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Abstract

In this paper we provide an axiomatization of the Shapley value for TU-

games using a fairness property. This property states that if to a game we

add another game in which two players are symmetric then their payo�s change

by the same amount. We show that the Shapley value is characterized by this

fairness property, e�ciency and the null player property. These three axioms

also characterize the Shapley value on important subclasses of games, such as

the class of simple games or the class of apex games.

Keywords: TU-game, Shapley value, fairness, simple games.

JEL classi�cation number: C71

1 Introduction

A situation in which a �nite set of players can obtain certain payo�s by cooperation

can be described by a cooperative game with transferable utility {or simply a TU-game{

being a pair (N; v), where N = f1; : : : ; ng is the set of players and v: 2N ! IR is a

characteristic function such that v(;) = 0. Since we take the set of players N to be

�xed, we represent a TU-game by its characteristic function v. The collection of all

characteristic functions on N is denoted by GN .

A (single valued) solution for TU-games is a function f :GN ! IRN which as-

signs an jN j-dimensional real vector to every TU-game. This vector can be seen as

a distribution of the payo�s that can be obtained by cooperation over the individual

players in the game. A famous solution is the Shapley value (Shapley (1953a)). Var-

ious axiomatizations of the Shapley value have been given. In this paper we provide

an axiomatization of the Shapley value using e�ciency, the null player property and a

fairness property. This last property states that if to a game v 2 GN we add a game

w 2 GN in which players i and j are symmetric then the payo�s of players i and j

change by the same amount, i.e., if w(S [fig) = w(S [fjg) for all S � N n fi; jg then

fi(v + w)� fi(v) = fj(v + w) � fj(v).

This concept of fairness is related to fairness as introduced by Myerson (1977)

for games in which the possibilities of coalition formation in a TU-game are limited

because of the fact that players are part of a limited communication structure. In that
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model fairness means that deleting a communication relation between two players has

the same e�ect on both their payo�s. A similar fairness axiom is used in van den

Brink (1997) for games in which the cooperation possibilities in a TU-game are limited

because the players are part of a hierarchical permission structure in which there are

players who need permission from certain other players before they are allowed to

cooperate. In that model fairness means that deleting a permission relation between

two players has the same e�ect on both their payo�s. In van den Brink (1995a) a

fairness axiom for relational power measures for directed graphs1 is introduced. In that

context fairness means that deleting a relation between two nodes in a digraph changes

their relational power by the same amount.

As already noted by Dubey (1975), axiomatizations of the Shapley value on GN

not necessarily characterize the Shapley value on important subclasses of games such

as the class of simple games. A TU-game v is simple if v(S) 2 f0; 1g for all S � N .

It turns out that e�ciency, the null player property, and fairness also characterize the

Shapley value on the class of simple games. Van den Brink (1995a) shows that these

three axioms characterize the Shapley value on the even smaller class of apex games.

Besides the literature on fairness started in Myerson (1977), this paper also is

related to the axiomatization of the Shapley value by e�ciency, symmetry and strong

monotonicity given in Young (1985). A solution satis�es strong monotonicity if for

every pair of games v;w 2 GN and i 2 N , the payo� of i in v is at least equal

to its payo� in w if the marginal contribution of player i to any coalition in v is

at least equal to its corresponding marginal contribution in w, i.e., fi(v) � fi(w) if

v(S [fig)� v(S) � w(S [fig)�w(S) for all S � N n fig. As argued by Chun (1991),

it is su�cient to require that fi(v) = fi(w) if v(S[fig)�v(S) = w(S [fig)�w(S) for

all S � N n fig. So, strong monotonicity essentially compares the payo� of a player if

we add a game in which this player is a null player , while fairness compares the change

in payo� of two players if we add a game in which these players are symmetric.

1A directed graph is a pair (N;D) where N is a �nite set of nodes and D � N � N is a binary
relation on N . A relational power measure for directed graphs is a function that assigns real values to
all nodes in a directed graph. For a general discussion about relational power measures for directed
graphs we refer to van den Brink (1994).
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The paper is organized as follows. In Section 2 we de�ne fairness and show that the

Shapley value is the unique solution on GN that satis�es e�ciency, the null player

property and fairness. We also show that these three axioms characterize the Shapley

value on the class of simple games. We end Section 2 by comparing fairness with

strong monotonicity and balanced contributions as considered in, e.g., Myerson (1980)

and Hart and Mass-Colell (1989). In Section 3 we generalize the characterization of

the Shapley value to weighted Shapley values as considered in, e.g., Shapley (1953b)

and Kalai and Samet (1987). Finally, there is an appendix that discusses components

in TU-games which are used in the proof of the main theorem.

2 An axiomatization of the Shapley value

In this section we provide an axiomatization of the Shapley value using e�ciency, the

null player property and fairness. The Shapley value (Shapley (1953a)) is the function

Sh:GN ! IRN given by

Shi(v) =
X
S3i

�v(S)

jSj
for all i 2 N;

with dividends �v(S) =
P
T�S

(�1)jSj�jT jv(T ) for all S � N (see Harsanyi (1959)). We

�rst state the well-known e�ciency and null player axioms for solutions f :GN ! IRN .

Player i 2 N is a null player in v 2 GN if v(S) = v(S n fig) for all S � N .

Axiom 2.1 (E�ciency) For every v 2 GN it holds that
P

i2N fi(v) = v(N).

Axiom 2.2 (Null player property) If i 2 N is a null player in game v 2 GN then

fi(v) = 0.

Players i; j 2 N are symmetric in v 2 GN if v(S[fig) = v(S[fjg) for all S � N nfi; jg.

Fairness states that if to a game v 2 GN we add a game w 2 GN in which players i and

j are symmetric, then the payo�s of players i and j change by the same amount.

Axiom 2.3 (Fairness) If i; j 2 N are symmetric players in w 2 GN , then

fi(v + w)� fi(v) = fj(v + w)� fj(v) for all v 2 G
N :
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It is easy to verify that every solution that satis�es symmetry and additivity also sat-

is�es fairness. A solution f :GN ! IRN satis�es symmetry if i; j 2 N being symmetric

players in v 2 GN implies that fi(v) = fj(v). Solution f :GN ! IRN satis�es additivity

if for every pair of games v;w 2 GN it holds that f(v + w) = f(v) + f(w), where

(v + w) 2 GN is de�ned by (v + w)(S) = v(S) + w(S) for all S � N .

Proposition 2.4 If f :GN ! IRN satis�es symmetry and additivity, then f also satis-

�es fairness.

Proof

Let f :GN ! IRN satisfy symmetry and additivity. Further, suppose that i; j 2 N are

symmetric in w 2 GN . For every v 2 GN it then holds that

fi(v + w)� fi(v) = fi(v) + fi(w)� fi(v) = fi(w) =

= fj(w) = fj(w) + fj(v)� fj(v) = fj(v + w) � fj(v);

where the �rst and sixth equality follow from additivity, and the third equality follows

from symmetry of f . Thus, f satis�es fairness.

2

It is known that the Shapley value is characterized by e�ciency, the null player property,

symmetry and additivity. By Proposition 2.4 it thus also satis�es fairness. A solution

that satis�es fairness need not satisfy symmetry nor additivity. This can be seen from

the solution f :GN ! IRN given by f1(v) = Sh1(v) + 1 and fi(v) = Shi(v) �
1

jN j�1

for i 2 N n f1g. This solution satis�es fairness but does not satisfy symmetry nor

additivity.

Now we state the main result of the paper.

Theorem 2.5 A solution f :GN ! IRN is equal to the Shapley value if and only if it

satis�es e�ciency, the null player property, and fairness.
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For transparancy we split the proof that there can be at most one solution satisfying

e�ciency, the null player property, and fairness in two parts2. For every v 2 GN we

de�ne

D(v) = fT � N j �v(T ) 6= 0g, and d(v) = jD(v)j: (1)

So, every v 2 GN can be expressed as v =
P

T2D(v)�v(T )uT , where uT is the unanimity

game of coalition T � N , i.e., uT (S) = 1 if S � T , and uT (S) = 0 otherwise. We �rst

consider games for which there are at most two coalitions with a non-zero dividend.

Lemma 2.6 Let GN2 := fv 2 GN j d(v) � 2g. There can be at most one solution

f :GN2 ! IRN that satis�es e�ciency, the null player property, and fairness.

Proof

Suppose that f :GN2 ! IRN satis�es e�ciency, the null player property, and fairness.

Let v 2 GN2 .

If d(v) = 0 then v is the null game, i.e., v(S) = 0 for all S � N . The null player

property then implies that fi(v) = 0 for all i 2 N .

If d(v) = 1 then v is a multiple of the unanimity game of some coalition T � N , i.e.,

v = cTuT for some T � N and cT 2 IR; cT 6= 0. The null player property implies that

fi(cTuT ) = 0 for all i 2 N n T . Fairness implies that there exists a constant c� 2 IR

such that fi(cTuT ) = c� for all i 2 T . With e�ciency it then follows that c� = cT
jT j
. So,

in this case fi(cTuT ) =

8<
:

cT
jT j

if i 2 T

0 otherwise:

If d(v) = 2 then v is the sum of two unanimity games, i.e., v = cTuT + cHuH, with

cT 6= 0; cH 6= 0. We distinguish the following three cases:

2In van den Brink (1995b) the Shapley value is characterized by fairness and component e�ciency .
A coalition B � N is a component in v 2 GN if v(S) = v(S \B) + v(S nB) for all S � N . A solution
f :GN ! IRN satis�es component e�ciency if for every v 2 G

N and component B in v it holds thatP
i2B fi(v) = v(B). Clearly, this property implies e�ciency and the null player property. However,

e�ciency and the null player property do not imply component e�ciency. A solution that satis�es
e�ciency and the null player property, but does not satisfy component e�ciency is the normalized

Banzhaf value as characterized in van den Brink and van der Laan (1998).
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1. Suppose that T \H 6= ;.

Clearly, the null player property implies that fi(v) = 0 for all i 2 N n (T [H).

Take a j 2 T \H and let fj(v) = c�.

Fairness implies that fi(v)�fi(cHuH) = fj(v)�fj(cHuH) for all i 2 T . Similarly,

it follows that fi(v)�fi(cTuT ) = fj(v)�fj(cTuT ) for all i 2 H. Since d(cHuH) =

d(cTuT ) = 1, we already determined that

(i) fi(cHuH) = 0 and fi(cTuT ) =
cT
jT j

for all i 2 T ;

(ii) fi(cTuT ) = 0 and fi(cHuH) =
cH
jHj

for all i 2 H.

But then

fi(v) =

8>>>>>><
>>>>>>:

fj(v)� fj(cHuH) + fi(cHuH) = c� � cH
jHj

if i 2 T nH

fj(v)� fj(cTuT ) + fi(cTuT ) = c� � cT
jT j

if i 2 H n T

fj(v)� fj(cHuH) + fi(cHuH) = c� if i 2 T \H

0 otherwise:

With e�ciency it follows that
P

i2N fi(v) = jT [Hjc� �
jTnHj

jHj
cH �

jHnT j

jT j
cT must

be equal to cT + cH . Thus, c
� = jT j+jHnT j

jT jjT[Hj
cT +

jHj+jTnHj

jHjjT[Hj
cH = cT

jT j
+ cH

jHj
, is uniquely

determined, and so are all fi(v), i 2 N ,

fi(v) =

8>>>>>><
>>>>>>:

cT
jT j

if i 2 T nH

cH
jHj

if i 2 H n T

cT
jT j

+ cH
jHj

if i 2 T \H

0 otherwise:

2. Suppose that T \H = ; and T [H 6= N .

The null player property implies that fi(v) = 0 for all i 2 N n (T [H).

Take a j 2 N n (T [ H). (Note that, by assumption, there is at least one null

player.)
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For every i 2 T , fairness and the fact that fj(v) = fj(cTuT ) = 0, imply that

fi(v) � fi(cTuT ) = fj(v) � fj(cTuT ) = 0. Since d(cTuT ) = 1, we already de-

termined that fi(cTuT ) = cT
jT j

for i 2 T . Thus, fi(v) = fi(cTuT ) = cT
jT j

for all

i 2 T .

Similarly, it follows that fi(v) = cH
jHj

for all i 2 H. So, f(v) is also uniquely

determined in this case.

3. Suppose that T \H = ; and T [H = N .

Note that d(v) = 2 implies that jN j � 2. We distinguish the following two cases

with respect to jN j:

A. We �rst consider the case that jN j � 3. Suppose without loss of generality

that jT j � 2. Take a j 2 T and h 2 H. Further, de�ne the game w 2 GN

by

w = v + cTu(Tnfjg)[fhg = cTuT + cTu(Tnfjg)[fhg+ cHuH :

Let fh(w) = c�. Fairness implies that fj(w)�fj(cHuH) = fh(w)�fh(cHuH).

Since d(cHuH) = 1, we already determined that fj(cHuH) = 0 and fh(cHuH) =
cH
jHj

. So, fj(w) = fh(w) � fh(cHuH) + fj(cHuH) = c� � cH
jHj

.

For every i 2 Hnfhg, fairness implies that fi(w)�fi(cTuT+cTu(Tnfjg)[fhg) =

fh(w)�fh(cTuT+cTu(Tnfjg)[fhg). Since cTuT+cTu(Tnfjg)[fhg is as considered

under 1 (i.e., T \ ((T n fjg) [ fhg) 6= ;,) we have that fi(w) = fh(w) �

fh(cTuT + cTu(Tnfjg)[fhg) + fi(cTuT + cTu(Tnfjg)[fhg) = c� � cT
jT j

for every

i 2 H n fhg.

For every i 2 T n fjg, fairness implies that fi(w) � fi(cTu(Tnfjg)[fhg) =

fj(w)�fj(cTu(Tnfjg)[fhg). Since d(cTu(Tnfjg)[fhg) = 1, we already determined

that fi(cTu(Tnfjg)[fhg) =
cT
jT j

for i 2 T nfjg, and fj(cTu(Tnfjg)[fhg) = 0. Thus,

fi(w) = fj(w) � fj(cTu(Tnfjg)[fhg) + fi(cTu(Tnfjg)[fhg) = c� � cH
jHj

+ cT
jT j
.
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So, we determined that

fi(w) =

8>>>>>><
>>>>>>:

c� if i = h

c� � cH
jHj

if i = j

c� � cT
jT j

if i 2 H n fhg

c� � cH
jHj

+ cT
jT j

if i 2 T n fjg:

With e�ciency it follows that
P

i2N fi(w) = jN jc��
jT j

jHj
cH+ (jT j�jHj)

jT j
cT must

be equal to 2cT + cH. Thus, c� =
2jT j�jT j+jHj

jT jjN j
cT +

jHj+jT j

jHjjN j
cH = cT

jT j
+ cH

jHj
is

uniquely determined, and so are all fi(w), i 2 N ,

fi(w) =

8>>>>>><
>>>>>>:

cT
jT j

+ cH
jHj

if i = h

cT
jT j

if i = j

cH
jHj

if i 2 H n fhg

2cT
jT j

if i 2 T n fjg:

Next we determine the values fi(v); i 2 N . Let fh(v) = c��. Fairness implies

that fi(v) = c�� for all i 2 H.

For every i 2 T n fjg, fairness implies that fi(v)� fi(w) = fh(v) � fh(w),

and thus fi(v) = c�� � fh(w) + fi(w) = c�� � cH
jHj

+ cT
jT j

for i 2 T n fjg.

Since fairness also implies that fj(v) = fi(v) for all i 2 T nfjg, and T nfjg 6=

; it follows that fj(v) = c�� � cH
jHj

+ cT
jT j
. So,

fi(v) =

8<
: c�� if i 2 H

c�� � cH
jHj

+ cT
jT j

if i 2 T

E�ciency determines that
P

i2N fi(v) = jN jc�� �
jT j

jHj
cH + cT must be equal

to cT + cH , and thus c�� = jHj+jT j
jHjjN j

cH = cH
jHj

. So, all fi(v), i 2 N , are uniquely

determined,

fi(v) =

8<
:

cH
jHj

if i 2 H

cT
jT j

if i 2 T:

B. Suppose that jN j = 2, i.e., N = fi; jg and v = ciufig + cjufjg. Suppose

without loss of generality that ci � cj and let fj(v) = c�. The null player
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property implies that fj((ci � cj)ufig) = 0. With e�ciency it then follows

that fi((ci � cj)ufig) = (ci � cj).

Fairness implies that fi(v)� fi((ci� cj)ufig) = fj(v)� fj((ci � cj)ufig), and

thus fi(v) = c� + ci � cj . E�ciency then implies that fi(v) + fj(v) = 2c� +

ci�cj must be equal to ci+cj , and thus c� = cj. So, fi(v) = c�+ci�cj = ci

and fj(v) = c� = cj are uniquely determined.

2

To prove that there can be at most one solution satisfying e�ciency, the null player

property, and fairness on GN , we de�ne connectedness of players in a TU-game.

De�nition 2.7 Players i; j 2 N are connected in v 2 GN if there exists a sequence

of coalitions (T 1; : : : ; Tm) such that

(i) i 2 T 1; j 2 Tm;

(ii) T k \ T k+1 6= ; for all k 2 f1; : : : ;m� 1g;

(iii) �v(T
k) 6= 0 for all k 2 f1; : : : ;mg.

A coalition B � N such that all i; j 2 N are connected to each other in game v 2 GN is

called a connected coalition in v. A connected coalition B in v 2 GN is a maximal

connected coalition if every T � B; T 6= B, is not a connected coalition in v.

Thus, two players i; j 2 N are connected in game v if there exists a sequence of `active'

coalitions from player i to player j such that every coalition in this sequence has a non-

empty intersection with its neighbouring coalitions. A coalition B � N is a maximal

connected coalition in v 2 GN if and only if the following two conditions are satis�ed:

(i) for every i; j 2 B it holds that i and j are connected in v;

(ii) for every i 2 B and j 2 N nB it holds that i and j are not connected in v.

9



For a discussion of connected coalitions we refer to the appendix of this paper.

Proof of Theorem 2.5

It is well-known that the Shapley value satis�es e�ciency and the null player property.

Since the Shapley value satis�es symmetry and additivity, it follows from Propositon

2.4 that it also satis�es fairness.

Now, suppose that f :GN ! IRN satis�es e�ciency, the null player property, and fair-

ness. Let v 2 GN .

We show that f(v) is uniquely determined by induction on the number d(v) (de�ned

in equation (1)). By Lemma 2.6, f(v) is uniquely determined for all games v with

d(v) � 2.

Proceeding by induction, assume that f(v0) is uniquely determined for all v0 2 GN

with d(v0) � k (k � 2), and let d(v) = k + 1. We distinguish the following three cases

with respect to jB(v)j, where B(v) denotes the partition of N into maximal connected

coalitions in v:

1. Suppose that jB(v)j = 1 (meaning that N is a connected coalition in v). (Note

that d(v) � 3 implies that jN j � 2).

Take a j 2 N . We show that fj(v) is uniquely determined in the following three

steps.

(a)

We de�ne the sets T k; k 2 f0g [ IN, as follows:

� T 0 = fjg;

� for every k 2 IN

T k =

8>>><
>>>:i 2 N n

k�1[
l=0

T l

���������
there exists a T � N such that

T \
�Sk�1

l=0 T
l
�
6= ;;

T 3 i; and �v(T ) 6= 0

9>>>=
>>>; :

10



(If i 2 T k then we can say that i is connected to j through k � 1 other players.)

(b)

For every k 2 IN with N n
Sk�1
l=0 T

l 6= ;, we show that T k 6= ;.

On the contrary, suppose that T k = ;. Let i 2 N n
Sk�1
l=0 T

l.

Since by assumption T k = ;, it holds by de�nition of the sets T k that there exists

no T � N such that T \
�Sk�1

l=0 T
l
�
6= ;, T 3 i, and �v(T ) 6= 0.

Thus, for every T � N such that T \
�Sk�1

l=0 T
l
�
6= ; and T 3 i it holds that

�v(T ) = 0. But then i and j are not connected in v. This is in contradiction

with jB(v)j = 1. Thus, T k 6= ;.

From this it follows that there exists an m 2 IN such that

(a) T k 6= ; for all k 2 f0; : : : ;mg,

(b) T k \ T l = ; for all k; l 2 f0; : : : ;mg; k 6= l, and

(c)
Sm
k=0 T

k = N .

Thus T 0; : : : ; Tm is a partition of N consisting of non-empty sets only.

(c)

Suppose that fj(v) = c� for some value c� 2 IR. Next we determine for every

i 2 N n fjg the value fi(v) as a function of c� by the following procedure:

Step 1 Let k = 1 and cj = 0 (and thus fj(v) = c� + cj). Goto Step 2.

Step 2 By de�nition of the set T k, for every i 2 T k there exists an h 2
Sk�1
l=0 T

l

and a T � N such that T � fi; hg and �v(T ) 6= 0.

Fairness implies that fi(v)� fi(v ��v(T )uT ) = fh(v)� fh(v ��v(T )uT ):

With the induction hypothesis and the fact that we already determined the

value ch 2 IR for which fh(v) = c� + ch this yields that

fi(v) = c� + ch � fh(v ��v(T )uT ) + fi(v ��v(T )uT ) = c� + ci; (2)
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where ci := ch � fh(v ��v(T )uT ) + fi(v ��v(T )uT) is known.

Goto Step 3.

Step 3 If k = m then Stop.

Else let k = k + 1. Goto Step 2.

Since T 0; : : : ; Tm is a partition of N consisting of non-empty sets only, this pro-

cedure determines all values ci; i 2 N . E�ciency then implies that
P

i2N fi(v) =

jN j � c� +
P

i2N ci = v(N). From this it follows that the value c� is uniquely de-

termined, and thus the values fi(v); i 2 N , are uniquely determined by equation

(2).

2. If jB(v)j � 3, then take a j 2 N and suppose that fj(v) = c�. For every

i 2 N n fjg there is a T 2 D(v) with T \ fi; jg = ;. Fairness then implies that

fi(v) = c� � fj(v � �v(T )uT) + fi(v ��v(T )uT ). By the induction hypothesis

we determined all fi(v ��v(T )uT); i 2 N . E�ciency then uniquely determines

c�, and thus all fi(v); i 2 N .

3. Finally, suppose that jB(v)j = 2, i.e., B(v) = fB1; B2g. Suppose without loss of

generality that jB2j � 2. Take a j 2 B1, and suppose that fj(v) = c�. Fairness

then implies that for every i 2 B1 there is some T 2 2 D(v), T 2 � B2, with

fi(v) = c� � fj(v ��v(T
2)uT 2) + fi(v ��v(T

2)uT 2).

Take a T � B2, T 2 D(v) and h 2 B2 n T . (Such an h exists by assumption.)

Fairness implies that fh(v) = c� � fj(v ��v(T )uT ) + fh(v ��v(T )uT ).

Finally, for every i 2 B2 n fhg there is a T 1 2 D(v) with T 1 � B1, and thus

fairness implies that fi(v) = fh(v)� fh(v ��v(T
1)uT 1) + fj(v ��v(T

1)uT 1) for

i 2 B2 n fhg. E�ciency and the induction hypothesis again uniquely determine

c�, and thus all values fi(v); i 2 N .

Thus, there can be at most one solution f :GN ! IRN that satis�es e�ciency, the null

player property, and fairness. Since the Shapley value satis�es these axioms, f must

be equal to the Shapley value.

2
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The independence of the three axioms of Theorem 2.5 can be illustrated by the following

three well-known solutions:

1. The Banzhaf value �:GN ! IRN given by

�i(v) =
1

2jN j�1

X
S3i

(v(S)� v(S n fig)) for all i 2 N;

satis�es the null player property and fairness. It does not satisfy e�ciency. The

Banzhaf value is introduced in Banzhaf (1965) for simple games. Characteriza-

tions of the Banzhaf value for TU-games can be found in, e.g., Lehrer (1988) and

Haller (1994).

2. The egalitarian rule 
:GN ! IRN given by


i(v) =
v(N)

jN j
for all i 2 N;

satis�es e�ciency and fairness. It does not satisfy the null player property.

3. The normalized Banzhaf value �:GN ! IRN given by

�i(v) =
�i(v)P

j2N �j(v)
v(N) for all i 2 N;

satis�es e�ciency and the null player property. It does not satisfy fairness. A

characterization of the normalized Banzhaf value can be found in van den Brink

and van der Laan (1998).

Fairness and Young's strong monotonicity do not imply one another, as can be seen

from the following examples:

1. The egalitarian rule 
:GN ! IRN satis�es fairness but does not satisfy strong

monotonicity.

13



2. Let f :GN ! IRN be given by fi(v) =

8<
: Shi(v) if i = 1

0 else:

This solution satis�es strong monotonicity but does not satisfy fairness.

As noted by Dubey (1975), axioms that caharacterize the Shapley value on GN need

not characterize the Shapley value on the class of simple games. A TU-game v 2 GN

is a simple game if v(S) 2 f0; 1g for all S � N . However, e�ciency, the null player

property, and fairness do characterize the Shapley value on the class GNS which consists

of all simple games on N . If we restrict ourselves to GNS then e�ciency and the null

player property are required only for simple games. Fairness is required for pairs of

simple games v;w 2 GNS for which the sum game (v + w) also is a simple game.

Theorem 2.8 A solution f :GNS ! IRN is equal to the Shapley value if and only if it

satis�es e�ciency, the null player property, and fairness on GNS .

Proof

The Shapley value satis�es e�ciency, the null player property and fairness on GNS since

it satis�es these properties on GN � GNS .

Now, suppose that f :GNS ! IRN satis�es e�ciency, the null player property and fairness

on GNS , and let v 2 GNS . We de�ne

Ds(v) = fT � N j v(T ) = 1g, and ds(v) = jDs(v)j:

We show that f(v) = Sh(v) by induction on the number ds(v).

If ds(v) = 0 then v is the null game, and the null player property implies that fi(v) = 0

for all i 2 N . Thus, f(v) = Sh(v) in this case.

If ds(v) = 1 then v is the standard game3 of some coalition T � N , i.e., v = bT for

some T � N . Now we �rst consider the corresponding unanimity game uT . (Note that

every unanimity game is a simple game.) Similarly as in the proof of Lemma 2.6 it

follows that fi(uT ) =
1
jT j

if i 2 T , and fi(uT ) = 0 otherwise.

Next we determine f(bT ) by the following procedure:

3The standard game bT of coalition T � N is given by bT (S) = 1 if S = T , and bT (S) = 0,
otherwise.
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Step 1 Let H0 = N n T , k = 0, v0 = uT , and c0 = 1
jT j

(and thus fi(v
0) = c0 for all

i 2 T and fi(v
0) = 0 for all i 2 H0). Goto Step 2.

Step 2 If Hk = ; then Stop.

Else take a j 2 Hk and de�ne vk+1 = vk �
P

S�N

S�T[fjg
bS.

The null player property implies that fi(v) = 0 for all i 2 Hk n fjg.

Since all fi(uT ) are equal for i 2 T , fairness implies that there exists a ck+1 2 IR

such that fi(v
k+1) = ck+1 for all i 2 T .

Applying fairness to vk and vk+1 yields for every i 2 T that fj(v
k+1) = fi(v

k+1)�

fi(v
k) + fj(v

k) = ck+1 � ck + fj(v
k).

Applying fairness to uT and vk+1 then also yields that fi(v
k+1) = fj(v

k+1) for all

i 2 N n (T [Hk).

So,

fi(v
k+1) =

8>>><
>>>:

ck+1 , if i 2 T

ck+1 � ck + fj(v
k) , if i 2 (N n (T [Hk)) [ fjg)

0 , if i 2 Hk n fjg:

Since ck+1 is the only unkown, e�ciency uniquely determines ck+1, and thus

f(vk+1). Goto Step 3.

Step 3 Let k = k + 1 and Hk = Hk�1 n fjg. Goto Step 2.

By this procedure we have determined f(bT ).

If ds(v) = 2 then v = bT + bH for some T;H � N; T 6= H, and f(v) is determined

in a way similar as the case d(v) = 2 in the proof of Lemma 2.6, but with the role

of unanimity games replaced by standard games. Besides replacing unanimity games

by standard games, we also should avoid the null player property since this property

cannot be used in this case. We do this as follows. In the case T \ H 6= ;, assume

without loss of generality that T nH 6= ;. Take an h 2 T nH. For every i 2 N n(T [H),
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fairness implies that fi(v)�fi(bT ) = fh(v)�fh(bT ). Since fi(bT ) and fh(bT ) are known,

and fh(v) is expressed as c� plus a known constant, we also have expressed fi(v) as c
�

plus a known constant. E�ciency, again determines c�, and thus f(v) is determined.

In a similar way the null player property can be avoided in case T \ H =

;; T [ H 6= N . (In the third and last case, T \ H = ;; T [H = N , the null player

property is not used.)

Proceeding by induction we assume that f(v0) = Sh(v0) for all v0 2 GNS with ds(v0) � k

(k � 2), and let ds(v) = k+1. Again, it can be shown that f(v) is uniquely determined

by replacing unanimity games in the proof of Theorem 2.5 by standard games, and

replacing connected coalitions in v by standard connected coalitions in v. Here, we

de�ne two players i; j 2 N to be standard connected in v if there exists a sequence

of coalitions (T 1; : : : ; Tm) such that

(i) i 2 T 1; j 2 Tm;

(ii) T k \ T k+1 6= ; for all k 2 f1; : : : ;m� 1g;

(iii) v(T k) 6= 0 for all k 2 f1; : : : ;mg.

Then we denote by Bs(v) the partition of N into maximal standard connected coali-

tions, where B � N is a maximal standard connected coalition in v if and only

if the following two conditions are satis�ed:

(i) for every i; j 2 B it holds that i and j are standard connected in v;

(ii) for every i 2 B and j 2 N nB it holds that i and j are not standard connected

in v.

2

For the smaller class of apex games, van den Brink (1995a) shows that e�ciency,

the null player property and fairness characterize the Shapley value on this class of

games. The apex game aj;J , j 2 N , J � N n fjg, assigns the value one to every

coalition that either contains J or contains the apex player j and at least one player

from J . All other coalitions are assigned the value zero. This fairness property for
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apex games states that making a non-apex player a null player changes the payo�s

of this non-apex player and the apex player by the same amount if jJ j � 2, i.e.,

fi(aj;J)� fi(aj;Jnfig) = fj(aj;J)� fj(aj;Jnfig) for all i 2 J , jJ j � 2.

Although the purpose of this paper is to characterize the Shapley value on classes of

games with �xed player set N , we conclude this section by comparing fairness with the

concept of balanced contributions as considered in, e.g., Myerson (1980) and Hart and

Mas-Colell (1989). This property is stated for games with variable sets of players. In

order to state this property, we therefore denote in this paragraph a TU-game as a pair

(N; v), and by G we denote the collection of all TU-games. For a characteristic function

v on N and coalition T � N we denote by vT the restricted characteristic function on

T given by vT (S) = v(S) for all S � T . A solution on G is a function f that assigns to

every game (N; v) 2 G an jN j-dimensional real vector representing a payo� distribution

over the players in N . (Thus, to games with player sets of di�erent size such a solution

assigns vectors of di�erent dimension.) A solution on G has balanced contributions

if for every (N; v) 2 G and i; j 2 N it holds that4 fi(N; v) � fi(N n fjg; vNnfjg) =

fj(N; v)� fj(N n fig; vNnfig).

It is easy to verify that the egalitarian rule satis�es fairness5 but does not have

balanced contributions. Under the assumptions that a solution f on G satis�es single

player e�ciency6 and permutation neutrality7 it holds that f satis�es fairness if it has

balanced contributions.

Proposition 2.9 If f is a solution for TU-games that satis�es single player e�ciency,

permutation neutrality and has balanced contributions, then f satis�es fairness.

4For convenience we write f(N; v) instead of f((N; v)).
5Here fairness is de�ned on the class G in a straightforward manner.
6A solution f on G satis�es single player e�ciency if it is e�cient for all 1-player games, i.e., if

fi(fig; v) = v(fig) for all (N; v) 2 G with jN j = 1.
7A solution f on G satis�es permutation neutrality if for every (N; v) 2 G, N � N , permutation

�:N ! N , and player i 2 N with �(i) = i it holds that fi(N; v) = fi(�N; �v), where �N =
S
j2N �(j),

and the characteristic function �v on �N is given by �v(S) = v(
S
j2S �(j)) for all S � �N .
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Proof

Let f be a solution on G that satis�es single player e�ciency, permutation neutrality,

and has balanced contributions. Further, let (N; v); (N;w) 2 G, and i; j 2 N be such

that i and j are symmetric in w. We show that f satis�es fairness by induction on the

number of players in N .

If jN j = 1 then single player e�ciency implies that fi(N; v) = v(fig) for i 2 N .

If jN j = 2, i.e., N = fi; jg, then f having balanced contributions implies that

fi(N; v + w)� fj(N; v + w) = fi(N n fjg; (v + w)Nnfjg)� fj(N n fig; (v + w)Nnfig)

= (v + w)(fig)� (v + w)(fjg) = v(fig)� v(fjg)

= fi(N n fjg; vNnfjg)� fj(N n fig; vNnfig)

= fi(N; v)� fj(N; v):

Proceeding by induction we assume that fi(N
0; v0+w0)� fi(N

0; v0) = fj(N
0; v0+w0)�

fj(N
0; v0) for all (N 0; v0) 2 G with jN 0j � k, and i; j symmetric in w0.

Let jN j = k + 1, and h 2 N n fi; jg. (Such an h exists since jN j � 3.) Since f has

balanced contributions it holds that

fi(N; v + w)� fh(N; v + w) = fi(N n fhg; (v + w)Nnfhg)� fh(N n fig; (v + w)Nnfig);

and

fj(N; v + w)� fh(N; v + w) = fj(N n fhg; (v + w)Nnfhg)� fh(N n fjg; (v + w)Nnfjg):

Using the induction hypothesis and the facts that f has balanced contributions and

satis�es permutation neutrality it then follows that

fi(N; v + w)� fj(N; v + w) = fi(N n fhg; (v + w)Nnfhg)� fj(N n fhg; (v + w)Nnfhg)

= fi(N n fhg; vNnfhg)� fj(N n fhg; vNnfhg)
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= fi(N; v)� fh(N; v) + fh(N n fig; vNnfig)

�fj(N; v) + fh(N; v)� fh(N n fjg; vNnfjg)

= fi(N; v)� fj(N; v):

Thus, f satis�es fairness.

2

3 Weighted Shapley values

In the literature various kinds of weighted Shapley values have been studied. An ex-

ample of such a weighted Shapley value is the one considered in Shapley (1953b). This

weighted Shapley value is the function Shw:GN � IRN
++ ! IRN given by

Shwi (v; �) =
X
S3i

 
�iP
j2S �j

!
�v(S) for all i 2 N;

where � = (�1; : : : ; �n) 2 IRN
++ is a vector that assigns positive weights to the players

in N . If �i = 1 for all i 2 N then Shw(v; �) = Sh(v) for all v 2 GN . Thus, Shw is a

generalization of the Shapley value.

For functions f :GN � IRN
++ ! IRN , e�cieny and the null player property can be

generalized in a straigthforward way.

Axiom 3.1 (�-e�ciency) For every v 2 GN , and � 2 IRN
++ it holds that

P
i2N fi(v; �) =

v(N).

Axiom 3.2 (�-null player property) For every v 2 GN and � 2 IR++ it holds that

fi(v; �) = 0 if i is a null player in v.

Thus, the sum of the payo�s that are assigned to the players in N is equal to the

worth v(N) irrespective of the weights that are assigned to the players. Similarly, a
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null player always gets a zero payo�, irrespective of the weights. We generalize fairness

in the following way.

Axiom 3.3 (�-fairness) Let � 2 IRN
++, and let i; j 2 N be symmetric in w 2 GN .

For every v 2 GN it holds that �j(fi(v + w)� fi(v)) = �i(fj(v + w)� fj(v)).

Note that for � 2 IRN
++ with �i = 1 for all i 2 N , these axioms boil down to the

corresponding axioms stated in Section 2.

Theorem 3.4 A function f :GN � IRN
++ ! IRN is equal to the weighted Shapley value

Shw if and only if it satis�es �-e�ciency, the �-null player property, and �-fairness.

The proof is obtained by adapting the proof of Theorem 2.5 in a straightforward way

(in particular, the use of fairness), and is therefore omitted.

Another type of weighted Shapley value has been considered in Kalai and Samet (1987).

A weight system is a pair ! = (�;�), where � 2 IRN
++ is a vector of weights and

� = (S1; : : : ; Sm) is an ordered partition of N . Let SN denote the collection of all

ordered partitions of N . For every � = (S1; : : : ; Sm) 2 SN and S � N we denote

k�(S) = maxfk 2 f1; : : : ;mg j S\Sk 6= ;g, and K�(S) = S\Sk�(S). The KS-weighted

Shapley value is the function Shks:GN � IRN
++ � SN ! IRN given by

Shksi (v; �;�) =
X
S�N

K�(S)3i

 
�iP

j2K�(S) �j

!
�v(S) for all i 2 N:

If � = (N) then Shks(v; �;�) = Shw(v; �) for all v 2 GN and � 2 IRN
++. Thus, Sh

ks is a

generalization of Shw (and thus also a generalization of Sh). We generalize �-e�ciency,

the �-null player property, and �-fairness in the following way.

Axiom 3.5 (�;�-e�ciency) For every v 2 GN , � 2 IRN
++, and � 2 SN it holds thatP

i2N fi(v; �;�) = v(N).

Axiom 3.6 (�;�-null player property) For every v 2 GN , � 2 IR++ and � 2 SN

it holds that fi(v; �;�) = 0 if i is a null player in v.
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Thus, the sum of the payo�s that are assigned to the players in N again is equal to the

worth v(N) irrespective of the weights that are assigned to the players and the way the

players are ordered in the partition �. Similarly, null players earn nothing irrespective

of the weights and the ordering of the players in the partition �.

Axiom 3.7 (�;�-fairness) Let � 2 IRN
++, � = (S1; : : : ; Sm) 2 SN , and let i 2 Sk

and j 2 Sl, k; l 2 f1; : : : ;mg, be symmetric in w 2 GN . For every v 2 GN it holds

that

(i) �j(fi(v + w)� fi(v)) = �i(fj(v + w)� fj(v)) if k = l;

(ii) fi(v + w)� fi(v) = 0 if k < l.

Again, by adapting the proof of Theorem 2.5 it can be shown that the KS-weighted

Shapley value is the unique function f :GN � IRN
++ � SN ! IRN that satis�es �;�-

e�ciency, the �;�-null player property, and �;�-fairness.

Appendix: connected coalitions and components in

TU-games

Maximal connected coalitions as used in the proof of Theorem 2.5 coincide with minimal

components in TU-games. Components in TU-games are already considered in, e.g.,

Aumann and Dr�eze (1974) and Chang and Kan (1994). A coalition B � N is a

component in game v 2 GN if it acts `independently' of the players in N n B, in the

sense that the worth of any coalition S � N is equal to the worth that can be obtained

by those players in S who also belong to B plus the worth that can be obtained by the

coalition of other players in S. A component is called a minimal component in a game

if all its strict subsets are not components in that game.

De�nition 3.8 Let v 2 GN . Coalition B � N is a component in v if

v(S) = v(S \B) + v(S nB) for all S � N:

Coalition B � N is a minimal component in v if B is a component in v and every

T � B, T 6= B, is not a component in v.
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It is easy to show that the empty set and the `grand coalition' N are components in

every v 2 GN . Moreover, for every pair of components in v it holds that their union and

their intersection both are components in v. (This is shown in van den Brink (1995b).

For completeness we give the proof below.)

Theorem A.1 For every v 2 GN it holds that (i) ; and N are components in v, and

(ii) if B1; B2 � N are components in v then B1 [ B2 and B1 \ B2 are components in

v.

Proof

Let v 2 GN . Then

(i) for every S � N it holds that v(S \ ;) + v(S n ;) = v(;) + v(S) = v(S), and

v(S \N) + v(S nN) = v(S) + v(;) = v(S).

(ii) for every pair of components B1; B2 � N in v, repeatedly applying the de�ni-

tion of a component yields that for every S � N it holds that

v(S \ (B1 [B2)) + v(S n (B1 [ B2)) =

= v((S \ (B1 [B2)) \B1) + v((S \ (B1 [B2)) nB1) + v((S nB1) nB2)

= v(S \ B1) + v((S \ B2) nB1) + v(S nB1)� v((S nB1) \B2)

= v(S \ B1) + v(S nB1) = v(S);

and

v(S \ (B1 \B2)) + v(S n (B1 \ B2)) =

v((S \B1) \B2) + v((S n (B1 \ B2)) \B1) + v((S n (B1 \B2)) nB1) =

= v(S \ B1)� v((S \B1) nB2) + v((S nB2) \B1) + v(S nB1) =

= v(S \ B1) + v(S nB1) = v(S):
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2

From this theorem it follows that for every game v there is a unique partition B =

(B1; : : : ; Bm) of N such that every Bk; k 2 f1; : : : ;mg, in this partition is a minimal

component in v.

Components in game v can be characterized by connectedness of players. It

turns out that a coalition B � N is a component in game v if and only if for every

pair of players i 2 B and j 2 N nB it holds that i and j are not connected in v.

Lemma A.2 Let v 2 GN . Coalition B � N is a component in v if and only if for every

i 2 B and j 2 N nB it holds that i and j are not connected in v.

Proof

Let v 2 GN .

Only if

Let B be a component in v, and let i 2 B and j 2 N n B. Suppose that i and j are

connected in v. Then there exists an S � N such that

(i) S \B 6= ;; S 6� B, �v(S) 6= 0;

(ii) �v(T ) = 0 for every T � S with T \B 6= ; and T 6� B.

(Note that it is not necessary that S 3 i nor T 3 j.) Since v =
P

T�N �v(T )uT it holds

that

v(S \B) + v(S nB) =
X

T�S\B

�v(T ) +
X

T�SnB

�v(T )

6=
X

T�S\B

�v(T ) +
X

T�SnB

�v(T ) + �v(S)

=
X

T�S\B

�v(T ) +
X

T�SnB

�v(T ) +
X
T�S

T\B 6=;;T 6�B

�v(T )

=
X
T�S

�v(T ) = v(S):
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This is in contradiction with B being a component in v. Thus, i and j are not connected

in v.

If

Let B � N . Suppose that for every i 2 B and j 2 N nB it holds that i and j are not

connected in v. Then �v(T ) = 0 for all T � N with T \B 6= ; and T 6� B. But then,

for every S � N , it holds that

v(S \B) + v(S nB) =
X

T�S\B

�v(T ) +
X

T�SnB

�v(T ) =

=
X

T�S\B

�v(T ) +
X

T�SnB

�v(T ) +
X
T�S

T\B 6=;;T 6�B

�v(T )

=
X
T�S

�v(T ) = v(S):

Thus, B is a component in v.

2

Moreover, component B is a minimal component in v if and only if for every pair of

players i; j 2 B it holds that i and j are connected in v.

Lemma A.3 Let B � N be a component in v 2 GN . Then B is a minimal component

in v if and only if for every i; j 2 B it holds that i and j are connected in v.

Proof

Let v 2 GN and let B � N be a component in v.

Only if

Suppose that there exist i; j 2 B such that i and j are not connected in v.

Let H := fh 2 B j i and h are connected in vg. Then B nH 3 j.

By de�nition of connectedness it holds that �v(T ) = 0 for every T � N with T \H 6= ;

and T 6� H. By B being a component in v and H � B it follows that for every S � N
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it holds that

v(S \ H) + v(S nH) = v(S \H) + v((S nH) \B) + v((S nH) nB)

= v(S \H) + v(S \ (B nH)) + v(S nB)

=
X

T�S\H

�v(T ) +
X

T�S\(BnH)

�v(T ) + v(S nB)

=
X

T�S\H

�v(T ) +
X

T�S\(BnH)

�v(T ) +
X

T�S\B

T\H 6=;;T 6�H

�v(T ) + v(S nB)

=
X

T�S\B

�v(T ) + v(S nB) = v(S \B) + v(S nB) = v(S):

Thus, H is a component in v. Since H � B, H 6= B, this implies that B is not a

minimal component in v.

If

Suppose that B is not a minimal component in v, i.e., there exists a T � B, T 6= B,

such that T is a component in v. From Lemma A.2 it then follows that for every i 2 T

and j 2 B n T it holds that i and j are not connected in v.

2

Combining Lemma's A.2 and A.3 yields the following theorem.

Theorem A.4 Let v 2 GN . Then B is a minimal component in v if and only if B is a

maximal connected coalition in v.
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