. The high level independence

decisions taken earlier become design constraints at these

lower levels that the designer must now respect [50].

In practice, this high-level axiom means that each functional

requirement (i.e. production process) must be related math-

ematically to a design parameter (i.e. production resource)

[39], [40], [42], [50]. Ultimately, each match of production

process to production resource is assigned an event (in the

discrete-event sense) called a production degree of freedom

[40] which individually and collectively have a number of

interesting properties:

1) Individually, they represent all of the available capabil-

ities of the physical production system.

2) Collectively, they represent the configuration of the

production system.

3) Their (countable) number represent the production sys-

tem’s reconfiguration potential.

4) The production of any product can be described as a

sequence of the production degrees of freedom.

In this regard, production degrees of freedom adhere to a

relatively strict analogy to the mechanical degrees of freedom

in a purely mechanical system [40]. Furthermore, it is impor-

tant to recognize the difference between the existence and the

availability of a production degree of freedom. The former is

the presence of a capability regardless of whether it is currently

functional or not. The latter addresses the condition of its

functionality as a binary state. Therefore, the description of

shop floor phenomena such as machine breakdowns may apply

sequence-independent constraints that limit the number of

production DOFs [40]. Additionally, there may exist sequence-

dependent constraints that do the same between pairs of pro-

duction degrees of freedom. Sequence-dependent constraints

may arise from a rigidly implemented supervisory controller;

although the relative (physical) geometry of resources always

applies some sequence-dependent constraints [40].

With this production degree of freedom primer in mind,

a number of design principles are distilled that maximize

reconfiguration potential

Principle 1. Application of Independence Axiom: Explicitly

describe the agent architecture in terms of the production

system’s production degrees of freedom.

Principle 1 entails the main contribution and development

strategy underlying the ADMARMS architecture. Because the

production of an entire production line can be described as se-

quences of individual production degrees of freedom, aligning

the agents with them creates an explicit relation between form

and function. An agent architecture, on its own, describes the

interactions between the agents’ classes but cannot prescribe

their instantiation. Different systems will be subject to dif-

ferent instantiations. Reconfigurability is, in a cyber-physical

sense, a measurement of the articulation between form and

function and its availability in one system. Hence, any arbitrary

degree of freedom not included in the architecture immediately

hinders reconfigurability measurement and prevents the agent-

system from interpreting it. Structural degrees of freedom

can therefore be seen as the quantitative equivalent of agent

semantic ontologies [51].

Principle 2. Existence of Physical Agents: As a decision-

making/control system, the multi-agent system must maintain

a 1-to-1 relationship with the set of physical capabilities that

exist on the shop floor.

The principle of physical agency is multiply reported in

the literature. The cohesive integration between form and

function facilitates the implementation of Principle 1. The

1-to-1 relationship ensures that physical changes have an

equivalent logical change and, in articulation with Principle

1, those changes can be measured. A violation of Principle 2

will destroy the cyber-physical relation promoted by the agent

architecture and will subsequently result in the introduction of

control ambiguities whenever a new design iteration needs to

be considered.

Principle 3. Heterogeneity: The production degrees of free-

dom within the agent architecture must respect the heterogene-

ity of capabilities found within the shop-floor be they various

types of transformation, transportation or storage processes.

This is a key concept in agent-based design. Similarities

between structure and function must be captured and modelled

in a balanced way to support the abstraction of the set of

possible physical interactions that may occur between the

physical resources in the system. It is this generalization of

behaviour that enables agent adaptability (function) that results

in system reconfigurability (form). Consider two extremes.

A design based on a single omnipotent agent would result,

aside from the inherent complexity of modelling its internal

behaviour, in the definition of a interface that would describe

the set of active roles of that agent at any given instance so

that other agents could interact with it. On the other hand

the discrimination, and subsequent agent specialization, of all

possible cyber-physical relations that could ever be considered

at shop floor would result in an overwhelming explosion of

agent classes that is not manageable either. Heterogeneity is

therefore best captured at a granularity level that suits the

purpose for wich the architecture has been designed.

Principle 4. Physical Aggregation: The agent architecture

must reflect the physical aggregation of the objects that they

represent.

Physical resources in a production line are frequently aggre-

gated in specific arrangements to support specific sequences

of production processes. Failing to capture the aggregation of

the system components would lead to the need of developing

new models that describe the contributions of the aggregation’s

constituents.

Principle 5. Availability: The agent architecture must explic-

itly model the potential for sequence independent constraints

that impede the availability of any given production degree of

freedom.

The existence of one resource does not require its availabil-

ity. Availability is affected by failures, maintenance, selective
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shut-downs, addition of new resources and the dynamic of

the system itself. The agents must explicitly be aware of

the available capabilities in order to enact a decision that

contributes to the resilience of the entire system.

Principle 6. Interaction: The agent architecture must contain

agent interactions along the minimal set of physical sequence-

dependent constraints.

For example, a material handling process must end where

another material handling process begins. Agent’s interactions

must therefore respect the physical continuity of the system

components and actuate accordingly.

Principle 7. Maximum Reconfiguration Potential: Aside from

the minimal set of physical sequence-dependent constraints,

the agent architecture should avoid introducing any further

agent interactions (which may impose further constraints).

The introduction of additional interactions could potentially

destroy the cyber-physical relation and cause agents to main-

tain interactions at a logical abstraction level not reflected

at the physical level (for example due to the failure of one

resource). Each agent interaction should have a clear reason

for existence motivated by some physical phenomena.

B. Design Principles for Reconfiguration Ease

The aspects of reconfigurability measurement related to

reconfiguration ease were founded upon the use of the pro-

duction design structure matrix [41], [47]. It encourages the

design of maximally cohesive and minimally coupled modules

within the production system. To that end, three more design

principles are added for reconfiguration ease.

Principle 8. Scope of Physical Agents: Align agents’ scope

and boundaries with their corresponding physical resources

and their associated production degrees of freedom.

Principle 8 ensures that when a reconfiguration process

occurs (i.e. addition, modification or removal of a production

degree freedom), it does so simultaneously on the physical

resource as well as on the corresponding agent. Previous

reconfigurability measurement work has shown that in many

cases misaligned informatic entities such as centralized con-

trollers lead to greater coupling of production degrees of

freedom [41]; thus hindering reconfiguration ease.

Principle 9. Encapsulation: Production system information

should be placed in the agent corresponding to the physical

entity that it describes.

Principle 9 recognizes that information is more often used

locally rather than remotely and thus encourages greater en-

capsulation and modularity. Principle 7 also serves to support

the modularity of the production system agents.

Principle 10. Reconfiguration Method: The same reconfigura-

tion process can require significantly different effort (measured

in time, cost, or energy) depending on the method used to

conduct the reconfiguration (and not just the reconfigured

resources).

Finally, Principle 10 accounts for the potential for reconfig-

uration processes to be conducted manually or automatically.

III. MATHEMATICS OF REFERENCE ARCHITECTURE

The discussion now continues to Stage II of Figure 1. On the

basis of qualitative design principles in the previous section,

and the mathematical treatment found in the reconfigurability

measurement of discrete-part automated manufacturing sys-

tems [39]–[41], [44]–[48], the Axiomatic Design Multi-Agent

Reconfigurable Mechatronic System (ADMARMS) architec-

ture is developed and shown in Figure 2. It’s high level struc-

ture is now discussed in terms of this mathematical treatment

as a demonstration of the high level design principles. The

reader is strongly encouraged to follow and verify the 1-

to-1 link between the mathematics in this section and the

architecture in Figure 2.

Note that the research scope defined in Section I-B directly

aids in the design of a reference architecture. Discrete-part

production systems, as a class, have a set of common mathe-

matical characteristics which are exploited in the identification

of the architecture’s classes, attributes and associations. There-

fore, a specific instantiated physical system need not occur

prior to the development of a MAS agent architecture either

at the reference of system-specific levels.

A. Production System Knowledge Base

The production system knowledge base is the key matrix

for describing a system’s production degrees of freedom. Its

usage is a mathematically explicit adherence to Principle 1

Definition 4. Production System Knowledge Base [40]: A

binary matrix JS of size σ(P ) × σ(R) whose element

JS(w, v) ∈ {0, 1} is equal to one when event ewv ∈ ES
exists as a production process pw ∈ P being executed by a

resource rv ∈ R (where σ() gives the size of a set).

By Principle 2, these physical resources have their infor-

matic counterpart in the resource agent (RA). Resource agents

are further classified into transformer agents (TFA) M , storage

agents (SA) B, and transporter agents (TPA) H to differentiate

between the inherently different types of production resources.

R = M ∪ B ∪ H [40]. The first is often considered “value-

adding” while the other two are often intentionally minimized.

The architecture also recognizes that the transformation and

storage resources and their respective agents may be grouped

into a set of buffer resources and their respective agents (BA);

locations in which products remain stationary (Principle 3).

BS =M ∪B [40].

While the resource agent effectively describes the system

form, the production process agent (PPA) effectively describes

the system function. While it is common that physical re-

sources have their associated agents, a novel aspect of the

ADMARMS architecture is the decision to assign agents to

each production process. They act as component slaves of

their resource agent masters. This serves to emphasize the

distinction between the form of physical resources and the

(potentially variable) set of behavioral production processes

they can perform.
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Fig. 2. ADMARMS Architecture & Data Model

As with resource agents, the production process agents must

be classified to account for the different types of activities

on the shop floor (Principle 3). These include the entry and

exit processes agents (ENPA and EXPA) for crossing the

system boundary and transformation processes (TFPA) for

value-adding processes [52], [53]. Mathematically, they have

often been lumped into a single set of production processes

Pµ. Transportation process agents (TPPA) Pη are defined

between individual buffers. σ(Pη) = σ2(BS). Notice that the

only resource-agent-to-resource-agent interaction occurs here

because a transporter agent needs to know the identity of the

origin and destination buffers. Holding process agents (HPA)

Pγ account for the ability to fixture/hold a product during

storage or transportation.

The overall production system knowledge base JS can then

be reconstructed straightforwardly. The transformation system

knowledge base JM relates Pµ to M . The transportation

system knowledge base JH relates Pη to R = M ∪ B ∪ H .

M and B are included here to account for their “null-

transportation” or storage processes where no motion occurs.

The holding system knowledge base Jγ relates Pγ to R. Then

JS becomes [40], [45]

JS =

[

JM | 0

JH̄

]

(1)

where [45]

JH̄ =
[

Jγ ⊗ 1
σ(Pη)

]

·
[

1
σ(Pγ) ⊗ JH

]

(2)

and ⊗ is the kronecker product and 1
n is a column ones vector

of length n.

A resource agent maybe physically aggregated either perma-

nently or temporarily into itself to allow a physical hierarchy

as a logical aggregation (or coalition) of resources (Principle

4). In reconfigurability measurement, the set of resource R is

physically aggregated into a set aggregated resources R̄ by

means of an aggregation matrix and operator ⊛ [39], [40].

R̄ = A⊛R (3)

At which point, the production system knowledge base would

require a combination of the associated columns.

J̄S = JS ⊛AT (4)

Hence, physical aggregation would neither violate the In-

dependence Axiom, nor change the associated value of the

reconfigurability measure. In contrast, functional aggregation

of the resources is likely to violate the independence axiom

most notably in the form of centralized control structuresCITE

ME.

B. Production System Scleronomic Constraints Matrix

Each of the resource and process agents (and their specific

types) can potentially be unavailable due a physical fault or

some rigidity in the control system (Principle 5). To account

for this, the agents have an “on-off” status. These are described

mathematically in the production system scleronomic (i.e.

sequence-independent) constraints matrix.
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Definition 5. Production System Scleronomic Constraints

Matrix [40]: A binary matrix KS of size σ(P )×σ(R) whose

element KS(w, v) ∈ {0, 1} is equal to one when a constraint

eliminates event ewv from the event set.

It is calculated analogously to the production system knowl-

edge base [40], [45]:

KS =

[

KM | 1

KH̄

]

(5)

where [45]

KH̄ =
[

Kϕ ⊗ 1
σ(Pη)

]

·
[

1
σ(Pϕ) ⊗KH

]

(6)

From these definitions of JS and KS , follows the definition

of sequence-independent production degrees of freedom.

Definition 6. Sequence-Independent Production Degrees of

Freedom [40]: The set of independent production events ES
that completely defines the available production processes in

a production system. Their number is given by:

DOFS = σ(ES) =

σ(P )
∑

w

σ(R)
∑

v

[JS ⊖KS ] (w, v) (7)

where the A ⊖ B = A · not(B) operation is boolean

subtraction.

C. Production System Rheonomic Constraints Matrix

Once the individual agents have been defined around pro-

duction system degrees of freedom, the design of the archi-

tecture turns to defining the resource-agent-to-resource-agent

interactions. In that regard and as mentioned previously, the

only such interaction occurs because transporter agents need

to know the identity of the origin and destination buffers

(Principle 6). These minimal interactions are reflected in the

production system rheonomic constraints matrix.

Definition 7. Rheonomic Production Constraints Matrix

Kρ [45], [46]: a square binary constraints matrix of size

σ(P )σ(R) × σ(P )σ(R) whose elements K(ψ1, ψ2) ∈ {0, 1}
are equal to one when string zψ1ψ2 = ew1v1ew2v2 ∈ Z is

eliminated and where ψ = σ(P )(v − 1) + w.

Previous work has shown that Kρ must be non-zero so as

to account for basic rules of continuity; the destination of

one production degree of freedom must occur at the same

location as the origin of a subsequent one [40], [45]. This

includes transformation degrees of freedom which explicitly

state where the corresponding transformation process must

occur. Aside from these minimal constraints, the architecture

does not introduce any other resource-agent-to-resource-agent

interactions on the resource side (Principle 7). The introduction

of any further such interactions in the detailed design of the

distributed control algorithms would constitute a violation of

the Independence Axiom. Instead, the absence of any further

interaction must be considered a high level design constraint

on the implementation of such distributed algorithms.

D. Product Model

The design of the ADMARMS architecture then includes

product agents (PA) as the 1-to-1 informatic counterpart of

each of the physical products (Principle 2). A product agent

maybe decomposed into itself to allow a physical hierarchy

of subassembly and component products (Principle 4). It is

also important to note that the product agent must have

some awareness of how it should be produced. This has been

achieved previously with a product net.

Definition 8. Product Net [39], [44]: Given product li, it may

be described as:

Nli = {Sli , Eli , Fli} (8)

where Nl is the product net, Sl is the set of product places,

Eli is a set of product events, and Fl is set of product flow

relations.

Definition 9. Product Event [44]: A specific transformation

process that may be applied to a given product.

In addition to the events, places and flow relations all have

physical meaning. Each of the places represents a product

or component at a raw, work-in-progress, or final stage of

production. Finally, the flow relations describe which products

or components receive which product events.

The presence of an instantiated product agent in the produc-

tion system is achieved by the entry and exit process agents

found within a given storage agent (Principle 5).

E. Product Feasibility Matrices

Once the individual product agents have been defined, the

design of the architecture turns to defining the product-agent-

to-resource-agent interactions. These are absolutely necessary

operator-to-operand relations (Principle 6). The relationship

between product events to transformation degrees of freedom

is achieved with the product transformation feasibility matrix.

Definition 10. Product Transformation Feasibility Matrix Λµi
[44], [45]: A binary matrix of size σ(Eli)×σ(Pµ) whose value

Λµi(x, j) = 1 if exli realizes transformation process pµj .

The relationship between products and the required hold-

ing/transportation processes is similarly defined.

Definition 11. Product Transportation Feasibility Matrix Λγi
[44], [45]: A binary row vector of size 1×σ(Pγ) whose value

Λγi(g) = 1 if product li can be held by holding process pγg .

The product-agent-to-resource-agent interaction becomes

the primary interaction by which distributed coordination of

the production can be achieved without introducing any further

agent interactions.

F. Production Design Structure Matrix

The subsections above collectively address the reconfigura-

tion potential of the production system and so the attention

now turns to reconfiguration ease. In that regard, the produc-

tion system design structure matrix [41] has been previously
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Fig. 3. Production System Design Structure Matrix

used for measurement. It captures the physical, energy, and

informatic couplings between production system entities. In

the case of multi-agent systems in production systems, the

scope of each agent aligns with the underlying production

system resource or product (Principle 8). In such a case,

the coupling between production degrees of freedom can

be minimized. In contrast, centralized controllers introduce

new blocks to the production system design matrix which

appear as off-diagonal coupling between resources and their

associated production degrees of freedom. As this architecture

is developed to include the specific behaviors of agent-to-agent

interactions and negotiations, care will be taken to demonstrate

that each agent is maximally cohesive and minimally coupled

(Principle 9).

G. Reconfiguration Processes

The final element of the ADMARMS architecture is to

specify the method of conducting reconfiguration processes

(Principle 10). In that regard, the reconfiguration agent (RCA)

is an automatic way of changing the production degrees

of freedom of a given resource agent. Mathematically, it is

responsible for conducting the reconfiguration process [40],

[48]:

(JS ,KS ,Kρ) → (J ′

S ,K
′

S ,K
′

ρ) (9)

Examples of reconfiguration agents are automatic tool chang-

ers (change of transformation degree of freedom), automatic

fixture changers (change of holding degree of freedom), con-

veyor gates (change of transportation degree of freedom).

Reconfiguration agents can also act between several resources

at which point it would be reflected in Equation 9 with a

change in the rheonomic constraints matrix Kρ.

In summary, each of the agents and interactions in the

ADMARMS Architecture shown in Figure 2 follows directly

from its mathematical description. The architecture defines

an agent for each of the types of resources and production

processes defined in the mathematics. Consequently, the pro-

duction system knowledge base relates which resources can

realize which processes. This relationship is described by

the composition relations between resource and production

process agents. The aggregation matrix allows the logical

aggregation of resources. The rheonomic constraints matrix

causes the interaction between transporter agent and buffer

agent. The product feasibility matrices causes the interaction

between the product and resource agents. The product nets

can be self-decomposed whenever assembly is required. The

reconfiguration agent arises from the definition of a reconfig-

uration process for one or more resources.

IV. ARCHITECTURE DATA MODEL IMPLEMENTATION

As shown in Figure 2, the previous section provided a high

level mathematical description of the ADMARMS so as to

identify its member agents. This section now discusses the

contents of these agents from an implementation point of view.

It is understood that these agents would be implemented in

a multi-threaded programming language such as JAVA and

adhere to the latest multi-agent standard platforms (e.g. FIPA,

JADE) [54].

A. Resource Agent (RA)

The RA is an abstraction for all the potential mechatronic

entities in the system. It encapsulates the common features of

the specialized classes. Its parameters are described as follows:

-resourceType : int – a type that identifies the implementation

class.

-resourceID : String – a unique identifier in the form of a

serial number.

-location : pair<int,int> – a coordinate to keep track of its

location.

-negotiationBehaviour : Behaviour – a negotiation behavior

to mediate the interaction between the RA and a PA.

-commitments : Product Agent [0..*] – a list of commitments

to various production agents.

-hal : hardwareAbstractionLayer – a hardware abstraction

layer (HAL) that mediates low-level execution.

-selfManagementBehaviour : Behaviour – a persistent be-

havior that generically allows for self-management.

-resourceState : int – a state of the resource linked to its

availability in the scleronomic constraints matrix.

-processes : Production Process Agent [0..*] – a list of

production process agents that are associated with resource

agent.

-subordinates : ResourceAgent [0..*] – a list of resources

that are logically aggregated within the scope of the parent

resource. No command & control or master-slave relation is

exercised.

Additionally, the resource agent has a single method:

# manage() : int – an abstract management method invoked

by the selfManagementBehavior parameter that monitors and

updates the resource state.

Furthermore, the commitment parameter gives a measure-

ment of the anticipated load on a resource and is fundamental

to robust system operation when making further negotiations.

It is necessarily updated after each successful execution of

a production process. Also, the HAL serves as a generic

interface that enables resources of the same type to operate

similar physical devices regardless of the specific low level

implementation details. Therefore, the HAL decouples the

agent environment from controller specific implementations

[24].
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B. Specializations of the RA

As shown in Figure 2, the RA is specialized as a BA, TFA,

SA and a TPA. These are discussed in turn.

1) Buffer Agent (BA): The BA is a specialized resource

that denotes a resource with the ability of storing PAs. It has

a single additional parameter:

-capacity : int – a finite capacity of PAs.

The TFA and SA stand as specializations of the BA.

2) Transformer Agent (TFA): The transformer agent ab-

stracts shop-floor entities with transformation capabilities and

therefore hosts both transforming and holding process agents

(inherited from the BA). It has a single additional parameter.

-transformerType : int – a parameter that identifies the

various types TFAs be they assembly, additive and subtractive

in nature.

3) Storage Agent (SA): The Storage Agent is the implemen-

tation of the buffer concept. It is responsible for the storage,

introduction, and removal of a PA within, into and from the

system. Subsequently, it hosts the corresponding production

processes. It also has a single additional parameter:

-storageType : int – a parameter that identifies the various

types of SAs be they passive or active.

C. Transporter Agent (TPA)

The TPA is responsible for moving a PA between buffer

agents. Consequently, it has two parameters:

-origin : BufferAgent – the identity of the origin BA.

-destination : BufferAgent – the identity of the destination

BA.

It hosts transportation process and holding process agents as

it executes the motion between these buffers.

D. Production Process Agent (PPA) and its Specializations

The PPA abstracts the different production processes hosted

by the system’s resources. It has the following parameters:

-processID : String – a unique identifier that identifies the

process and its instance.

-processType : int – a type that defines the specialized class

to which the PPA belongs.

-processState : int – a state of the PPA linked to its availability

in the scleronomic constraints matrix.

-selfManagementBehaviour : Behaviour – a persistent be-

havior that generically allows for self-management.

Additionally, a production process has a single method:

# manage() : int – a management method invoked by the

selfManagementBehaviour.

This method, whose implementation must be provided by the

specializing classes, is responsible for updating the state of

the PPA and embodies the PPA’s proactive behavior towards

the emergence of constraints.

The PPA class has five specializations: the transforma-

tion process agent (TFPA), the transportation process agent

(TPPA), the holding process agent (HPA), the entry process

agent (EPA) and the exit process agent (EXPA). Collectively

PPAs, Resource Agents and their associated specializations

define the production system knowledge base.

1) Transportation Process Agent (TPPA): The TPPA has a

single method that is hosted by the TPA:

-transport() : void – a method responsible for executing the

displacement of parts between buffers.

2) Transformation Process Agent (TFPA): The TFPA has

a single method that is hosted by the TFA:

-transform(parameters : objective) : void – a method

responsible for the transformation of a part.

TFPAs execute differently depending on their parametrization

to accommodate the distinct transformation requirements.

3) Holding Process Agent (HPA): The HPA has two pa-

rameters that relate to the product agent:

-holdable : product agent [1..* ] – a parameter to define

which parts can be held.

-orientation : int – a parameter to define the orientation of

that part.

In addition, the holding process agent has two methods:

# hold() : void – a method to allow the PA to be held.

# release() : void – a method to allow the PA to be released.

The HPA is hosted conjointly with either a TFPA or a TPPA

by a TFA or TPA respectively.

4) Entry & Exit Process Agents (ENPA & EFPA): The

ENPA and the EXPA create and destroy product agents with

their respective methods.

-createProductAgent( product : Product Agent ) : void) –

allows for a new order to spawn a new product agent.

-destroyProductAgent( product : Product Agent ) – allows

a completed product to be registered as a fulfilled order.

E. Product Agent (PA)

The PA abstracts each active product under production in

the system and has the following parameters:

-productID : String – a serial number as a string.

-location : pair<int,int> – a location coordinate.

-executionState : int – a state variable that captures the

condition of the overall process.

-subordinates : Product Agent [0..*] – a list that is used

when the PA has subordinate PAs. From a structural point of

view, each product may be composed of other subordinated

products.

-parent : Product Agent – a string that is used when the PA is

subordinate to another PA. This string mirrors the composition

relationship with the aggregation relationship. Parent product

agents can proceed to complete their product events only after

the completion of the subordinate PA’s product events.

-productionProcessDescription : product net – captures

the flow of product events. Its hierarchical decomposition
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encourages a similar decomposition of the resulting product

nets hence creating different views, with levels of abstraction,

over the entire set of product events that define the production

of a product. Each PA establishes an identity with a final form

of an assembly, sub-assembly, part or material.

The autonomy of the PA is defined by its main persistent

behaviour:

-selfProduceBehaviour : Behaviour – a behaviour that con-

trols the production process of the PA. It has two main phases:

configuration and runtime.

The configuration phase is responsible for initialization

routines, evaluation and instantiation of the PA’s production

process. These are carried out by different methods:

-spawn() : void – a method that spawns all the PA’s subordi-

nates.

-instantiateProductionSequence() : void – a method that

evaluates and instantiates the production process description

and subsequently populates the product net’s associated pro-

duction processes.

-productionProcess : product net – a net that stores the as-

sociation between product events and production processes. It

provides the required information to devise the path connecting

all the resources allocated in this process.

-negotiationBehaviour : Behaviour – a behaviour that encap-

sulates the communication and negotiation logic between the

PA and the system’s resources. It is activated in the configu-

ration phase to ensure the initial association of processes and

resources and later, in runtime, as a response to disturbances.

The runtime phase controls and monitors the production

process and disturbances. These actions are implemented in

the execute method.

-execute() : void – this method implements a supervisory

state machine that governs: resource activation, agent unifi-

cation/termination and re-negotiation. It describes all the PA

to PA and PA to RA interaction logic. This state machine is

therefore supported by three methods:

-unify() : void – a method that signals the parent PA that this

subordinate PA has successfully terminated its process and the

resulting sub-product can be integrated in the parent’s process.

-fail() : void – a method that signals the parent PA that this

subordinate has encountered an unrecoverable fault and cannot

be integrated in the parent’s process.

-terminate() : void – a method that removes a subordinate

PA from the system in a clean way or removes the top level

PA at a resource hosting an exit process agent.

F. Reconfiguration Agent (RCA)

The RCA’s behaviour is mainly defined by one function:

-Reconfigure( resource : Resource ) : void – reconfigures

the process agents in a specific resource and ensures that the

instantiation of new process is conflict free.

The reconfiguration occurs on request from a RA and through

a negotiation procedure whereby the RA asks the RCA to

enable new processes or re-parametrize existing ones. The

RCA will then assess the availability and potential recon-

figuration conflicts on the desired processes and reconfigure

the RA accordingly. In the case of reconfigurations between

resources, the RCA decouples the reconfiguration actions

from the physical aggregates. From a design perspective this

enables the resources to participate in any aggregate that

makes physical sense and allows the development of custom

reconfiguration agents for very specific cases without the need

for reprogramming the resources, as would happen otherwise.

V. ILLUSTRATIVE EXAMPLE

A practical explanation of the proposed reference architec-

ture is now provided through an illustrative example. Again,

the provided discussion is set as a demonstration of the design

principles in Section II and the mathematical description in

Section III. In all, the process of instantiation carries the

discussion through the first three design stages in Figure 1.

The Startling III manufacturing system, firstly introduced in

[40], and depicted in (Figure 4) is a conceptual example of

a flexible production line for wooden bird feeders. The bird

feeders enter the system at the input buffer as wood stock and

proceed to one of the available milling stations where they are

shaped to their final form. They are subsequently assembled

and painted in the corresponding stations before leaving the

system as the final product at the output buffer. Figure 5 shows

a model of the birdfeeder with its corresponding product net.
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Fig. 5. a.) CAD Model of a Starling Birdfeeder (on left) b.) Associated
Product Net (on right)

The system (Figure 4) also features a conveyor network

capable of driving the product, during its different production

stages, across multiple paths depending on the system condi-

tions (i.e. product mix, load, resource availability, product’s

process plans etc.). At the beginning and at the end of each

conveyor stretch lies a gate that acts as a routing element in

the system.

Principle 1 requires an explicit description of the production

degrees of freedom. In that regard, there are six transformation

resources: {milling stations 1 & 2 , assembly stations 1 & 2,

and painting station 1 & 2}. There are 20 independent buffers

corresponding to the 18 gates and the input and output buffers.

These combine to account for 26 buffers in total. There are
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Fig. 4. Example system - the Starling III manufacturing line

32 transporting resources which are indicated by HXY on

the figure. The transformation processes are {lathe tab, lathe

slot, mill hole, assemble, paint red, paint yellow, and paint

green}. The holding processes are: {axially, for small radius,

and for large radius}, and there are σ(Pη) = σ2(B) = 262 =
676 transportation processes between the previously identified

buffers. Consequently, the transformation, transportation, and

holding system knowledge bases can be obtained by definition.

As these matrices are large and sparse, they are best mined

automatically from a database. They are presented in Figure

6 as monochrome images. The production system knowledge

base is then straightforwardly calculated by Equation 1 which

then yields 78 production degrees of freedom.

Fig. 6. Transformation, Transportation, & Holding System Knowledge Bases
for the Starling III Manufacturing System

The production degrees of freedom are implemented as

follows in the instantiated agent architecture. Each transporter

agent represents a conveyor. It is associated with one instance

of a transport process agent that monitors and controls the

flow of products inside the conveyor and a holding process

agent that will simultaneously control the gripping of the

product. Both agents directly manipulate the resource’s hard-

ware abstraction layer. Similarly, the milling, assembly, and

painting stations are abstracted to a transformer agent which

has its respective transformation and holding process agents.

The milling stations, for example, have three transformation

processes and two holding processes as shown in their respec-

tive knowledge bases. The input and output buffers as well as

the gates are abstracted as storage agents. They are associated

with one entry and exit process agent respectively in addition

to a holding process agent. The gates are associated with a

holding process agent and a reconfiguration agent.

With each production degree of freedom accounted for,

Principle 2 promotes a one-to-one relation between the agents

described in the architecture and physical entities in the shop-

floor. Furthermore, Principle 3 ensures that the architecture

respects different physical behaviors of the physical resources.

Together with Principle 1, the first three principles establish a

direct link between the system capabilities and the mathemat-

ical framework supporting the architecture.

Principle 4 addresses the aggregates of both products and re-

sources. On the product side, the (parent) product net in Figure

6 can intuitively spawn three product nets prior to the two as-

sembly processes. On the resource side, the self-decomposition

of the resource agent allows resources to operate together

as aggregates especially when such temporary aggregates

are operationally more efficient. As mentioned before, such

physical aggregation does not necessarily imply command and

control within the aggregates. Instead, ADMARMS allows the

processes, as independent agents, to become associated with

different resources via reconfiguration agents.

Principle 5 is, therefore, directly related with the presence

or absence of resources and their processes. Since the agents

maintain a 1-to-1 relationship with the physical resources,

faults, failures or different system reconfigurations are auto-

matically considered from a reconfigurability point of view.

Principles 6 and 7 address the interactions between the

various agents. The axiomatic design of the reference archi-

tecture has lead to four main interactions: Product-Resource,

Resource-Reconfiguration, Transporter-Buffer and Resource-

Process. As is in current automation practice, no additional

interactions would be introduced upon instantiation or detailed

design of distributed control algorithms. Indeed, Axiomatic

Design Theory imposes the constraint that the implementation

of these algorithms not introduce any further interactions than

those already specified in the high level design of the archi-

tecture [50]. Furthermore, a given reference architecture can

(and should) permit several and not just one potential control

algorithm. In the context of this specific work, it is sufficient to

demonstrate that the result of the axiomatic design can be fea-

sibly implemented in a self-consistent manner using only the

four previously identified interactions. The Transporter-Buffer
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interaction occurs in (re)configuration phase where nearest-

neighbor interactions are established. Similarly, the Resource-

Process interaction configures their respective mapping. The

remaining two interactions are detailed in Figure 7 as the

main interaction pattern of the ADMARMS agents. All four

interactions use request-reply protocols which are omitted for

brevity.

The product-resource interactions in Figure 7 assume an

“intelligent product” paradigm [55]–[57] which is supported

by the product net described in Definition 8. Thus, the PA

concentrates within itself the decision on where to go in the

system and where to execute. PAs are created by storage agents

associated with entry process agents. Product agents requiring

assembly spawn a PA for each sub-product each with its subset

product net. Each PA subsequently enters the execution stage

where the different system resources are successively activated

(Steps 3-16 in Figure 7). Upon completion of the PA process

plan, it either unites with the parent PA if it is a sub-product

or travel to the output buffer where the storage agent call’s for

its termination as a now finished good.

Resource level execution implies the verification of con-

straints and may include resource-reconfiguration agent in-

teraction. If there are pending constraints the required re-

configuration is verified by the reconfiguration agent which

may accept and reconfigure the resource or may suggest

an alternative configuration which much be accepted by the

resource before becoming effective. The resource then proceed

with execution. In the Starling III manufacturing system,

reconfiguration action may appear as either a routing reconfig-

uration at gate level or a station reconfiguration such as tooling

or fixture change. Which reconfiguration is required depends

on the negotiated commitments made between the resource

and product agents.

Returning to the remaining design principles, this set of

behaviors strictly adheres to Principles 8 and 9 by containing

the information where it belongs, from a decision making

point of view, and promoting an overall behavior whereby each

product agent acts a client of the system’s resources and can

dynamically adjust to explore them, under different conditions,

independently of other products. It also alleviates the PA

from the potential micro-management burden of transport and

execution actions – which are better left to the specialized

resources.

VI. DISCUSSION

The introduction to this paper mentioned that one of the

barriers to the adoption of multi-agent system technology in

production systems has been the lack of quantitative multi-

agent system design methodologies. In this regard, the AD-

MARMS architecture presents a partial solution beyond the ex-

isting literature. In this section, the merits of the ADMARMS

architecture are discussed from three perspectives: 1.) Its role

in a facilitated design methodology, 2.) its features relative

to the existing literature 3.) its suitability for quantitative

reconfigurability measurement.

A. Facilitated Design Methodology

As a reference architecture, the ADMARMS architecture

can greatly facilitate a systematic design methodology such as

the one shown in Figure 1. The design principles identified

in Section II effectively address Stage I. As part of Stage II,

these principles were shown in Section III to correspond 1-

to-1 to the features of the ADMARMS reference architecture.

Furthermore, because the reference architecture addresses the

full heterogeneity of production system processes, resources

and their interactions, the process of instantiating this reference

architecture into a system-specific architecture in Stage III can

be fairly straightforward. The designer is then left with the

task of designing a formal MAS control algorithm in Stage IV

to achieve the desired manufacturing system behavioral per-

formance. Finally, the hardware-in-the-loop implementation in

Stage V is mitigated by the agent communication with the

hardware abstraction layer.

This relatively straightforward design process may be con-

trasted to the state of the existing literature. Stage I design

principles such as bionic, holonic and fractal manufacturing

systems are relatively abstract and do not suggest an obvious

reference architecture. Perhaps, this is one reason for the

relative plethora of contributed reference and system-specific

architectures. Furthermore, as will be discussed in the next

subsection, these reference architectures do not necessarily

account for the full heterogeneity of production system pro-

cesses, resources and their interactions. As a result, when

it comes time to instantiate the reference architecture into

a system-specific design in Stage III, many agent-to-agent

interactions must be added in an ad-hoc fashion. One of the

most commonly neglected interactions is the coordination of

transportation activities. An example of this can be found in

the discussed limitations of the HCBA architecture which the

designers themselves identified [35]. With such limitations

early in the design process at the level of the reference

and system architectures, the MAS control algorithm and the

interfaces to the hardware abstraction layer naturally become

very system-specific. Thus, reconfigurations involving the ad-

dition or removal of production system processes, resources

or products; particularly those of completely different type,

becomes far from assured in a practical industrial context.

B. Comparison to Existing MAS Reference Architectures

As mentioned in the introduction, the MAS literature has

produced several reference architectures for production system

control [21], [28], [58], [59]; most notably PROSA [32]–[34],

HCBA [35], and ADACOR [22], [36]. These works were

developed qualitatively based upon the experience of expert

MAS designers. This caused several researchers to call for

quantitative ways to measure the reconfigurability of MAS

architectures [21], [29], [60]–[63]. Now that such techniques

have been contributed, a natural evolution of the literature is

to review these prior works in the context of reconfigurability

measurement.

Thus, the merits of the ADMARMS architecture may

also be contrasted to existing multi-agent system reference

architectures of similar scope and function. Because the ten
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Fig. 7. Main agent interactions

design principles described in Section II were distilled from

the existing literature on reconfigurability measurement [39]–

[42], [44]–[48], they are taken as requirements upon which to

draw an objective comparison. To that effect, Figure 8 assesses

the PROSA [32]–[34], HCBA [35], and ADACOR [22], [36]

architectures based upon their explicit written descriptions

in their corresponding journal papers and doctoral theses.

While other MAS architectures can be found in the literature

[21], they were excluded from this discussion because they

were either system-specific instantiations or of fundamentally

different scope.

Figure 8 shows only a partial adherence to the reconfig-

urability measurement design principles. Of the three archi-

tectures, only ADACOR developed an ontology to facilitate

product and resource independent descriptions of production

(Principle 1). Meanwhile, HCBA was the only architecture

that strictly adhered to a 1-to-1 relationship with shop-floor

activities (Principle 2,8 and 9). All three architectures lacked

a complete description of the heterogeneity of production

system processes and resources (Principle 3). Similarly, each

architecture either addressed product aggregation or resource

aggregation but not both (Principle 4). HCBA and ADACOR

provided some functionality for unavailable resources but did

not explicitly describe it in the reference architecture itself

(Principle 5). Because all three reference architectures did not

address the necessary heterogeneity, they tended to understate

rather overstate the necessary agent-to-agent interactions (Prin-

ciple 6 and 7). Finally, none of the reference architectures
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specifically addressed the method of reconfiguration.

It is important to note that while this assessment is as

objective as possible it is also very much anachronistic. The

literature on reconfigurability measurement of automated man-

ufacturing systems emerged not only after the development of

these reference architectures but also because of a recognized

need to introduce quantitative methods in the design of such

architectures. The ADMARMS architecture, therefore, can

be viewed as a quantitively driven design iteration over the

existing literature where no such quantitative reconfigurability

measurement approaches existed at the time.
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neglects(product(aggregation.

Addresses(product(aggregation(but(

neglects(resource(aggregation.((

5 Not(explicitly(mentioned.

Implicitly(mentioned(by(virtue(of(the(

implemented(architecture(

validation.((

Implicitly(mentioned(by(virtue(of(the(

implemented(architecture(

validation.((

6 Not(explicitly(mentioned. Not(explicitly(mentioned. Not(explicitly(mentioned.

7

Does(not(introduce(any(extra(agent(

interactions.

Does(not(introduce(any(extra(agent(

interactions.

Does(not(introduce(any(extra(agent(

interactions.

8

All(agents(except(for(the(staff(agent(

are(physical(agents. All(agents(are(physical(agents.

All(agents(except(for(the(supervisor(

agent(are(physical(agents.(

9

All(agents(except(for(the(staff(agent(

encapsulate(their(data(well.

All(agents(encapsulate(their(data(

well.((

All(agents(except(for(the(supervisor(

agent(encapsulate(their(data(well.

10

There(is(no(discussion(of(whether(

reconfigurations(are(automatic(or(

manual.((No(corresponding(agents.(

There(is(no(discussion(of(whether(

reconfigurations(are(automatic(or(

manual.((No(corresponding(agents.(

There(is(no(discussion(of(whether(

reconfigurations(are(automatic(or(

manual.((No(corresponding(agents.(

Fig. 8. An Assessment of Existing MAS Reference Architectures with
Respect to Reconfigurability Measurement Design Principles

C. Suitability for Quantitative Reconfigurability Measurement

Finally, because the ADMARMS architecture was for-

mally developed using the same data structures necessary

for reconfigurability measurement (i.e. the production system

knowledge base, and the production design structure matrix),

these data structures may be directly embedded into the agent

architecture for online reconfigurability measurement; either in

design or real-time operation. In such a way, the manufacturing

system MAS designer can determine the degree of reconfig-

urability with each successive design decision. Furthermore,

such a quantitative approach can highlight which aspects of the

design lead to limited reconfigurability. For example, it would

become clear when the agent architecture has not well aligned

the production degrees of freedom with the physical shop floor

entities. Additionally, the introduction of unnecessary agent-

to-agent interactions would have an immediate quantitative

impact on reconfigurability. Finally, the reconfigurability of an

ADMARMS design can be quantitatively compared against

other systems. As discussed in the literature [39], such a

comparison does have stringent requirements. These include

a common ontological basis for describing production system

processes, resources and products [39], [42] as well as equiva-

lent methods for conducting the measurement either manually

[47] or automatically [42]. Nevertheless, in such conditions,

the ADMARMS architecture is easily compared because it

embeds the production system knowledge base and design

structure matrix within its implementation.

VII. CONCLUSIONS & FUTURE WORK

To our knowledge, this paper is the first multi-agent system

reference architecture for reconfigurable manufacturing sys-

tems driven by a quantitative and formal design approach. This

is in contrast to existing reference architectures (e.g. PROSA,

HCBA, ADACOR) which were qualitatively developed on the

basis of experienced design intuition. The ADMARMS archi-

tecture is rooted in an established engineering design method-

ology called axiomatic design for large flexible engineering

systems and draws upon design principles distilled from

prior works on reconfigurability measurement. The resulting

architecture is written in terms of the mathematical description

used in reconfigurability measurement which straightforwardly

allows instantiation for system-specific application. Future

work will seek to 1.) implement this architecture in virtual

and hardware testbeds and measure the consequent reconfig-

urability and 2.) benchmark this reference architecture with

respect to the existing alternatives.
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