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Abstract 

This paper presents a method for axiomatizing a variety of models for decision making under uncertainty, 
including Expected Utility and Cumulative Prospect Theory. This method identifies, for each model, the 
situations that permit consistent inferences about the ordering of value differences. Examples of rank- 
dependent and sign-dependent preference patterns are used to motivate the models and the "tradeoff consis- 
tency" axioms that characterize them. The major properties of the value function in Cumulative Prospect 
Theory--diminishing sensitivity and loss aversion--are contrasted with the principle of diminishing marginal 
utility that is commonly assumed in Expected Utility. 

At tempts  to explain decisions under  uncertainty that  violate Expected Utility have gen- 

era ted several new ideas. (For  a survey, see Fishburn 1988.) One  notion is that  the 

objects of  choice are prospects,  defined in terms of gains and losses relative to neutral  

reference point, ra ther  than acts defined in terms of  final asset positions. This notion, 

first proposed by Markowitz (1952), is the cornerstone of K a h n e m a n  and Tversky's  

(1979) prospect  theory. The  significance of the reference point stems f rom the observa- 

tions that  people  are generally risk averse for gains, risk seeking for losses, and that  losses 

loom larger than gains. Ano the r  empirical  generalization that  is incorporated into pros- 

pect  theory is the tendency to overweight small probabilities and to underweight  high 

probabilities. It  is natural  to model  this phenomenon  by introducing decision weights 

obtained f rom a nonaddit ive t ransformation of  the probability scale. The  p rob lem then 

arises how to calculate expectation with respect  to a nonaddit ive measure.  Several au- 

thors (Weymark,  1981; Quiggin, 1982; Schmeidler, 1989; Yaari,  1987) proposed  a solu- 

tion, which reduces to the Choquet  functional (Choquet,  1953-4). This model  trans- 

forms cumulative rather  than individual probabilities; we call it the cumulative model.  1 
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It has been recognized by several authors (Starmer and Sugden, 1989; Luce and 
Fishburn, 1991; Tversky and Kahneman, 1992) that the basic elements of prospect the- 
ory are compatible with the cumulative functional, and that it is possible to construct a 
model that combines these approaches to produce what we call Cumulative Prospect 
Theory. This paper presents an axiomatization of Cumulative Prospect Theory, which 
extends and generalizes the formal development in Tversky and Kahneman (1992). The 
present treatment differs from Luce and Fishburn (1991) in that it does not involve an 
operation of joint receipt, does not require higher-order gambles, and does not restrict 
the shape of the value function. 

The axiomatization presented in this paper is based on the tradeoff consistency ap- 
proach developed by Wakker (1989) and Tversky, Sattath, and Slovic (1988). It provides 
a unified procedure for axiomatizing Expected Utility and generalized expectation mod- 
els, and is illustrated in Section 1. The key idea is that different models are characterized 
by the particular situations in which the ordering of value differences can be inferred 
from preferences. For example, an inference about the ordering of value differences that 
is valid in Expected Utility is not valid in the cumulative model unless the prospects in 
question are comonotonic, i.e., induce the same (desirability) ordering of states of na- 
ture. Likewise, an inference about value differences in Cumulative Prospect Theory 
requires, in addition, that the critical outcomes will have the same sign, i.e., are all gains 
or all losses. We show that a natural characterization of Cumulative Prospect Theory is 
obtained by accepting only these inferences. An aim of this paper has been to bring to the 
fore the tradeoff consistency approach to axiomatic preference theory. The natural way 
in which characterizations of earlier theories are extended to Cumulative Prospect The- 
ory, as well as the simplicity of additional specifying conditions (for diminishing marginal 
utility and loss aversion), provide evidence for the fruitfulness of this approach. 

The paper is organized as follows. Section I gives examples of preferences that violate 
Expected Utility and exhibit rank-dependence and sign-dependency. Section 2 presents 
notations and definitions. The next four sections characterize Expected Utility, Cumula- 
tive Utility, Sign-Dependent Expected Utility, and Cumulative Prospect Theory. To 
demonstrate the unity and generality of the tradeoff-consistency approach, we axioma- 
tize all four models. The first two have already been presented in Wakker (1989); they 
are used in the characterization of the other two. 

A schematic summary of the results appears in Table 7.1. The table shows that CPT 
concerns two independent generalizations of expected utility, one by rank-dependence, 
the other by sign-dependence. Rank-dependence permits, for instance, pessimism so 
that events associated with less favorable outcomes are weighted more heavily. Sign- 
dependence permits different decision weights for events associated with gains than for 
events associated with losses. The elicitation of value difference orderings is not dis- 
turbed by rank-dependence whenever the prospects used in the elicitation are comono- 
tonic. The elicitation of value difference orderings is not disturbed by sign-dependence 
whenever the prospects used in the elicitation are "cosigned", i.e. the critical outcomes 
all have the same sign; this will be further explained below. 

Extensions and generalizations of the results are discussed in Section 8. For instance, 
it is demonstrated that double matching could have been omitted in Theorem 2.c of 
Tversky and Kahneman (1992), and the extension to infinite state spaces is given. Section 
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9 investigates the characteristics of the value function, and provides a method for com- 
paring the value functions of different decision makers in Cumulative Prospect Theory, 
analogous to the Arrow-Pratt results for Expected Utility. 2 Loss aversion is character- 
ized ("losses loom larger than gains"). Proofs are presented in the Appendix. 

1. Examples 

We begin with two examples that serve to illustrate the intuitions behind the models 
under consideration and to suggest the axioms that are used to characterize these mod- 
els. It seems useful to discuss some ideas and examples already at this stage, prior to 
giving a formal development. Suppose a biased coin will be tossed, yielding either heads 
(state 1) or tails (state 2). A decision maker chooses between prospects, i.e., payments 
contingent on the result of the toss. Throughout the paper outcomes are interpreted as 
changes of wealth rather than states of wealth. That is, outcomes correspond to gains and 
losses defined relative to the status quo or an appropriate reference point. Therefore we 
use the term prospect instead of act, and value function instead of utility function) Let 
(Xl, X2) be the prospect yielding ~C 1 if state 1 obtains, ~2 if state 2 obtains. 

Example 1.1: Rank-dependence. Consider the following pattern of preferences: 

(11, 20) > (10, 21) (1.1) 

(31,20) < (30,21). (1.2) 

A possible interpretation of the shift of preference from (1.1) to (1.2) is as follows. 
Receiving $11 instead of $10, denoted by [11; 10], contingent on state 1, outweighs [21; 
20], contingent on state 2. However, [31; 30] contingent on state i does not outweigh [21; 
20], contingent on state 2. Apparently [11; 101 has more impact than [31; 30]. We sum- 
marize the inference made from (1.1) and (1.2) by writing [11; 10] > * [31; 30]. Applying 
Expected Utility (EU) gives 

rrlv(ll)  + rr2v(20) - 7rlv(lO) + "rr2v(21) 

and 

rrlV(31) + 'rr2v(20) < arlV(30) + 'rr2v(21), 

where re1 and 7r2 are the decision maker's probabilities for states 1 and 2. It follows 
readily that v( l l )  - v(10) > v(31) - v(30). Under EU therefore, > * reveals orderings 
of value differences. Suppose that we also observe the preferences 

(40, 31) > (41, 30) (1.3) 

(40, 11) ~ (41, 10). (1.4) 
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These preferences reveal the opposite orderings of value differences, i.e., v(31) - v(30) 
- v( l l )  - v(10). Thus a contradiction has resulted under EU, and the above four 
preferences violate EU. We shall see below that there is a sense in which all violations of 
EU are reducible to this form. 4 

This paper investigates generalizations of EU in which the inequality v(11) - v(10) > 
v(31) - v(30) cannot be inferred from the preferences (1.1) and (1.2). All the models 
that we investigate are special cases of Cumulative Prospect Theory (CPT). The first is 
Schmeidler (1989) and Gilboa's (1987) Cumulative Utility (CU), which allows a decision 
maker to pay more attention to a state depending, for example, on whether or not it 
yields the least desirable outcome in a given prospect. Such behavior might be associated 
with pessimism. Note that in (1.1) state 2 yields the most desirable outcomes, whereas in 
(1.2) it yields the least desirable outcomes. A decision maker who pays more attention to 
the less desirable state, will assign more weight to state 2 in (1.2) than in (1.1). This may 
explain the shift in preference. In this case it is not possible to infer v( l l )  - v(10) > 
v(31) - v(30) because the weights attached to the two states are not the same in (1.1) as 
in (1.2). Thus the two pairs of preferences no longer yield contradictory inequalities. The 
inference v(31) - v(30) > v(l l )  - v(10) remains valid because state 2 yields the least 
desirable outcome in both (1.3) and (1.4). 

Under Cumulative Utility (CU), inferences about orderings of value differences 
are valid only if the desirability ordering of the states is the same for all prospects 
under consideration, i.e., if these prospects are comonotonic. In this case it is ensured 
that for each state the weight assigned by the decision maker is the same for all 
prospects. [] 

We turn now to another pattern of preference, involving both gains and losses. 

Example 1.2: Sign-dependence. Consider the following preferences: 

( - 2 ,  - 9 )  > ( - 4 ,  - 6 )  (1.5) 
(4, - 9 )  ~ (2, - 6 )  (1.6) 

(10,4) > (12,2) (1.7) 
(10, - 2 )  < (12, - 4 )  (1.8) 

The first two preferences yield [ - 2; - 4] > * [4; 2]; the second pair yields [4; 2] > * [ - 2; 
-4] .  Under EU, the former implies the inequality v ( - 2 )  - v ( -  4) ___ v(4) - v(2), 
whereas the latter implies the reversed inequality; consequently, EU is violated. The 
above preferences, however, can be accommodated by CPT, which suggests risk aversion 
for gains and risk seeking for losses. Under CPT it will not be possible to infer either 
inequality from the given preferences because the weights attached to state I are not the 
same in (1.5) where the outcomes are negative as in (1.6) where the outcomes are 
positive; the same argument applies to state 2 in the preferences (1.7) and (1.8). It is 
noteworthy that CU cannot account for these preferences. In this case CU, like EU, 
yields contradictory orderings of value differences because the outcomes in state 1 are 
always more desirable than in state 2. Under CPT we permit inferences about orderings 
of value differences only if all prospects are not only comonotonic but also have the same 
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sign profile, i.e., for each state the outcomes are either all nonnegative, or all nonpositive. 

Only when both conditions are met is it ensured that for each state the weight assigned 

by the decision maker is the same for all prospects. [] 

The informal discussion of the above examples has suggested the axioms that are 

needed to characterize the respective models. These axioms will be formulated in the 

following sections. Because this article brings together four different models, a some- 

what heavy notation must be adopted, using indexes for the decision weights and the 

*-binary relations introduced below to distinguish among the models. In contexts where 

not all these models are involved, it is possible to simplify the notation by eliminating 

some of the indices, as in Section 9 below. 

2. Basic concepts 

Let S = {1,..., n} be a finite state space. Subsets of S are called events. X is a set of 

outcomes. We assume that Xis  a connected topological space (e.g., X = IR; for topolog- 

ical definitions, see for instance Kelley, 1955). ~denotes  the set of prospects, i.e., func- 

tions from S toX. We often identify ~ w i t h X  n, so that (xl,..., xn) denotes the prospect 

assigning outcome xj to state j for e achj. Given a prospect f, an outcome x, and a state j, 

we usexjfto denote the prospectfwithf(j)  replaced byx. ~is  endowed with the product 

topology. In this paper outcomes describe changes with respect to a status quo or an 

appropriate reference level. To underscore this interpretation we use the term prospect 

instead of Savage's term act. For an outcome x ~X,  Ydenotes the constant prospext (x, 

... ,x). The status quo is an element of X, denoted by 0. We assume in this paper that the 

status quo is fixed, i.e., we restrict attention to preferences in relation to one status quo. 

The question concerning variations in the status quo lies beyond the scope of the present 

paper. 

Let ~ denote a preference relation on ~ As usual > denotes the asymmetric part, - 

the symmetric part, and 4 ,  < denote reversed preferences. We shall use the same 

notations for the binary relations onXder ived through constant prospects. That is, x ~y  

if and only if s ~ y2 An outcomex > 0 is positive, an outcomex < 0 is negative. L e t X  + = 

{x EX:x  ~ 0 } a n d X -  = {x E X : x  <~ 0}. 

Below we provide standard definitions of additive conjoint measurement. In the gen- 

eralizations of EU studied in this article, additMty is typically satisfied only on specific 

subsets of ~ The shapes of these subsets are characteristic of particular generalizations 

of EU. Standard conditions, such as independence, will be satisfied only on these sub- 

sets; also the definition of essential states should be restricted to those subsets. Hence we 
shall generalize the standard definitions of additivity to subsets F of .~. A function V 

represents ~ o n F  if, for a l l f  g ~ F , f  ~g if and only if V(f) _> V(g). If ~ is represented by 

a function on F, then ~ is a weak order on F, i.e., it is complete on F (f ~ g or g ~ f f o r  all 

f, g @ F) and transitive on F (f ~ g and g ~ h then f ~ h for all f, g, h @ F). If V is 

continuous on F then ~ is also continuous, i.e., {f E F:f ~ g} and (f ~ F:f  ~ g} are closed 
subsets o f F  for eachg E F. Vis (continuously) ordinal if it is unique up to a continuous 
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strictly increasing transformation. It is an interval scale if it is unique up to a positive 

affine transformation, i.e., up to multiplication by a positive constant, and addition of a 

real number. It is a ratio-scale if it is unique up to multiplication by a positive constant. 

Vis an additive representation on F if there exist real-valued functions V1, ..., Vn such 

that V(f) = ~7"= fl/)(f(/')) for a l l f  ~ F; obviously the domains of  the l~'s must contain all 

values f(]) f o r f  E F. If an additive Vrepresents  ~> on F, then the Vy's are called additive 
value functions on F. 

An eventA is inessential on F, or F inessential for short, i f f  - g for all f, g in F that agree 

outside A; an event is essential on F if it is not inessential on F. We call ~ weakly 
monotonic on F if, for all f, g C F, f ~ g whenever f(j) >~ g(j) for all j; ~> is strongly 
monotonic on F if, for all f, g E F, f  > g whenever f(/') ~> g(j) for all j  andf( i)  > g(i) for 

some F essential i. In this article, the expression "on ~ '  is usually omitted. 

A capacity W o n  S is a function on 2 s such that W(9)) = O, W(S) = 1, andA D B 

W(A) >>_ W(B). Obviously, if a capacity Wisadditive, i.e., W(A U B) = W(A) + W(B) for 

all disjoint events A, B, then W is a probability measure. For  a capacity W on S, and a 

function h:S~IR, the Choquet integral, denoted by fshdW, or fsh(i)dW, is 

fire W({i:h(i) >_ t})dt + fro- [W({i:h(i) >- t}) - 1]dt. 

We next describe the subsets o f f  on which the various models are additive. For  E U  this 

is all of  ~ Next we turn to CU. Let  o be a permutat ion on {1 . . . .  , n}, and let ~ :  = {f E 

~ . f (o(1) )  ~< ... ~< f(o(n))}; these are the additive subsets in CU. For  Sign-Dependent  

Expected Utility, introduced below, let ,~+ be the set of nonnegative prospects, and let 

f -  be the set of nonpositive prospects. For  a p ro spec t fde f ine f  + and f -  in the usualway, 

i.e.,f~(s) = f(s) iff(s) ~> 0 , f  + (s) = 0 iff(s) < 0 , f -  (s) = f(s) iff(s) ~< 0 , f -  (s) = 0 ill(s) 
> 0. We say that a prospectflives on even tA  if f(]) - 0 for a l l j  ~ Ac; 5 its positive 
(negative) part lives onA i f f  + ( f - )  lives onA,  i.e., if f(/') ~< 0 (f(]) ~> 0) for allj  E A c. Let  

be the set of prospects for which the positive part  lives onA,  the negative part  onAC; 

these are the additive subsets in the Sign-Dependent  Expected Utility model. We com- 

bine superscripts to denote  intersections. For  example ~ o +  = ~ (3 yv (-/ i f+ = 

~ . . f ( o ( 1 ) )  ~< ... ~< f(o(n)),f = f+,f+ lives onA}. The sets ~ o  are the additive 

subsets for CPT. 

Each of the representations developed in this paper  can be expressed as a weighted 

sum of the form Y~Trjv(f(I')), where the ~rj's are called decision weights. The "rrj's are often 

endowed with superscripts. 

The  following structural conditions are assumed throughout  the paper. 

Structural  Assumption 2.1: S = {1, . . . ,  n} is a finite state space, o~= X n is the set of 

prospects endowed with a connected product  topology, and ~ is a binary relation on ~. 

3. Expected utility 

Under  Expected Utility (EU) there exists a probability measure P on S, and a value 
function v.'X--> IR, such that 
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W'.f ~-) J~s v(f(s) )dP 

represents preferences. This can be rewritten as the weighted sum 

with 

~j = P(]) 

for each j. The model is additive; hence the usual definitions of additive conjoint mea- 

surement can be adopted. Note that qvj > 0 if and only i f x f  > yjffor some outcomesx, y 

and a prospect f, i.e., if and only ifj is essential. Here essentiality is taken on all of F, as in 

the standard treatment of additive conjoint measurement. 

The following * relations are useful for both elicitation and characterization. Define 

[x;y] > * [x';y'], orxy > *x'y'  for short, if there exist prospectsf, g, and a state j, such that 

xjf  > yjg and (3.1) 

x ' j f  < y'jg (3.2) 

We write > * instead of > * if in the lower preference we have ~< instread of < andj  is 

essential. The * relations in general do not have to satisfy natural properties, e.g. > * 

does not have to be asymmetric, and > * does not have to be the asymmetric part of > *. 

As usual, < *, < * denote the reversed relations. The following lemma shows that under 

EU these relations are indeed suited to elicit the function v. While elementary, the result 

is central for this paper; hence we display it as a lemma and give its proof. 

I.emma 3.1. If EU holds then: 

xy > * x 'y '  ~ v(x)  - v(y)  > v(x ' )  - v (y ' ) ,  (3.3) 

xy > *x ' y '  ~ v(x)  - v(y)  >_ v(x ' )  - v(y ' ) .  (3.4) 

Proof. Consider (3.3). We substitute EU in (3.1) and (3.2), to get 

2"rriv(f(i)) + "rrjv(x) > 2"rriv(g(i)) + vjv(y) 
i~j i;ej 

2"rriv(f(i)) + vjv(x')  < 2~riv(g(i)) + "rrjv(y'). 
i;ej i; ~j 

This implies ~rjv(x) - ~jv(y) > qvjv(x') - "rrjv(y'). Thus, by cancelling the evidently 

positive -rrj, we get v(x) - v(y) > v(x') - v(y'). The same reasoning applies to (3.4), 

except that positivity of "rrj (i.e., essentiality of state j) does not follow from the prefer- 

ences, so it has to be assumed. [] 



154 PETER WAKKER/AMOS TVERSKY 

The following condition is necessary for EU: 

Definition 3.2. Tradeoffconsistency is satisfied if there are no outcomes x, y, x ' ,y '  such 
that bothxy > *x'y' andxy ~ *x'y' hold. 

Wakker (1989, Theorem IV.2.7 and Remark A3.1) showed that this condition is also 
sufficient for EU in the presence of the usual assumptions. 

Theorem 3.3. Suppose that the Structural Assumption 2.1 holds, and that at least two 
states are essential. Then EU with continuous value function holds if and only if > 
satisfies the following conditions: 

(a) weak ordering; 
(b) continuity; and 
(c) tradeoff consistency. 

Further, the probability measure is uniquely determined, and the value function is an 
interval scale. [] 

4. Cumulative utility (CU) 

Cumulative utility was initiated by Schmeidler (1989); see also Gilboa (1987). The term 
"cumulative utility" was introduced in Tversky and Kahneman (1992). Another common 
term is "Choquet expected utility." Wakker (1990a) showed that cumulative utility can 
be applied to decision making under risk (where choice alternatives are probability 
distributions over outcomes, instead of acts or prospects), and then, under the natural 
assumption of stochastic dominance, is identical to rank-dependent utility as introduced 
by Quiggin (1982). 

A central concept in cumulative utility is comonotonicity. A set of prospects F is 
comonotonic if for no f, g E F, i,j  ~ S,f(i) > f(j) andg(i) < g(j). It follows readily (see, 
e.g., Wakker, 1989, Lemma VI.3.3) that F is comonotonic if and only i fF  C ~o for some 
permutation o on {1, . . . ,  n}. Hence the sets ~o are maximalcomonotonic sets. As we shall 
see, CU gives additive representations within maximal comonotonic sets; hence some of 
the conditions will be restricted to these sets. We say that CU holds if there exists a 
capacity W and a value function v : X--+ IR, such that 

V f  ~ ~s v(f(i))dW 

represents preferences. This can be rewritten as the weighted sum 
n 

Zwyv{f(/')), (4.1) 
j=l 

as follows. For prospectfwe take a permutation o such thatf(o(1)) ~< ... ~< f(o(n)) and 
define 

r 

'no(/-) = W({o(/'), . . . ,  o(n)}) - W({o(/' + 1), . . . ,  o(n)}) (4.2) 
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for eachj. Dependency on o is expressed by the superscript c (for comonotonicity). Iff(j) 

N f ( i )  for some i ~ j, then the ordering of states i andj  by o can be chosen arbitrarily, and 

the decision weights ~ depend on this arbitrary choice. In that case it should be specified 

for a'~ which o is chosen. Usually no misunderstandings will arise, and, as is easily seen, 

the particular choice of o is immaterial for the end result in (4.1). Hence we usually do 

not indicate the dependence of the decision weights wjc on the permutation o induced 

byf. 
Note that for comonotonic prospects the same o can be chosen. Furthermore, "fro0. ) c  > 

0 if and only if o(j) is essential on the ma x ima l  comonotonic  set with respect to o. A state 

can be essential on one maximal comonotonic set, but inessential on another. 

CU generalizes EU by allowing the decision weights of states to depend on the desir- 

ability ordering of the states induced by a given prospect. Indeed, (4.2) expresses the 

dependence on the set of states that yield an equivalent or better outcome. Such events 

are called cumulative.  CU allows for some forms of optimism or pessimism (see Example 
1.1). The pattern of preferences in this example is obtained by setting 147({1}) = W({2}) 

= 1/3, v(x)  = x forx -< 20, v(x) = 2x - 20 for 20 --- x _< 30, v(x) = 3x - 50 for 30 _< x _< 

40, v(x) = 4x - 90 for 40 <__ x. 

To characterize the model, the * relations are modified as follows. We writexy > * x 'y '  

if (3.1) and (3.2) hold, provided the four prospects in question {xjf, yjg, x ' j f ,  y ' jg} are 

comonotonic. Analogously we write xy ~ c x y *  ' ' if (3.1) and (3.2) hold with weak instead 

of strict preference in (3.2), provided the four prospects in question are comonotonic and 

j is essential on a maximal comonotonic set containing these prospects. The following 

lemma shows that under CU these relations reveal the ordering of value differences: 

Lemma 4.1. If CU holds then: 

* ' ' v ( x )  v ( x ' )  v ( y ' ) ,  xy > c X y  - v(y) > - 

xy  ~ c X ' ' ~ v(x) - v(y)  >_ v(x ' )  - v(y ' ) .  

Proo f  The proof is identical to the proof of Lemma 3.1, only now the decision weights 

"rri and -a-j are replaced by "rr c and "rr~, respectively. Comonotonicity guarantees that the 

same set of decision weights rr~ ... "rr c can be used for all prospects in question. [] 

The following condition is necessary for CU: 

Definition 4.2. Comonoton ic  tradeoffconsistency is satisfied if there are no outcomes x, 
t ! * i t * t r 

y , x  , y  such that bothxy >~ c x y andxy < c X y  hold. 

Wakker (1989, Theorem VI.5.1 and Remark A3.1) showed that this condition is also 
sufficient for CU in the presence of the usual assumptions. 

Theorem 4.3. Suppose that the Structural Assumption 2.1 holds, and that there exists 

an F ~ with at least two F ~ essential states. CU with a continuous value function holds 

if and only if ~> satisfies the following conditions: 

(a) weak ordering; 
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(b) continuity; 
(c) comonotonic tradeoff consistency. 

Further, the capacity is uniquely determined, and the value function is an interval 
scale. [] 

5. Sign-dependent expected utility (SDEU) 

In this section we present a generalization of EU that allows for sign-dependence, but 
coincides with EU on ~+ and on o ~ -  . This generalization, called Sign-Dependent Ex- 
pected Utility (SDEU), is of limited interest on its own; it is presented as a preparation for 
Cumulative Prospect Theory. A set F of prospects is cosigned if there do not existf, g E F, 
and a state j, such thatf(j) > 0, 0 > g(j).6 It is easily seen that F is cosigned if and only if 
F C o%4 for some eventA. Thus sets ~ are maximal cosigned sets. SDEU holds if there 
exist two probability measures P+ (associated with gains) and P -  (associated with 
losses), and a value function v, such that 

v:f  fs VO +(i))dP + + g v ( f - ( i ) ) d P -  (5.1) 

represents preferences. This model satisfies weak monotonicity since an increase in 
payment o f f  will increase ei therf  + or f -  or (if the increase is from negative to positive) 
both, and will decrease neither. For the following expression it is necessary to set v(0) = 
0, as is commonly done in sign-dependent models. We shall assume this throughout the 
paper for the sign-dependent models. Then (5.1) can be rewritten as 

j=l 

where ~ is P + (j), also denoted by'rr +, iff(j) is positive, ~ is P - (j), also denoted by Trj-, 
i l l( j)  is negative. The choice of ~ (s immaterial iff(j)  is 0; it can be either ~rj + or "rr.-. 
Note that Trj + > 0 if and only if j  is essential on a maximal cosigned set where posit(ve 
outcomes are assigned to state j; the same applies to wj- > 0 (with negative outcomes 
assigned to state j). Note that a state can be essential for positive outcomes, and inessen- 
tial for negative outcomes. 

> *X'  i To characterize the model, the * relations are modified as follows. We write xy s Y 
if (3.1) and (3.2) hold, provided the four prospects in question {xjf, yjg, x ' f ,  y'jg} are 
cosigned. Analogously we write xy ~> s* x'y' if (3.1) and (3.2) hold with weak instead of 
strict preference in (3.2), the four prospects in question are cosigned, andj is essential on 
a maximal cosigned set containing the four prospects. Note that either x, y, x', y'  are all 
nonnegative, or nonpositive. The following lemma shows that under SDEU these * 
relations reveal the ordering of value differences: 

Lemma 5.1. If SDEU holds, then: 

xy v(x)  - v (y)  > v ( x ' )  - @ %  

* x ' y '  xy v(x)  - v (v)  -> - v v') 
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Proof. The proof is identical to the proof of Lemma 3.1, only now the decision weights 7r i 

and wj are replaced by ~ and ~j, respectively. Because the prospects in question are 

cosigned the same decision weights ~1 -.. "rrsn can be used for all prospects in question. [] 

Thus the following condition is necessary for SDEU: 

Definition 5.2. Cosigned tradeoffconsistency is satisfied if there are no outcomes x, y, x', 

y'  such that bothxy ~ * x'y' andxy < ~ x'y' hold. 

Again, this condition turns out to be sufficient in the presence of the usual conditions. 

We introduce two additional conditions, which will be further discussed in Section 6. 

Gain-loss consistency is satisfied if for allf, g ~ ~ , f  - 0,f+ - g+,  and f -  - g -  implies 

g - 0. We call ~> truly mixed if there exists a p ro sp ec t fw i th f  + > 0 and 0 > f - .  The 

following proposition is a straightforward corollary of Theorem 6.3. (Cosigned tradeoff 

consistency will, by Theorem 3.3, imply additivity of the representation both on ~-+ and 

on o~-, provided these sets have two or more essential states.) 

Proposition 5.3. Suppose that the Structural Assumption 2.1 holds and assume the 

truly mixed case. Then SDEU with continuous value function holds if and only if ~> 

satisfies the following conditions: 

(a) weak ordering; 

(b) continuity; 

(c) gain-loss consistency and cosigned tradeoff consistency. 

Further, both probability measures are uniquely determined, and the value function is 

a ratio scale. [] 

6. Cumulative prospect theory (CPT) 

This model combines the two preceding generalizations of EU. A set of prospects is 

sign-comonotonic if it is both cosigned and comonotonic. It is easily seen that a set is 

sign-comonotonic if and only if it is a subset of a set ~ o .  Hence the sets ~ o  are the 

maximal sign-comonotonic sets. They are of the form {f ~ o~(o(1)) ~< ... ~< f(o(k)) <, 0 
<, f(o(k + 1)) ~ ... <f(o(n))}, for some permutation o, integer k, and event A = 
{o(k + 1), . . . ,  o(n)}. In CPT we have an additive representation within each set ~o~o; 

hence such sets ~4o will play a central part in the proofs. 

The notation was chosen to simplify the formulation of the model presented and 

axiomatized in Theorem 6.3. Consequently we integrate for negative outcomes in a way 

dual to that for positive outcomes, and the formulas will be different than those for CU. 

Two capacities W + and W-  are associated with gains and losses respectively. We also 
use the dual of W - ,  denoted by 1111-, and defined by IV- (A) = 1 - W -  (AC),A C S. As 

usual v denotes a value function. Now preferences are represented by 

V : f ~  fs V(f+(i))dW + + fs V(f-(i))dIV -.  (6.1) 
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Note that for negative outcomes we use the dual of W- .  Thus C U  results if W + is the 
dual of W- .  The following rewriting of (6.1) shows an appealing feature of the use of the 
dual capacity for the negative outcomes: 

fiR+ W+ ({i : v(f(i)) >- t})dt - L -  [ W -  ({i : v(f(i)) <- t})ldt. (6.2) 

Without loss of generality we assume v(0) = 0. Then we can rewrite (6.1) as 
n 

q T C S v  " ~" j (f(j)), (6.3) 
j = l  

where the decision weights rr~ s are defined as follows. For prospectfwe take a permuta- 
tionoon{1, . . . ,n}andaksuchthat f (o(1))  < . . . .  <.f(o(k)) <. 0 < . f ( o ( k  + 1)) ~< ... ~< 
f (o(n)) .  Next we define 

forj < k: rroCS0) = trot(/)) = W-({o(1), . . . ,  o(j)}) - W-({o(1), . . . ,  o(j - 1)}), (6.4) 

f o r j > k :  cs = c + . . . ,  - "%0) fro0)) = W +  ({o(j ) ,  . . . ,  o (n ) } )  - W + ( {o( j  + 1), o (n)} ) .  (6 .5)  

So the decision weights are as in CU, except that for positive f ( j )  we use W +, the 
gain-capacity, and for negative f(j) we use W - ,  the dual of the loss-capacity. Note that 

c s  > �9 "%q)) 0 af and only if o(j) is essential on the related maximal sign-comonotonic set. 
Recall that a state can be essential on one maximal sign-comonotonic set, but inessential 
on another. The comments following (4.2) about potential ambiguity in the notation of 
the decision weights apply here as well. As noted earlier, we use the double index to 
distinguish CPT from the other models discussed in the previous section. The double 
index can be dropped when this model alone is considered, as in Section 9. 

To characterize the model, the * relations are modified as follows. We writexy >'csXy* ' ' 

if (3.1) and (3.2) hold, provided the four prospects in question {xjf, yjg, x'jf, y'jg} are 
sign-comonotonic. Analogously we write xy >>- c*s x'y'  if (3.1) and (3.2) hold with weak 
instead of strict preference in (3.2), the four prospects in question are sign-comonotonic, 
and j is essential on a maximal sign-comonotonic set containing these prospects. The 
following lemma shows that under CPT these relations reveal the ordering of value 
differences: 

Lemma 6.1. If CPT holds, then: 

xy > c s X y  ~ v ( x )  - v(y) > v(x')  - v(y'),  

xy >~csXy ~ v(x) - v(y) > v(x')  - v(y').  

(6.6) 

(6.7) 

Proof. The proof is identical to the proof of Lemma 3.1, only now the decision weights ' rri 

and ~r~ are replaced by wcs and "rr cs, respectively Sign-comonotonicity ensures that the 
J t J " 

same set of decision weights "rr~ s ... ~r cs can be used for all prospects in question. [] 

The following condition is necessary for CPT: 



AN AXIOMATIZATION OF CUMULATIVE PROSPECT THEORY 159 

Definition 6.2. Sign-comonotonic tradeoff cons&tency is satisfied if there are no out- 

comesx, y , x , y  such that bothxy * ' '  ' ' >~csXy andxy <*sx'y' hold. 

We shall only consider the case where tradeoffs between positive and negative out- 

comes can occur. That is, we assume that >~ is truly mixed: there exists a prospectfwith 

bo th f  + > 0 and 0 > f - .  In the central theorem of this paper we shall also use gain-loss 

consistency (defined in Section 5). In Section 8 we show that this condition can often be 

omitted. Gain-loss consistency is somewhat weaker than the double-matching condition 

used by Tversky and Kahneman (1992), but it is the only implication used in their proof. 

The proof of the following result is given in the Appendix: 

Theorem 6.3. Suppose the Structural Assumption 2.1 holds, and assume the truly- 

mixed case. Then the following two statements are equivalent: 

(i) Cumulative Prospect Theory holds with a continuous value function; 

(ii) The preference relation ~> satisfies the following conditions: 

(a) weak ordering; 

(b) continuity; 
(c) gain-loss consistency and sign-comonotonic tradeoff consistency. 

Further, both capacities are uniquely determined, and the value function is a ratio 

scale. [] 

7. Summary of results 

Table 7.1. Orderings of tradeoffs are revealed through preferencesxf ~> yjgand eitherx'jf< y'jgorx'Jf<~ y'jg. 
Columns and rows in the table indicate the restrictions imposed upon the four prospects in question. The 
theory characterized by tradeoff consistency with respect to the revealed orderings of tradeoffs is given in the 
appropriate ceils. The relevant phenomena that deviate from EU are given in parentheses. 

cosigned 
(sign-dependence) m 

comonotonic 
(rank-dependence) CPT CU 

-- SDEU EU 

8. Extensions and generalizations 

Theorem 6.3 is the central representation theorem of this paper. Every preference rela- 

tion satisfying the conditions of further theorems below also satisfies the conditions of 

Theorem 6.3. However, as demonstrated below, some of the assumptions of Theorem 
6.3 can be weakened in special cases because they are implied by the other assumptions. 

Let us also mention that the outcome-dependent capacity form, characterized in Chew 
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and Wakker (1991), is more general than CPT. For decision making under risk, this 
model was presented in Green and Jullien (1988), Chew and Epstein (1989), Chateau- 
neuf (1990), Segal (1993), and was also discussed in Wakker (1993c). 

8.1. Omitting gain-loss consistency in theorem 6.3 

Gain-loss consistency is often implied by the other conditions, it can sometimes be 
omitted. In the proof of the following observation, given in Appendix A3, somewhat 
more general results are given. Here we only give the most accessible result. 

Observation 8.1. Let n _> 3. Suppose the following monotonicity condition is satisfied: 
[Vi :f(i) > g(i), 3i :f(i) > g(i)] ~ f  > g. Then in Theorem 6.3 the condition of gain-loss 
consistency can be omitted. [] 
Thus in Theorem 2.c of Tversky and Kahneman (1992), the condition of double 

matching can be omitted. For n = 2 the result of the above observation does not hold, as 
Figure 1 shows. It also illustrates that gain-loss consistency cannot be omitted in Theo- 
rem 6.3. 

V= I f(2) 
f(1)= ~ f(1)/2+f(2) 
-2ff2) 

V=f( 1 )+2f( o 2 )  . , ~ , , ~  ~ Og 

V=ffl)+f(2) 

v=f(1)+f(2) 

f(P, 

�9 h 

V=f(1)+f(2) 

Figure 1. (Necessity of gain-loss consistency). Preferences are represented by the function V. Gain-loss consis- 
tency is violated: with -g(1)  = g(2) = h(1) = - h ( 2 )  = 2, we haveg + - h + , g -  - h - ,  butg > h. So CPT is 

violated. A CPT - representation can be established on the first three quadrants, by setting W({1}) = W({2}) = 
1A, and v = identity. A CPT-representation can also be established on the first, third, and fourth quadrant, by 

setting W({1}) = W({2}) = 1/2, v is identity on I R - ,  and v is twice identity on IR +. In particular on all 
sign-comonotonic sets F A~ we have a CPT representation. Also, ifx, y ,x ' , y '  are of a same sign, then [x;y] > * 

[x'; y'] if and only ifx - y _> x' - y', so that sign-comonotonic (even cosigned) tradeoff consistency holds. All 
conditions of Statement (ii) in Theorem 6.3, execpt gainqoss consistency, are satisfied. 
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8.2. A weakening of sign-comonotonic tradeoff consistency: Characterizing CPT as E U  

within each sign-comonotonic subset 

Under monotonicity conditions, slightly stronger than those in Observation 8.1, another 
generalization is possible. It then suffices to obtain EU within each sign-comonotonic 

* t ! subset. To formulate the result, we definexy > Aox y if there exist prospects f, g, and a 
state j, such thatxjf ~ yjg a n d x ' f  < Y'ig, andxjf, yjg, x'jf, y'jg E ~ o .  So this is likexy > 
cs x y ,  only now the sign-comonotonic set ~ o  has been incorporated in the notation. 

Similarly we writexy ~ *Aox'Y' ifxff ~ yjg andx'Jf ~ y'jg, andx f  , yjg, x'jf, y'jg E ~Ao, and, 
finally, j is ~o ~ ~  essential. We say that ~ satisfies weaksign-comonotonic tradeoffconsistency 
if there do not exist y o  andx, y,x'y' such that bothxy * ' ' * > AoXY andx'y' ~ AoXY hold. This 
condition is weaker than sign-comonotonic tradeoff consistency because it only ensures 
tradeoff consistency within the same set ~ o .  It implies the existence of a CPT representa- 
tion with each ~jAo, as will be demonstrated in the proof of Proposition 8.2. Actually, 
any condition giving a CPT representation with each set y o  (i.e., an EU represen- 
tation) will imply weak sign-comonotonic tradeoff consistency; hence, it could re- 
place the latter in the proposition below. Figure 1 also shows that, for n = 2, a CPT 
representation within each maximal sign-comonotonic set ~ o  does not imply CPT. 

Proposition 8.2. Let n _> 3, and suppose the following monotonicities are satisfied: [Vi: 
f(i) >~ g(i)] ~ f  ~ g, [Vi :f(i) ~ g(i), 3i :f(i) > g (i)] ~ f  > g. Then in Statement (ii) of 
Theorem 6.3, not only gain-loss consistency can be dropped, but also sign- 
comonotonic tradeoff consistency can be weakened to weak sign-comonotonic trade- 
off consistency, or, alternatively, the requirement that within each sign-comonotonic 
set an EU representation holds. [] 

8.3. Stronger conditions 

The tradeoff consistency conditions can be strengthened. In CU, for revelations of * 
relations from (3.1) and (3.2), only the cumulative events concerning statej need to be 
the same, not the entire rank-orderings of the states. In SDEU, for revelations of * 
relations from (3.1) and (3.2), only the signs of the outcomes x, y, x', y'  need to be the 
same, not the entire sign-profile of prospects. In CPT the combinations of these obser- 
vations hold. The following result is derived by substitution: 

Proposition 8.3. 

Under CU, no contradictions can arise between orderings of value differences derived 
from (3.1) and (3.2) whenever: 

there exists a partition {.4, B} of S\{j} such that 

[Vi E A  :f(i) < x,x' ,y,y'] and [Vi ~ B :f(i) ~> x,x',y,y'], 
and the same holds for g instead off. 

Under SDEU, no contradictions can arise between orderings of value differences 
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derived from (3.1) and (3.2) whenever all x, x', y, y'  are nonnegative, or they are all 
nonpositive. 

Under CPT, no contradictions can arise between orderings of value differences de- 
rived from (3.1) and (3.2) whenever 

there exists a partition {A,B} of S\{j} such that 

[Vi E A: f(i) <, x,x', y, y'] and [Vi E B: f(i) >~ x,x', y, y'], 

the same holds forg instead off, and allx, x ' ,y,y '  

are nonnegative, or they are all nonpositive. [] 

The tradeoff consistency condition used in Tversky and Kahneman (1992) to charac- 
terize CPT is stronger than sign-comonotonic tradeoff consistency, and weaker than the 
last condition above. The prospects in (3.1) and (3.2) are assumed comonotonic, but they 
need not be cosigned, onlyx, x',y,y' should have the same sign. Another difference is that 
Tversky and Kahneman impose the conditions with respect to every subpartition of the 
state space, whereas this paper only considers the most refined partition. 

8.4. Infinite state spaces 

Finally, we briefly discuss the extension to infinite state spaces. So we assume now that 
the state space S is an infinite set. The outcome setX is, as before, a connected topolog- 
ical space. Prospects are functions from S toX. S andXcan be endowed with an algebra, 
or a ~r-algebra, and then prospects can be restricted to those that are "measurable;" this 
does not affect the subsequent discussion. ~ denotes the set of simple prospects, i.e., 
prospects taking only a finite number of outcomes. We extend the assumption of true 
mixedness, by assuming that there exists a simple prospectf E ~ with bo th f  + > 0 and 

0 ~ f - .  

Observation 8.4. Theorem 6.3 can be modified by allowing the state space S to be 
infinite, and then restricting the conditions and representation to the simple pros- 
pects. [] 

Here continuity of the preference relation is imposed within each set of simple pros- 
pects, measurable with respect to a fixed finite partition of S. The extension to nonsimple 
prospects can be obtained by means of the techniques explicated in Wakker (1993b). In 
short, the extension to bounded prospects 7 is obtained by imposing monotonicity (f(s) 
g(s) for all s then f ~ g), and the requirement that for each bounded prospect f there 
exists a simple prospect g such that g + ~ f+,  g -  N f - ,  and g - f. The extension to 
nonbounded prospects can be obtained by "truncation-continuity" conditions, but will 
not be discussed here any further. 

A useful condition for capacities is solvability. Capacity Wis solvable if for all eventsA 
C C and all W(A) < b <_ W(C) there exists an event B such thatA C B C C and W(B) 
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= b. This condition was introduced by Gilboa (1987), who used the term convex-ranged. 
The preference condition to characterize solvability of W + in the above observation is as 
follows. Let (or, A; O,A c) denote the prospect that assigns outcome a to eventA, and 0 to 
event A c. The following condition characterizes solvability of W +, as follows from 
substitution: 

For all eventsA C C, outcomes ~ ~ 0, and prospects f, if (a,A; 0,A r ~< f ~ (o~, C; 0, 
Cc), then there exists an event B such thatA C B C C, a n d f  - (~x, B; 0, BC). 

Similarly, solvability of W-  is characterized by the following condition: 

For all eventsA C C, outcomes cx < 0, and prospects f, if (o~,A; 0,A c) ~> f >~ (~x, C; 0, 
Cc), then there exists an event B such thatA C B C C, a n d f  - (oL, B; 0, Be). 

9. Characteristics of the value function 

In this section we compare the curvature of value functions, derive diminishing sensitivity 
and loss aversion, and characterize some parametric families of value functions. We 
begin by extending the classical results of Arrow-Pratt on comparability of utility func- 
tions to Cumulative Prospect Theory. It is noteworthy that these results can be obtained 
globally, as in Expected Utility, rather than in terms of local utility functions exploited by 
Machina (1982). In EU, comparisons of utility functions are interpreted in terms of risk 
aversion. In CPT, the comparisons of value functions are interpreted in terms of the 
evaluation of outcomes, not in terms of attitudes towards risk. 

By means of the orderings of tradeoffs, we can compare orderings of value differences. 
Thus we obtain transparent characterizations of the classical properties of value func- 
tions. Furthermore, the proofs are so simple, given Lemma 6.1, that we shall not elabo- 
rate them. 

For Quiggin's rank-dependent utility for decision making under risk, results concern- 
ing "risk aversion" were given by Yaari (1987), Chew, Karni, and Safra (1987), Chew 
(1989), Chateauneuf and Cohen (1990), and others. These papers used the condition of 
aversion to mean-preserving spreads, or conditions of a similar nature. At any rate, these 
conditions simultaneously restrict the value function and the decision weights, and do 
not separate between them. The latter was done in Wakker (1990b); he used, in the 
context of rank-dependent utility, derived tradeoffs, similar to the present paper. 

We only consider the case X = IR below. The results also hold for any outcome set 
consisting of a real interval within IR that contains 0 in its interior. 

Assumption 9.1. All hypotheses of Theorem 6.3 hold, and X = IR. The ordering of 
outcomes by ~ coincides with the natural ordering _>. [] 

Obviously, the above assumption implies that the value function is strictly increasing. 
Now suppose there are two decision makers ~ 1, ~ 2 each satisfying Assumption 9.1, 
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with value functions vl and V 2 respectively. The following results hold without additional 

restrictions on the gain- and loss capacities of the two decision makers. Let > *s I be 

derived from > 1 as above. When there is no ambiguity, we omit the subscripts c, s. The 

reversed and nonstrict relations are defined similarly; the same notations apply to > 2 

We say that > 2 exhibi ts  greater diminishing sensitivity than > 1 if there are no a > [3 _> y 

> 8 _> 0 such that c~[3 ~< "1 y8 and or[3 > *2 y~,  and there are no o~ _ [3 _< y ___ 8 _< 0 such 
that [3c~ ~< "1 8y and 13a > *2 8y .  

It is instructive to interpret this relation in terms of Expected Utility. The first part of 

the definition, pertaining to the positive domain, corresponds in Expected Utility to a 

greater decrease in marginal utility. The second part of the definition, pertaining to the 

negative domain, corresponds in Expected Utility to a greater increase in marginal util- 

ity. Recall that the basic property of the utility function in Expected Utility is concavity, 

or decreasing marginal utility. Consequently, utility functions are naturally compared in 

terms of the degree of concavity as was done by Arrow-Pratt. In contrast, the basic 

property of the value function in prospect theory is diminishing sensitivity giving rise to 

an S-shape function, concave for gains and convex for losses. For empirical evidence, see 

Tversky and Kahneman (1992). Consequently, value functions are more naturally com- 

pared in terms of the degree of diminishing sensitivity as we do in the present section. 

Theorem 9.2. Under CPT, > 2 exhibits greater diminishing sensitivity than > 1 if and 

only if V 2 = + o r  1 where 0 is concave on I R  + and convex on I R  - .  [] 

As a corollary we obtain the characterization of a concave/convex value function v of a 

single preference relation > on I R  + and I R  - separately. The result follows readily from 

Theorem 9.2. Note that the combination of (a) and (d) below characterize an S-shape 
value function discussed above. 

Corollary 9.3. Under Assumption 9.1 we have: 8 

(a) {v is concave on I R  + } <=> {[x + e; y + e] > * [x; y] for no e > 0, x > y _> 0}; 

(b) {v is concave on l R -  } c> {[x + e;y + e] >*  [x;y]fornoe > 0,0 ->x + e > y  + e}; 

(c) {v is convex  on l R  + } c> {[x - e;y - e] >* Ix;y] forno e > 0,x - e > y  - e _> 0}; 

(d) {v is convex  o n l R -  } <=> {[x - e;y - e] >*  [x;y] forno e > 0,0 _>x >y}. [] 

Next we turn to loss aversion (see Figure 2). Loss  aversion holds if the value function is 
steeper for losses than for gains. That is, for allx > y >_ O, v(x) - v(y)  <_ v ( - y )  - v ( - x ) .  

This property is easily characterized in EU or CU by excluding, for all x > y __ 0, Ix; y] 

> * [ - y ;  - x ]  or [x;y] > c* [ - y ;  -x ]  respectively. In order to characterize loss aversion in 

CPT, however, we must adopt a more complicated procedure because we cannot directly 
compare value differences of positive and negative outcomes. Supposex > y __ 0, and we 
find prospects f, g such t h a t f  + N s g + N ~ f -  _ _s and g -  - -)7 (see figure 2a). 

Then the ordering of v(x)  - v(y)  and v ( - y )  - v ( - x )  can be inferred from the prefer- 
ence be tweenf  and g: 

v(x)  - v(y)  <_ v ( - y )  - v ( - x )  ~=>f< g. 
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f~-g 0' 

f- ~ -~, 

Figure 2a. The easy case where 
x,y,-x,-y can be matched by 
Qg+, f~ and g- respectively. 
The preference between f and g 
reveals the ordering of the 
value difference between x,y 
and between -y,-x. If f~-g then 
the former difference is larger. 

f~-g 

s 

a}_j 
s 

s 

- i  

Figure 2b. Here x,y,-x,-y 
cannot be matched by ~g+, 

and g- as in a). If x and y 
are not too far apart, then x+, 
y§ x-, y- exist that can be 
matched by ~ ~ f; and g- 
respectively, and such that 
[x+;y+] matches [x;y] and 
[y.;x-] matches [-y;-x]. The 
preference between f and g 
reveals the ordering of the 
value difference between 
x+,y+ and that between 
x_, y_, thus indirectly the 
ordering of value difference 
between x,y and -y,-x. 

FIGURE 2 (Loss aversion). Let x>y>0. Because of sign-dependence, there is no direct way to 
reveal the ordering of the value difference between x and y and that between -y and -x. The 
comparison is obtained indirectly, through the preference between prospects f,g as above. 

A preference f>-g reveals that the value difference between x and y is larger than that 
between -y and -x. That is, the preference f~-g is to be excluded by loss aversion. 

Loss avers ion  in the  smal l  impl ies  loss avers ion in the  large. E v e n  if a d i f ference v(x) 

- v ( y )  is very small,  if x, y are  ex t reme  an d  the  va lue  func t ion  is b o u n d e d ,  it may  still be  

imposs ib le  to f ind a prospec t  f satisfying bo th  f +  N s a n d  f -  - - Z ,  or  a p rospec t  g 

satisfying bo th  g -  ~ -3~ g + N )S T o  h a n d l e  these  cases, we f ind Ix + ; y + ] tha t  ma tches  

[x;y], a n d  [y _ ;x _ ] tha t  ma tches  [ - y ;  - x ] ,  wh e re  the  new  ou t comes  are  all close to 0 (see 

figure 2b). Wr i t i ng  ~c+* for the  in te r sec t ion  of  ~> c + and  ~< c +,  a n d  ~ c -  for the  in ter -  

sect ion of  ~> *_ a n d  ~<c-,* a n d  d ropp ing  subscripts,  we can  prove: 

P ropos i t i on  9.4 (see figure 2b). Suppose  A s s u m p t i o n  9.1 holds. T h e n  loss avers ion  

holds  if and  only  if t he re  are  n o x  > y _ 0, x + > y + _> 0, 0 _> y _ > x _ ,  and  f,  g, such 

that:  

Ix;y] -*  [x+;y+], [-y; -x] -*  [y_;x_], 
f +  N f + , g +  _ f + , f -  _ f _ , g -  N f _ , a n d  f > g .  [] 

Note  tha t  concavi ty of  v on  the  en t i re  d o m a i n  can  be  o b t a i n e d  by c o m b i n i n g  loss 

avers ion with cond i t ions  (a) a n d  (b) o f  Corol lary  9.3. 

Next  we tu rn  to the  charac te r iza t ion  of  the  log/power  and  l inea r / exponen t i a l  famil ies  

of  va lue  funct ions .  T h e  fol lowing resul ts  are  direct  corol lar ies  of  T h e o r e m s  3 and  4 in 

M i y a m o t o  (1988): 
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Proposition 9.5. Suppose Assumption 9.1 holds. Invariance of preference on ~-+ with 

respect to multiplication of outcomes by a positive constant 9 (Vf, g E o ~+ ,  ~r > 0 : f  3 

g ~=~ of  3 o'g) characterizes the log/power family, i.e., either v :x ~ Xx ~ + ~" for positive 

h x er and real % or v : x ~ Mog(x) + ~" for positive k and real -r (the latter parame- 
trized by o" = 0). [] 

Proposition 9.6. Suppose Assumption 9.1 holds. Invariance of preferences on ~-+ with 

respect to addition of a positive constant m to outcomes (Vf, g ~ Y+, r > 0 : f  3 g ~ - r  

+ f 3 "r + g) characterizes the linear/exponential family, i.e., either v : x ~ Xe "x + "r 

for positive h • ~ and real "r, or v : x ~ Xx + "r for positive X and real "r (the latter 
parametrized by o- = 0). [] 

Naturally, the same results can be applied to ~-- to characterize the same forms of v 

on I R - .  The parameters for v on IR - are independent of the parameters on IR +. 

10. Appendix: proofs 

10.1. Appendix A1. A preparation: the proportionality lemma 

The following lemma serves to derive proportionality of additive value functions: 

I .emma A1 [Proportionality lemma]. Suppose (V1, V2) are nonconstant continuous 

additive value functions for a binary relation 3 '  on a connected topological product 

space C • A, (W1, W2) nonconstant continuous additive value functions for a binary 

relation 3 "  on a connected topological product space C • B. Write vl wl 3 '* sit1 if 

there exist a2, b2 E A such that (Vl, a2) 3 '  (Wl, b2), (Sl, a2) 4 '  (tl, b2); if the latter 

preference is strict write VlWl > '* sit> Analogously define 3 "* and > "* on C from 

3 "on C x B. Suppose there do not exist v 1, w 1, sl, t I such that [v lw 1 3 ' *  s it I and s it 1 

>"* VlW~] or [VlWl > '* sit1 andsff l  3 "* VlWl]. Then V1 = -r + ~WI for real "r and 
positive ~. 

Proof. Note that (Vl, a2) > '  (W1, a2), (Vl, a2) 4 '  (Vl, a2) and @1, a2) 3 "(Vl, a2) imply 

(vl, a2) 3 "  (wl, a2); thus Vl(Vl) -> Vl(Wl) implies Wl(Vl) - Wl(Wl). The reversed 
implication holds similarly, and necessarily V1 -- ~oW1 for a strictly increasing transfor- 

mation + that furthermore must be continuous, because it is onto from one interval to 

another. Now the condition in the lemma implies that V1 differences are ordered the 

same way as W1 differences whenever both the V1 differences can be matched by 1/2 

differences, and the W1 differences by W2 differences. Next let Vl(Xl) E int(Vl(C)). 

There exists an open interval ]Vl(v0, VI(yl)[ around Vl(xl) so small that the difference 

VI(Yl) - Vl(vl) can be matched by a V2 difference, and also the difference WI(Yl) - 
Wl(vl) can be matched by a W2 difference. Hence on this open interval around Vl(xl) 
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the transformation dO preserves ordering of differences. It must be affine there. So the 
continuous dO has second derivative 0 at every interior point Vl(xl) of its domain, and 
consequently is anne.  [] 

10.2. Appendix A2. Proof of theorem 6.3 

In this section we prove Theorem 6.3. Since necessity of the conditions is obvious, we 
shall only establish sufficiency, and the uniqueness results. 

First we derive some elementary implications. A first implication is sign-comonotonic 

triple cancellation. This holds if [x0f ~< yig, x'i[ ~ y'ig, xo ~ ~ Yig' ~ x ' i~  ~ Y'ig'] for all i,x, 

. . . ,  g' for which the four prospects are sign-comonotonic. It is the (generalized) triple 
cancellation condition (see, for instance, Wakker, 1989, or, for two dimensions, Fish- 
burn, 1970, or Krantz, Luce, Suppes, and Tversky, 1971) restricted to maximal sign- 
comonotonic subsets. Note that for a state i which is inessential on the maximal sign- 
comonotonic set containing the prospects in question, the condition trivially holds true. 
For other states i the condition is the restriction of tradeoff consistency to the case where 
all orderings of tradeoffs have been derived from one same state i, and from one same 
maximal sign-comonotonic set. An implication of sign-comonotonic triple cancellation is 
sign-comonotonic independence. This holds if [Xi? ~ Xig ~ x ' i f  ~ x'ig-'] for all i,x, . . . ,  ~for  
which the four prospects are sign-comonotonic. It is the well-known independence con- 
dition, restricted to maximal sign-comonotonic sets. It follows from sign-eomonotonic 
triple cancellation by substitutingf = g = ]~,x = y,x'  = y ' , f '  = f, g' = ~ It says that on 
sign-comonotonic sets, preferences are independent of a common outcome. It then 
follows, stronger, that: 

Lemma A2.1 [Strong Sign-Comonotonie Independence]. On sign-comonotonic sets, 
preferences are independent of any number of common outcomes. 

Proof. A typical case is illustrated in figure 3. For the context of cumulative utility a 
formal argumentation has been given in Wakker (1991). The argumentation is not af- 
fected by sign-dependence. [] 

I_emma A2.2 [Monotonicity lemma]. Weak monotonicity is satisfied, as well as strong 
monotonicity on each maximal sign-comonotonic set. 

Proof. By Wakker (1989, Lemma VI.4.10), weak monotonicity is satisfied on o~+ as 
well as on ~--. By Lemma A2.1, weak monotonicity is also satisfied within each set ~o~,4: If 
x ~ f(i), and bo thx / fandfa re  contained in Y ,  then bothx andf(i) must be nonpositive 
or nonnegative. Let it be the former; we then first obtainx d -  ~ f - ,  and nextx/f ~ f b y  
Lemma A2.1. Finally, this implies weak monotonicity in general, because xi ~ f c a n  be 
inferred from transitivity and preferencesx/f ~ x i l f  ~ .. .  ~ ximf ~ f, wherexi ~ xi 1 

. . .  ~ Xi m ~ f(i) are chosen such that each subsequent pair is sign-comonotonic. 
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0 : outcomes of prospect g 
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�9 : some common outcomes 
are to be replaced by new 
ones. These new outcomes 
have been indicated by II. 

Figure 3(Independence of common outcomes). A = {4, 5 . . . . .  9} and o = identity (outcomes "increase"). {2, 3, 

5, 6, 9} is the set of states at which the (common) outcomes are to be replaced. It is to be shown that this 
replacement does not affect preference. The common outcomes are replaced one by one, first those that are to 

be increased "from right to left", for, subsequently, states 9, 3, 2, next those that are to be decreased, "from left 

to right", for, subsequently, states 5, 6. These replacements do not affect the rank-ordering of the states; thus, 

by comonotonic independence, they indeed do not affect preference. Note that, to preserve rank-ordering, the 

common outcome at state 3 should be replaced prior to the common outcome at state 2, and the common 

outcome at state 5 prior to that at state 6. 

Next letx > f ( i ) ,  where i is ~o ~A~ essential and both prospects are contained in ~jAo. Say 

both x andf(i) are nonnegative. Then i is, by comonotonic independence, also essential 

on U~Ao+. Here usual "non-sign-dependent" results can be invoked, and x0 r+ > f+  

follows from Wakker (1989, Lemma VI.4.10). From strong sign-comonotonic indepen- 

dence (Lemma A2.1),xif > f follows. [] 

Because ~ is truly mixed we have: 

There exists an event R and an ordering 6 such that for a prospect in ~ 6  

both the positive and the negative part are not equivalent to 0. (A2.1) 

Obviously, given the existence of a prospect with positive and negative part nonequiva- 

lent to 0, R and 6 as in (A2.1) can always be found. We establish an additive representa- 

tion on a two-dimensional subspace, with negative outcomes in one dimension, and 

positive outcomes in the other. R c is ~ 6 -  essential (compare the negative part of the 

above-mentioned prospect with 0), and must contain ~ 6 -  essential states; analogously 

R is ~ 6 +  essential, and contains ~ + +  essential states. In the remainder of the con- 

struction of the two-dimensional representation we suppress ~ 6 -  inessential states 
from R c, and ~ 6  + inessential states from R on ~ 6  +. That is, we assume that all states 

are essential. Suppression of inessential states affects neither preference nor the condi- 

tions that this paper imposed on preferences. We can always substitute outcomes on 
inessential states to stay within ~ 6  such that all operations below are possible. Let 
~(1),~(n) denote the set of prospects from ~ +  that have an outcome equivalent to 0 on 

coordinates 6(2), . . . ,  6(n - 1) (see figure 4). This is isomorphic to a full two- 
dimensional product space, of the form X -  x X + . Here sign-comonotonic triple can- 
cellation reduces to "triple cancellation." By strong monotonicity on 5~6, both states i and 
n are essential of ~(1),O(n). Hence by Wakker (1989, Theorem III.6.6(iii) and Remark A3.1) 
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{x:x~0} is [ 
the range 
for state 1 

0 ~ 1  {13} is the range for {x:x~0} is the 

I states 2 ..... n-1 range for state n 

Figure 4 (The set Fd(1)'~ Suppose 6 is identity. Acts from F6(1),6(n) "live" only on states 1, n. 

there exist continuous additive value functions, denoted by V R-  and V R + in the remainder 

of this proof (dependency on 6 is not expressed in the notation), for the preference 

relation on this space ~(1),6(,0. V R - ,  V~+ are "joint" (having common unit) interval 

scales. We may and will set V R -  (0) = V R + (0) = O. 

Now we establish a CU + representation on ~-+, and a C U -  representation on ~-- ,  

each up to a positive factor. First we consider o ~+ . Because > is truly mixed, o ~+ has at 

least one essential state, so every am + has at least one essential state. First suppose every 

am+ has exactly one essential state. Now we cannot invoke Theorem 4.3, because that 

required that some am + have two essential states; neither can we invoke Theorem VI.5.1 

of Wakker (1989) because that essentially needs topological separability for the present 

case. We shall derive the CU + representation from the function V R + as obtained above. 

Each prospect from am + is equivalent to the constant prospect identical to the outcome 

for the essential state. By strong monotonicity the function V R + obtained above repre- 

sents preferences over these. So then a CU + representation on o~ + results where on 

each set am + the essential state has decision weight 1, and the value function for gains is 

the continuous function V R +. 

If  for some permutation o the set a m+ has two essential states, then by Theorem 4.3 a 

CU + representation on o ~+ is obtained, which is an interval scale. We let it assign value 

0 to 0. Subsequently we deduce from the Proportionality Lemma A1 the fact that the 

value function of this CU + representation is a positive multiple of V R +, as follows. First 

restrict attention, for any positive nonmaximal outcomes t* > v > 0, to a two- 

dimensional subspace of o~+ isomorphic to the full product space {~ ~ X: 0 ~< a ~< Ix} x 

{[3 E X: [3 > Ix} with both dimensions essential to get, from Lemma A1, proportionality 

of the value function and V R + separately on {or ~ X: 0 ~< c~ < tx} and {[3 E X: [3 > ~}. 

Repeat  this with v instead of Ix. The overlap {o~ E X: v ~< o~ < Ix} shows that there indeed 

is one positive cr such that the value function is cr times V R +. 

Exactly the same procedure can be adopted to get a C U -  representation on o~-. The 

value function v : X--+ IR  describes the value function of CU + on X + , and of C U -  on 

X - .  To derive continuity of the function v, note that it describes the value function of 

CU + on X + , and of C U -  on X - .  Because v is continuous on X + and on X - ,  and v(0) 

= 0, the range ofv is an interval, and has no gaps; v must be continuous. Below, v will be 

rescaled for positive outcomes, i.e., there it will be multiplied by a positive constant. That 
will not affect its continuity. 

We summarize: 

V R -  and V R + are positive affine transforms of v on their domains; 
V R - ,  V R +, and v are continuous. 

(A2.2) 
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Now letA, o be fixed for a while. We derive an additive representation on ~o~Ao. IrA orA c 

is inessential on ~o~o, then we can simply use the CU + or C U -  representation. There- 
fore let bothA andA c be essential on ~o~o. Then on KAo there are at least two essential 

states. The condition of sign-comonotonic generalized triple cancellation, as implied by 
sign-comonotonic tradeoff consistency, simply reduces to generalized triple cancellation 
on ~ o .  Generalized triple cancellation was used in Wakker (1989, Theorem III.6.6(iii) 
and Remark A3.1) to characterize additive representability on full product sets. The set 
KAo, however, is not a full product set. It is a product of two (rank-ordered sets = )  
maximal comonotonic subsets of a product set, one isomorphic to ~ o - ,  the other to 
~o~Ao + ; we shall use the notations KAo-, ~o~4o + also for these subsets. We suppress for the 
time being the states inessential on o ~ ~  Then, by Theorem C.6 and Remark C.7 of 
Chateauneuf and Wakker (1991), an additive representation is obtained on ~o~o; we may 
let the additive value functions assign 0 to 0. On o~o + the additive representation is 
proportional to CU +. This follows from the uniqueness result of Theorem 4.3 if o~4o+ 
has two or more essential states. If ~jAo + has only one essential state the argument is 
similar to the derivation of (A2.2), as follows. We again suppress the ~o~o+ inessential 
states inA, and restrict attention to prospects from ~ o  that are constant (nonpositive) 
o n A  c. This yields a two-dimensional space, and by the Proportionality Lemma A1 the 
additive value function on the two-dimensional space for gains is proportional to V R +, 
and therefore to the value function v, and so to CU +. Similarly, on ~o~o- the additive 
representation is proportional to C U - .  We conclude: 

There exists ~ o  > 0 s . t . f ~  X~o CU+(f  +) + C U - ( f - )  represents ~> 
on ,~o. 

Thus we have obtained a CPT representation on each ~o~o. Note that k~o > 0 can be 
chosen freely if ~o ~ ~  + or y o -  is inessential. Below we set then ~ o  = 1. The next step is 
to fit all these representations together into one global CPT functional. Only here gain- 
loss consistency is used. 

Lemma A2.3. There exists a CPT functional on the entire o~that is representing within 
each KAo, with the value function v continuous. 

Proof. For the time being we only require the functions discussed below to be repre- 
senting within each U~ ~ We rescale the CU + representation such that ~ 6  = 1 (for R 
see (A2.2); dependence on 6 is not expressed in notation there). This can be obtained by 
multiplying the "old" CU + representation (so v on X +) by k~6 and by dividing each 
. ~ + + 
old k~o by X/~6 and henceforth calling the latter quotient k~o. IfA orA c is inessential 

then we set k~] o = 1. We prove now that all k~o are 1. Suppose that bothA andA c are 
~o ~4~ essential. By continuity we can straightforwardly constructf E ~ o , f r  ~ 2fl~6, such 
that: 

0 < f + - - f + , f -  _ f r -  < 0, andfr  _ 0. 
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By gain-loss consistency, also f -  0. Substituting the representations within ~ 6  and ~aAo, 

we get CU + (f" +) + CU - (f ' -)  = 0, and ~ o  CU + (f+) + C U -  ( f - )  = 0. Further CU + 
(Jr+) = CU + (f+) > 0 and CU - ( f - )  = C U -  ~ - )  < 0. These equalities together imply 

k~o = 1. Continuity of v was established in (A2.2); as pointed out above (A2.2), the 

rescaling of v on X + does not affect continuity. [] 

Lemma A2.4. CPT holds. 

Proof. It remains to be shown that the CPT functional, as constructed above, is repre- 

senting. L e t f  ~ ~ o .  Sayf  ~ 0. We can, by continuity, findg + E ~ o  andx ~ X, such 

tha t f  N g + _ s Then, because the first pair is contained in ~ o  the second in if+,  and 

CPT is representing within ~ o  and if+, CPT(f) = CPT(g +) = CPT(x-) follows. Thus 

any prospect has a CPT value identical to the "certainty-equivalent," i.e., the outcome 

equivalent to it. Because CPT orders certain outcomes according to preference, it is 

representing on the entire ~. [] 

Thus the proof of the implication (ii) ~ (i) in Theorem 6.3 has been completed. Next 

we turn to the uniqueness result. If each ~ + has exactly one essential state, then W + 

must be such that for each ~ + that single essential state has decision weight one. This 

uniquely determines W + . If ~+ has two or more essential states, then uniqueness of W + 

follows from Theorem 4.3. Analogously uniqueness of W -  follows. Given this unique- 

ness of W + and W - ,  the uniqueness of V R- and V R + in (A2.2) up to common scale and 

location together with v(0) = 0 determine v on IR + and v on 117 - up to a common scale. 

Because v can be multiplied by any positive constant, it indeed is a ratio scale. 

10.3. Appendix A3. Proofs of results of section 8 

As a preparation for the proof of Observation 8.1, we list below the conditions of Theo- 

rem 6.3 except gain-loss consistency: 

Assumption A3.1. The Structural Assumption 2.1 holds, and the truly-mixed case 

holds. Moreover, weak0rdering, continuity, and sign-comonotonic tradeoff consis- 

tency hold. [] 

In the proof of Theorem 6.3 in Appendix A2, gain-loss consistency is only used in the 

proof of Lemma A2.3, so the results obtained up to that point hold under Assumption 

A3.1. They include: 

Lemma A3.2. under Assumption A3.1 a CU + representation exists on o %+ , and a 
C U -  representation exists on ~ - .  Within each set ffAo there exists a representation 

of the f o r m f  ~-~ k~oCU + (f+) + C U -  ( f - ) .  [] 

Note that k~o is uniquely determined except in trivial cases of inessentiality ofA orA c. 

In the latter cases we set k~o = 1. ~ o  and ~ o '  are directly gain-loss linked if there exists 
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an f  E ~o ~ ~  f-) ~ o '  such tha t f  + > 0, 0 > f -  , f  ~ 0. The transitive closure of the directly 
gain-loss linked relation is called the (indirectly) gain-loss linked relation. The following 

lemma follows from substitution. The subsequent lemma is proven as Theorem 6.3, with 

Lemma A2.3 derived from Lemma A3.3. 

Lemma A3.3. Suppose ~ o  and ~ o '  are  gain-loss linked. Then h~o = hBo' can be 
chosen in Lemma A3.2. [] 

Lemma A3.4. Suppose ~o~o and ~ o '  are gain-loss linked whenever bothA andA c are 

essential on ~o~o, and B and B c on ~ o ' .  Then in Theorem 6.3 the condition of gain- 

loss consistency can be dropped. [] 

Now we are ready to prove Observation 8.1. 

Proof of Observation 8.1. Denote by [o(1) . . . .  , o(k), [, o(k + 1), . . . ,  o(n)] the set ~o ~ ~  

with A = {o(k + 1) . . . .  , o(n)}; here 1 _< k _< n - 1 is implicit. This set is directly 

gain-loss linked to every set obtained by moving [ to the left or right, as long as I is 

between o(1) and o(n): Take, by monotonicity and continuity, a prospect f - 0 with 

f(o(1)) < 0 - f(o(2)) - ... - f (o (n  - 1)) - 0 < f(o(n)). A directly gain-loss linked set 
also results from interchanging states that are to the left of the [ symbol, or to the 

right of the I symbol: one takes a p rospec t f  - 0 that is constant on {o(1), . . . ,  o(k)} 

and on {o(k + 1), . . . ,  o(n)}. Thus moving the symbol [ leads to new gain-loss linked 

sets, as well as interchanging states at one side of 1. By these operations one sees that 

all sets ~o~ for ~ ~ A ~ S are mutually gain-loss linked. Lemma A3.4 now gives the 
desired result. [] 

Proof of Proposition 8.2. Strong sign-comonotonic independence and monotonicity 

are derived as in Lemmas A2.1 and A2.2. We begin by deriving a CPT representation 
within each maximal sign-comonotonic subset ~o~o. First consider the case whereA = S; 

i.e., consider the set ~ + .  On this set continuity, weak ordering, monotonicity, and 

generalized triple cancellation (see beginning of Appendix A2) are satisfied. Hence by 

Wakker (1991a, Theorem 3.2) there exists a continuous additive representation for ~ on 

:~+  that is possibly extended real-valued: it might assign value infinite to a maximal 

prospect, and value minus infinite to a prospect (e.g., 0) that is minimal on the domain 
under consideration. Consider outcomes 0 < v < po < ~r, and the two-dimensional 

substructures {x E X: v ~ x ~ IX} x {x E X: IX ~< x ~ o-} x {~r} x ... x {~r} and {x E X: 

0 < x ~ v} x {x E X: v ~ x ~< IX} x {~r} x ... x {~r} of ~ +. By the proportionality 
lemma A1, and sign-comonotonic tradeoff consistency, the first-state additive value 

function and the second-state additive value function are linear transforms of each other 

on {x ~ X: v <~ x ~ Ix}. This holds for all 0 < v ~< IX with Ix nonmaximal, and also for all 
pairs of additive value functions. By Wakker (1993a, Proposition 3.5) the additive repre- 

sentation is real-valued after all. By continuity, the additive value functions must also be 
related by linear transformations at the outcome 0 as well as at maximal outcomes. We 

can let the additive value functions assign value 0 to outcome 0. So a CPT representation 
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with a continuous value function has been obtained on :~o+. Similarly a CPT represen- 

tation with a continuous value function is obtained on ~o - .  

Next consider a set ~o ~A~ with O ~ A ~ S. This set is a product of two rank-ordered 

sets. By monotonicity, all states are essential on this set. Weak ordering, continuity, 

monotonicity, and generalized triple cancellation are satisfied. Hence by Chateauneuf 

and Wakker (1991, Theorem C.6 and Remark C.7) there exists a continuous additive 

representation for ~ on ~o~o. If A contains two or more states, then the ("gains") 

additive value functions related to the states of A can be taken proportional by a reason- 

ing as in the discussion of ~o+ above. Similarly, i fA  c contains two or more states, then 

the ("losses") additive value functions related to the states o f A  c can be taken propor- 
tional. Again a CPT representation has resulted on ~0~4o. 

So on each set y o  a CPT ( = EU) representation exists, with a value function v A~ 

By the analogue of Lemma 6.1, >~]o and ~ ] o  still reveal orderings of v A~ differ- 

ences. It suffices to show that for any two different y o  and ~ o ' ,  vAo on X + is a 

positive multiple of v B~ also v A~ on X -  is a positive multiple of v ~~ Then xy > ~]o 

x'y' and x'y' ~o ,XY  cannot both occur, also ifA ~ B, and/or o ~ o'. In other words, 

sign-comonotonic tradeoff-consistency is then satisfied, and we can invoke Observation 8.1. 

Suppose that ~.4o and ~ o '  are directly gain-loss linked. L e t f b e  a prospect in their 

intersection with f - 0, f+  > 0, f -  < 0. Consider the two-dimensional subspace of 

prospects that are 0 wheref is  0, that are constant positive-or-zero wherefis  positive, and 

constant negative-or-zero where f i s  negative. This two-dimensional subspace is a full 

product set; it is contained in both ~o~o and ~ o ' ;  and both dimensions are essential. 

Both the representation of ~o~o and that of ~ o '  are additive representations on the sub- 

space. By standard uniqueness results this implies that the value functions of ~ o  and ~ o '  

are proportional on X + , as well as on X - .  We saw already in the proof of Observation 8.1 

that all nondegenerate sets ~Ao and ~ o '  are indirectly gain-loss linked. This completes the 

proof. [] 

Proof of  Observation 8.4. Suppose the preference conditions in Statement (ii) of The- 

orem 6.3 hold on ~ .  For every finite partition of S, fine enough to satisfy true-mixedness, 

Theorem 6.3 can be applied to the prospects measurable with respect to that partition 

(continuity of the preference relation is imposed within each such set of prospects). 

Next, the CPT representations can be fit together for different partitions, by considering 

common refinements of these partitions. This gives one overall CPT representation on 

~ .  Also the uniqueness results of Theorem 6.3 are the same here. Necessity of the 

preference conditions in Theorem 6.3 is straightforward. [] 

10. 4 Appendix A4. Proof o f  proposition 9. 4 

Proof of Proposition 9.4. First suppose loss aversion holds, and suppose x, . . . ,  g are as 

described in the proposition. The preference f > g implies CPT(f +) - CPT(g +) > 

CPT(g-  ) - CPT(f -  ). Hence CPT(s - CPT(y-+ ) > CPT(y-_ ) - CPT(:f_ ), i.e., 
v(x + ) - v(y + ) > v(y_ ) - v(x_ ). By Lemma 6.1 this implies v(x) - v(y) > v ( - y )  - 

v ( - x ) ,  contradicting loss aversion. 
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Next suppose the condition of the l emma holds. To  derive is loss aversion. Because of  

true-mixedness there is an f E F R such that  f +  > 0 and 0 > f - .  By continuity there  

exists ~x > 0 such that  for each 0 _< x ___ Ix and - Ix - - y  -< 0 there is a n f  E F R w i t h f  + 

~ a n d f -  - - ) 2  Also IX can be taken so small that  for all suchx, y we have [x;y] - * C +  

[x; y], [ - y ;  - x ]  - c* - [ -y ;  - x ] .  For  the latter, seemingly trivial, relations it must  be  

possible to find proper  sign-comonotonic prospects  as in (3.1) and (3.2). By continuity, 

for IX sufficiently small, this is possible. Thus for each Ix --- x > y > 0 there are prospects  

f, g such t h a t f  + - ~ g + - )~ f -  - - ~  g -  ~ - ) 2  The  condition in the proposit ion now 

impl i e s f  < g. By substitution, v(x) - v(y) <- v ( - y )  - v ( - x ) .  On the interval [ -  IX, Ix] 

loss aversion holds. 

Next consider a general  outcome z > 0. By continuity we can take an open interval I 

a round z within IR  + so small that  for allx, y f rom I there exist x +, y +, y _, x -  f rom the 
�9 $ 

interval [ - tx, Ix] with [x;y] - c + [x + ;y + ], [ - y ;  - x ]  - c -  L v - ;x _ ]. As in the beginning of 

this proof,  v(x + ) - v(y + ) <_ v (y_  ) - v (x_  ) follows; by repeated  application of (6.7), 

v(x) - v(y) <_ v ( - y )  - v ( - x )  follows. So for each outcome z > 0 there exists an open 

neighborhood I such that  for prospects  with outcomes in this neighborhood loss aversion 

holds. This implies loss aversion "globally." [] 

N o ~ s  

1. It has also been called the rank-dependent model. We use the adjective cumulative to refer to the model, 
and we use rank-dependence and sign-dependence to refer to specific patterns of choices (see Examples 
1.1 and 1.2). 

2. Properties of the decision weights will be characterized in a future paper. 
3. Because the standard interpretation of expected utility refers to acts rather than to prospects, the versions 

of expected utility and cumulative utility investigated in this paper should perhaps be called incremental 
expected utility and incremental cumulative utility. For brevity we omit the adjective incremental and hope 
that this will cause no confusion. Also we write expected utility rather than subjective expected utility. 

4. Given continuity and weak ordering; see Theorem 3.3 
5. A c denotes the complement ofA. 
6. Note that comonotonic prospects are cosigned if there exists a state i with f(i) = g(i) = O. 

7. A prospect is bounded if there is a lower bound outcome, dispreferred to all outcomes of the prospect, and, 
similarly, an upper bound outcome. 

8. Note that subscripts c, s have been dropped from the > * notations. 
9. Known in E U  as constant relative risk aversion. In the present context the term preference homogeneity 

seems more appropriate. 
10. Known in E U  as "constant (absolute) risk aversion." In the present context the term translation indepen- 

dence may be used. 
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