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Abstract: The condition monitoring and potential anomaly detection of wind turbines have gained
significant attention because of the benefits of reducing the operating and maintenance costs and
enhancing the reliability of wind turbines. However, the complex and dynamic operation states of
wind turbines still pose tremendous challenges for reliable and timely fault detection. To address
such challenges, in this study, a condition monitoring approach was designed to detect early faults
of wind turbines. Specifically, based on a GRU network with a self-attention mechanism, a SAGRU
normal behavior model for wind turbines was constructed, which can learn temporal features and
mine complicated nonlinear correlations within different status parameters. Additionally, based on
the residual sequence obtained using a well-trained SAGRU, a binary segmentation changepoint
detection algorithm (BinSegCPD) was introduced to automatically identify deterioration conditions
in a wind turbine. A case study of a main bearing fault collected from a 50 MW windfarm in
southern China was employed to evaluate the proposed method, which validated its effectiveness
and superiority. The results showed that the introduction of a self-attention mechanism significantly
enhanced the model performance, and the adoption of a changepoint detection algorithm improved
detection accuracy. Compared to the actual fault time, the proposed approach could automatically
identify the deterioration conditions of main bearings 72.47 h in advance.

Keywords: wind turbine; fault detection; self-attention; gated recurrent unit; changepoint detection

1. Introduction

With the increasing depletion of petrochemical energy, wind energy, as one of the most
promising forms of renewable energy resources for generating big amounts of electricity,
has gained worldwide attention [1,2]. However, the majority of wind turbine installations
are in isolated locations such as mountains and deserts, and generally operate under hostile
weather conditions and complex geographical environments, causing continual faults and
unexpected shutdowns [3]. Low reliability and high maintenance costs severely affect the
generation performance of wind turbines, and also have a great influence on the economic
benefits of windfarm operators, hindering the constructive development of the wind power
industry [4,5]. According to the statistics, the operation and maintenance (O&M) costs
for onshore wind turbines account for approximately 10–15% of the total production cost,
while accounting for as high as 20–30% for offshore wind turbines [6]. Therefore, to reduce
the O&M costs and minimize the economic loss, it is crucial and valuable to investigate
advanced condition monitoring methods for early potential fault detection, which can
further prevent secondary damages or even disastrous accidents, such as fire and tower
collapse [7].

Numerous technologies have been used in recent years to monitor the operating
status of wind turbines, which may be mainly categorized into physical-model-based
methods and data-driven approaches. Physical model methods have been demonstrated
to be successful and are frequently employed, typically including the parity equation [8],
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Kalman filter theory [9], and observation-based technology [10,11]. However, in practical
engineering, it is difficult to build a precise mathematic model because of the complicated
electromechanical structure and extremely varied operation status of wind turbines, which,
to a significant extent, set limitations on the ongoing improvement and use of physical
model methods.

Different from physical model methods, data-driven approaches merely rely on
recorded operating data and do not require much physical knowledge or precise math-
ematics models, which have attracted considerable attention in the field of condition
monitoring of wind turbines. Based on different measured signals, data-driven methods
can be generally classified as follows:

(1) Vibration monitoring [12–15], oil analysis [16,17], acoustic emission monitoring [18],
etc. Although these methods have become commonly used technologies for wind
turbine fault detection, they are costly and complicated in their actual application
because of the installation of extra devices, including additional sensors and data-
collecting hardware.

(2) Methods using operating data recorded on a supervisory control and data acquisition
(SCADA) system. Currently, almost all large-scale wind turbines are installed with
a SCADA system to collect and store tremendous amounts of operation state data,
including meteorological environment (e.g., air pressure, air temperature, air humid-
ity, wind direction, wind speed), temperature, pressure, and electrical parameters.
Therefore, due to the advantages of accessibility to massive monitoring data, SCADA-
data-driven approaches have been found to be cost effective and highly efficient,
and are extensively utilized in the realm of condition monitoring and potential fault
detection (CMFD) of wind turbines [19–22].

Based on SCADA data, machine learning or deep learning algorithms, such as sup-
port vector machine (SVM) [23], backpropagation neural network (BPNN) [24], restricted
Boltzmann machine (RBM) [25], Gaussian process [26], XGBoost [4,27], and autoencoder
(AE) [28,29], have been employed to establish normal behavior models (NBMs) to detect
potential faults for wind turbines. Dhiman HS et al. [23] built a data-driven early fault warn-
ing method for a wind turbine gearbox using the twin support vector machine (TWSVM).
Comparison results demonstrated that the proposed method was superior in performance
and reliability. Sun P et al. [24] designed a generalized model to identify deterioration condi-
tions of wind turbines based on backpropagation neural networks (BPNNs) using SCADA
data. The case study results illustrated that the designed approach performed better in wind
turbine anomaly detection than conventional approaches. Yang W et al. [25] constructed an
unsupervised anomaly detection method for wind turbine condition monitoring using a
spatiotemporal pattern network (STPN) and stacked restricted Boltzmann machine (RBM).
Case studies on three datasets illustrated that the designed method could detect the anoma-
lies without the need for labeling data. Infield D et al. [26] introduced a SCADA-based
potential anomaly detection approach for wind turbines using a Gaussian process (GP).
Tao T et al. [27] designed a reliable and efficient blade-icing-detection approach for wind
turbines based on hybrid features and a stacked XGBoost using SCADA data. Renström
N et al. [28] designed a condition monitoring framework based on an autoencoder (AE)
using the SCADA data and investigated various hyperparameters that affected the model’s
performance. Chen J et al. [29] proposed a method for identifying anomalies of wind
turbines based on multivariate analysis using stacked denoising autoencoders (SDAEs).

However, the above methods are all based on the hypothesis that SCADA data are
independent and identically distributed (i.i.d.), but do not take into consideration the fact
that SCADA data are essentially a time series.

Recurrent neural networks (e.g., RNN, LSTM, and GRU) have short-term memory
capabilities due to their special network structure and are better at processing timeseries
data, which have gained widespread attention in the realm of wind turbine condition
monitoring and fault detection (CMFD) [30–33]. Zhang J et al. [30] employed long short-
term memory networks (LSTM) to predict the active power of wind turbines and study the
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characteristics of the error distribution using the Gaussian mixture model (GMM). Lei J
et al. [31] designed another novel detection approach using an end-to-end long short-term
memory (LSTM) network. A condition monitoring (CM) method based on long short-term
memory (LSTM) and an auto-encoder (AE) neural network was constructed by Chen H
et al. [32] to evaluate wind turbine operation conditions. Convolutional neural networks
(CNNs) and gated recurrent unit (GRU) networks were employed to mine spatial–temporal
feature information from SCADA data to create Kong Z et al.’s [33] innovative approach
for monitoring the state of wind turbines.

In summary, numerous studies on approaches for potential fault detection of wind
turbines utilizing SCADA data have been widely conducted and proved to be effective;
however, the following limitations still need to be addressed:

(1) The previous studies do not take the temporal characteristics of SCADA operating
data into account, and monitoring variables obtained by feature selection are assigned
identical weights before being fed into the models, so they cannot fully extract sophis-
ticated spatial–temporal features, thus leading to unsatisfactory model performance.

(2) At present, for predicted residual time series, the fixed threshold or adaptive threshold
used in the existing research may lead to missed detection or false alarm due to
the excessively large or too small thresholds. Therefore, by combining with other
statistical analysis methods, there is still space for improvement in the accuracy and
reliability of anomaly detection.

Consequently, to solve the above issues, based on the self-attention (SA) mecha-
nism [34], GRU networks, and a binary segmentation change-point detection (BinSegCPD)
algorithm [35,36], an innovative wind turbine condition monitoring method (SAGRU–
BinSegCPD) was designed in this study, whose principal contributions are as follows:

(1) Through utilizing SCADA data, a normal behavior model (NBM) for wind turbines
was constructed for condition monitoring using GRU networks with a self-attention
mechanism, which has a powerful nonlinear modeling capability and can capture
complicated temporal characteristics among the monitoring variables, thus enhancing
the prediction performance.

(2) To enhance the reliability and accuracy of early fault detection of wind turbines, the
BinSegCPD algorithm was introduced to implement real-time change-point detection
using prediction residual sequences. Additionally, we can achieve the automatic
identification of deterioration status of wind turbines to decrease the high rate of false
alarms or missed detections caused by a too large or too small threshold. As far as
we know, this is the first application of the BinSegCPD algorithm in the field of wind
turbine early fault detection.

(3) Additionally, a real case of main-bearing-over-temperature fault of a wind turbine was
utilized to verify the effectiveness and superiority of the designed SAGRU–BinSegCPD
condition monitoring approach compared to other methods.

The rest of this paper is structured as follows: The framework of the designed SAGRU–
BinSegCPD wind turbine condition monitoring method is briefly presented in Section 2. The
normal behavior model based on SAGRU networks is thoroughly introduced in Section 3.
In Section 4, the detection strategies for wind turbine early faults are described, including
threshold alarm strategy and change-point detection algorithm. In Section 5, the designed
SAGRU–BinSegCPD approach is verified, analyzed, and compared through using the
SCADA data obtained from multiple wind turbines located in southern China, followed by
a brief conclusion in Section 6.

2. Proposed SAGRU–BinSegCPD Method Framework

The overall framework of the designed SAGRU–BinSegCPD condition monitoring
approach for wind turbines is shown in Figure 1, which primarily comprises two phases:
offline training and online monitoring.
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Phase 1—Offline Training: In this phase, utilizing the historical SCADA data collected
from wind turbines under normal operating states, the proposed SAGRU normal behavior
model of wind turbine key components for anomaly detection is trained. The following is
a detailed description of the specific training steps:

Step 1: Data preprocessing and variable selection. It is worth noting that essential
preprocessing steps, including data cleaning, data normalization, and variable selection,
should be performed on the raw SCADA operating data, so as to obtain healthy datasets
for model training.

Step 2: SAGRU model training. The healthy datasets acquired from step 1 are split
into three sub-datasets for model training, model validation, and model testing. Based
on the sub-datasets, we can obtain a well-trained SAGRU wind turbine normal behavior
model, which can generate prediction outputs and the corresponding residuals.

Step 3: Residual analysis and alarm threshold. Based on the kernel density estimation
algorithm (KDE), the statistical analysis is performed on the residual sequence produced
using the SAGRU model in step 2. Therefore, for wind turbines operating under normal
conditions, the probability density function (PDF) of the predicted residual can be fitted,
and then an alarm threshold can be calculated for early fault detection and warning.

It should be noted that, considering the influence of seasonal climate, the training of
the proposed model requires a large amount of normal operation data of wind turbines
(at least one year). For a newly established windfarm having operated less than one year,
the amount of SCADA data is not enough to support the model’s training. Therefore, the
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transfer learning method is adopted to train the model for the new windfarm. Firstly,
pretrain the model by using the SCADA data of the same type of wind turbine in wind
farms that have been in operation for longer time (more than one year); then, finetune the
model parameters by using the SCADA date of the target windfarm.

Phase 2—Online Monitoring: In this phase, based on the well-trained SAGRU model
obtained in phase 1, for the new incoming SCADA data, we can similarly obtain the
prediction outputs and the prediction residuals. Then, the deterioration condition of wind
turbines can be automatically identified using the BinSegCPD algorithm, and the latent
anomalies are detected ahead of time through using the alarm threshold set in step 3. The
detailed steps of online monitoring are described as follows:

Step 4: Deterioration condition identification. Based on the residual sequence pro-
duced by the well-trained SAGRU model, a real-time change-point detection could be
carried out to distinguish the deterioration conditions of wind turbines.

Step 5: Early fault warning. In addition to the change-point detection implemented in
step 4, alarm signals can be triggered when the predicted residual continuously exceeds
the alarm threshold calculated by statistical analyses.

Consequently, combining the threshold alarm described in step 4 and the change-
point detection presented in step 5, a hybrid anomaly detection strategy is introduced,
which can increase the reliability of anomaly detection and alert the windfarm operation
and maintenance technicians to take appropriate measures in a timely manner to avoid
major faults.

3. Proposed SAGRU Normal Behavior Model
3.1. Data Preprocessing and Feature Selection
3.1.1. Data Cleaning

Due to the dynamic operating characteristics and sophisticated electromechanical
structure of wind turbines, the SCADA system collects and stores massive high-dimensional
operating data, including normal data and abnormal data caused by shutdowns, faults,
turbulence, and device failures (e.g., devices of acquisition, communication, and storage).
Therefore, to obtain healthy datasets for model training, it is necessary to implement data
cleaning on the raw datasets before modeling.

A commonly used data-cleaning method, the quartile algorithm (QA), was employed
to remove outliers and its detailed description is as follows:

In statistics, for a given ascending dataset, quartiles are the set of values that have three
points dividing the dataset into four identical parts. Thus, there are three main quartiles,
first, second, and third, represented by Q1, Q2, and Q3, respectively. Here, Q3, the upper
quartile, represents the median of the upper half of the dataset, whereas Q1, the lower
quartile, refers to the lower half of the dataset. Additionally, Q2 represents the median of
the dataset.

The difference between the upper and lower quartiles is known as the interquartile
range (IQR), which can be calculated using Equation (1).

IQR = Q3 − Q1 (1)

Furthermore, the upper and lower thresholds for normal data can be calculated using
the interquartile range IQR and Equation (2).{

TL = Q1 − 1.5IQR
TU = Q3 + 1.5IQR

(2)

In other words, data beyond the threshold [TL, TU ] should be treated as outliers and
eliminated from the raw datasets.
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3.1.2. Data Normalization

Generally, different variables have different dimensions. Thus, in order to decrease
the difficulty of model training through eliminating the dimension effects, it is necessary to
normalize these input measurements to narrow the value range to [0, 1] in accordance with
Equation (3).

X′ =
X − min (X)

max (X) − min (X)
(3)

where X is the raw data and max (X) and min (X) denote its maximum and minimum
values.

3.1.3. Variable Selection

Normally, the SCADA system acquires and stores hundreds of operation state param-
eters for wind turbines, including continuous parameters (e.g., wind speed, active power,
main bearing temperature, gearbox oil temperature, etc.) and discrete information (star-
tups, shutdowns, fault records, etc.). Considering the model complexity and computing
efficiency, status parameters having a high correlation with the target output (e.g., main
bearing temperature) ought to be selected as model inputs.

For variable selection, there are three typical correlation calculation methods, namely
the Spearman, Pearson, and Kendall correlation coefficients (SCC, PCC, KCC), which
are statistics for calculating the monotonicity, linearity, and dependence different state
parameters, respectively.

In this study, as a nonparametric measure of rank correlation (i.e., statistical depen-
dence of ranking between two variables), the SCC was employed to select the modeling
input variables, which can be calculated using Equation (4).

Rs = 1−
6Σd2

i
n(n2 − 1)

(4)

where n represents the two variables’ data length, and di is the difference between the two
variables in ranks of the “ith” elements.

Statistically [37], |Rs| < 0.3 indicates a weak correlation between variables; 0.3 < |Rs| < 0.7
indicates a moderate correlation between variables; and |Rs| > 0.7 indicates a strong correlation
between variables. In this study, we directly chose 0.3 as the threshold value of Rs, based on
which, we carried out the variable selection procedure.

3.2. Structure and Theory of the Designed SAGRU Model

As depicted in Figure 2, the structure of the designed normal behavior model (SAGRU)
for wind turbines mainly contains three parts: the self-attention (SA) network, the gated
recurrent unit (GRU) network, and the fully connected (FC) network.

Part 1—Self-attention network: for minibatches of offline or online SCADA data (de-
noted as X1, X2, . . . , XT) obtained after data preprocessing, the weighted (i.e., self-attention

weights) time series (denoted as
∼
X1,

∼
X2, . . . ,

∼
XT) can be calculated using the self-attention

network; the detailed theory is described in Section 3.2.1.
Part 2—Gated Recurrent Unit (GRU) network: then, according to the weighted time

series (i.e.,
∼
X1,

∼
X2, . . . ,

∼
XT), the hidden variable time series (denoted as H(2)

1 , H(2)
2 , . . . , H(2)

T )
can be generated according to the two-layer gated recurrent unit network; the detailed
theory is described in Section 3.2.2.

Part 3—Fully connected (FC) network: finally, as model inputs, the hidden variable
time series (i.e., H(2)

1 , H(2)
2 , . . . , H(2)

T ) can be fed into a two-layer FC network to produce the
target outputs (e.g., main bearing temperature), and further calculate the corresponding
residual sequence.



Energies 2023, 16, 4123 7 of 23

Energies 2023, 16, x FOR PEER REVIEW 7 of 23 

Part 3—Fully connected (FC) network: finally, as model inputs, the hidden variable 
time series (i.e., 𝑯𝟏(𝟐), 𝑯𝟐(𝟐), … , 𝑯𝑻(𝟐)) can be fed into a two-layer FC network to produce the 
target outputs (e.g., main bearing temperature), and further calculate the corresponding 
residual sequence. 

Figure 2. Structure of the proposed SAGRU model. 

3.2.1. Self-Attention Mechanism 
In order to solve the bottleneck issue that results from using a fixed-length encoding 

vector where the decoder would only have restricted access to the information provided 
by the input, Bahdanau et al. [38] originally proposed the Bahdanau attention mechanism. 
The attention mechanism’s goal is to enable the decoder to use the most pertinent portions 
of the input sequence in a flexible way by of combining all of the encoded input vectors in 
a weighted manner, with the most pertinent vectors receiving the highest weights. The 
use of the attention mechanism in deep learning has enhanced the performance of many 
models in recent years and is still a vital part of cutting-edge models today. 

Different from the Bahdanau attention mechanism, self-attention [34], introduced in 
this study, not only allows the inputs to be focused on while producing outputs, but also 
enables the inputs to interact with one another (i.e., to compute the attention of all the 
other inputs with a single input). As seen in Figure 3, the precise mathematical processes 
of self-attention can be outlined as follows: 

Figure 2. Structure of the proposed SAGRU model.

3.2.1. Self-Attention Mechanism

In order to solve the bottleneck issue that results from using a fixed-length encoding
vector where the decoder would only have restricted access to the information provided
by the input, Bahdanau et al. [38] originally proposed the Bahdanau attention mechanism.
The attention mechanism’s goal is to enable the decoder to use the most pertinent portions
of the input sequence in a flexible way by of combining all of the encoded input vectors
in a weighted manner, with the most pertinent vectors receiving the highest weights. The
use of the attention mechanism in deep learning has enhanced the performance of many
models in recent years and is still a vital part of cutting-edge models today.

Different from the Bahdanau attention mechanism, self-attention [34], introduced in
this study, not only allows the inputs to be focused on while producing outputs, but also
enables the inputs to interact with one another (i.e., to compute the attention of all the
other inputs with a single input). As seen in Figure 3, the precise mathematical processes
of self-attention can be outlined as follows:

(1) Given the multivariate input sequence X= [x 1, . . . , xN ] ∈ Rdx×n, denote the output

sequence as
∼
X=

[∼
x

1
, . . . ,

∼
xN

]
∈ Rdv×n. Then, the key matrices K, the query matrices

Q, and the value matrices V, which consist of key vectors, query vectors, and value
vectors, can be calculated using Equations (5)–(7), respectively.

Q = WqX (5)

K = WkX (6)

V = WvX (7)

where Wq ∈ Rdk×dx , Wk ∈ Rdk×dx , and Wv ∈ Rdv×dx are the parameter matrices,
which are learned during the training process.
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(2) Choose a scaled dot-product as the attention score function, and calculate the score
based on Q, K.

(3) Divide the score by the scaling factor (i.e., the square root of the key vector’s dimen-
sions (dk)), apply the softmax function to each self-attention attention score, and then
multiply the score by V, as presented in Equation (8).

∼
X = VA = Vsoftmax

(
KTQ√

dk

)
∈ Rdv×n (8)

where A represents the attention matrix and softmax is the normalization function.
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3.2.2. Gated Recurrent Unit

Recurrent neural networks (RNNs) are a class of neural networks with a short-term
memory capability that are used to handle sequential data, whose parameters can be
learned using the backpropagation through time (BPTT) [39] algorithm. However, when
the input sequence is relatively long, there are vanishing or exploding gradients; this is also
known as the long-term dependencies problem [40].

Many approaches have been proposed to address the problem of long-term depen-
dency. One of the earliest was to introduce a gating mechanism that supports the gating
of the hidden state. This means using specific processes to determine when to recall and
when to disregard information in the hidden state.

Among the many variants of RNNs, long short-term memory (LSTM) networks and
gated recurrent unit (GRU) networks can effectively solve the vanishing and exploding
gradient problem, and sufficiently mine the temporal characteristics and nonlinear features
inherent in massive time-series data, so as to possess long-term memory effects and deep
learning capabilities [41,42]. Compared with LSTM, GRU is a slightly more streamlined
alternative that frequently provides comparable performance and is computed much more
quickly [43,44].

The internal structure of a gated recurrent unit is shown in Figure 4. Let us assume
that the input Xt is a minibatch for a particular time step t, and the hidden state of the
previous time step is Ht−1. Then, the reset gate Rt, update gate Zt, candidate hidden state
∼
Ht, and the new hidden state Ht are computed as follows:

Rt = σ(XtWxr + Ht−1Whr + br) (9)

Zt = σ(XtWxz + Ht−1Whz + bz) (10)
∼
Ht = tanh (XtWxh + (Rt �Ht−1)Whh + bh) (11)

Ht = Zt �Ht−1 + (1 − Zt)�
∼
Ht (12)
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where Wxr, Wxz, Wxh, Whr, Whz, and Whh are weight parameters; br, bz, and bh are biases;
d represents the number of inputs; n is the number of examples; h is the number of hidden
units; σ is a sigmoid function; and the Hadamard (elementwise) product operator is
represented by the symbol �.
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3.3. Evaluation Metrics

To validate the effectiveness and superiority of the SAGRU model performance, three
commonly used metrics, mean absolute error (MAE), root mean square error (RMSE), and
determination coefficient (R2), were adopted in this study, which can be calculated using
Equations (13)–(15).

RMSE =

√√√√ 1
N

N

∑
i=1

(
xi − x′i

)2 (13)

MAE =
1
N

N

∑
i=1

∣∣xi − x′i
∣∣ (14)

R2 = 1− ∑N
i=1
(
xi − x′i

)2

∑N
i=1 (xi − xi)

2 (15)

where xi is the “ith” measurement value, x′i is the “ith” prediction value, and xi is the mean
of the total measurements.

4. Anomaly Detection Strategies

Based on historical healthy SCADA data and the proposed SAGRU network, the
normal behavior model for critical components (e.g., main bearings, gearbox, generator)
or subsystems (e.g., pitch system) of wind turbines can be established offline to learn
the dynamic characteristics when operating under normal conditions, and then the early
fault detection can be further captured through implementing the real-time condition
monitoring.

Specifically, based on the well-trained SAGRU model, for offline testing datasets or
online operating SCADA data, the residual values would be smaller with stable fluctuations
when the wind turbine is operating under normal conditions. In abnormal conditions, the
SAGRU model would produce larger residual values with violent fluctuations.

Therefore, as an indicator reflecting whether the wind turbine is in a normal or
abnormal status, the prediction residual can be monitored in real time and statistically
analyzed to identify deterioration conditions and detect potential faults.

Consequently, a hybrid anomaly detection approach consisting of change-point detec-
tion and a threshold alarm was proposed for wind turbine condition monitoring (WTCM)
in this study; the detailed theory of the hybrid method is described in Sections 4.1 and 4.2.
Generally, a fault warning is triggered when detecting the change-points in the predicted
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residual sequence, which means that critical components are in deteriorated conditions and
need to be paid attention to. Then, a fault alarm is triggered when the predicted residual
exceeds the alarm threshold, which means that the deteriorated critical components have
worsened further and may ultimately lead to wind turbine fault shutdown, and urgent
maintenance measures need to be taken.

4.1. Alarm Threshold

As a nonparametric estimation method, the kernel density estimation (KDE) method
was employed to calculate the probability density function (PDF) of the predicted residual
when wind turbines are working normally to determine the alarm threshold. The detailed
calculation steps are as follows.

Based on the KDE method and test dataset, the PDF of the residual can be computed
according to Equation (16).

f (r) =
1

Nh∑N
i=1 K(

r− ri
h

) (16)

where N represents the overall sample count, h is the smoothing parameter, and K(·)
represents the kernel function. Additionally, the Gaussian kernel function, shown in
Equation (17), was selected for this study.

K(
r− ri

h
) =

1
h
√

2π
e−

(r−ri)
2

2h2 (17)

According to the PDF calculated in step 1, the alarm threshold can be determined
using Equation (18) for a given confidence α. In this study, we chose α = 99.7% according
to the three-sigma rule (3σ rule).

α = P(r < r∗) =
∫ r∗

0
f (r)dr (18)

For online SCADA data, through applying condition monitoring, potential faults can
be captured when the prediction residual continuously exceeds the alarm threshold.

4.2. Change-Point Detection
4.2.1. Change-Point Detection

The change-point detection algorithm (CPD) [45], first proposed in 1954 [46], is applied
to find the change points in a univariate or multivariate time series. There is significant
activity in the fields of statistics and signal processing using CPD, as well as a number
of application contexts, including speech processing, financial analysis, bioinformatics,
climatology, network traffic data analysis, and monitoring of complex systems.

Mathematically, for a given time series y = {yt}tT
t=t1

, which is split into K + 1 sub-
sequences by the changepoint set T = {t1, t2, · · · , tK}K≤T , the aim of a change-point
detection algorithm is to find the optimal changepoints set T̂ corresponding to the best
partitions P̂ by minimizing the quantitative criterion V(T , y) according to Equations (19)
and (20).

(1) For a univariate timeseries:

V(T , y) = ∑K
k=1 C

(
ytk :tk+1

)
(19)

(2) For a multivariate timeseries:

V(T , y) = ∑D
d=1 ∑K

k=1 C
(

yd
tk :tk+1

)
(20)
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where D represents the dimension of the time series, K is the number of changepoints,
T is the length of the time series, ytk :tk+1 represents a subsequence of time series, and
C(·) represents the cost function.

It should be noted that, the number of change-points K can be set in advance or
undetermined. Therefore, since K is set beforehand, the optimization issue investigated
this research can be described as follows:

min
|T |=K

V(T , y) (21)

For an undetermined K, a constraint penalty term pen(T ) should be added to restrict
the number of detected changepoints.

min
T

∼
V(T , y) = min

T
V(T , y) + pen(T ) (22)

In summary, a changepoint detection algorithm generally comprises three basic com-
ponents: a search method to look for T , a cost function C(·), and a penalty term pen(T )
when K is undetermined.

4.2.2. Binary Segmentation Changepoint Detection

As a greedy sequential algorithm, a binary segmentation algorithm [35], denoted as
BinSeg, is a well-known alternative to optimum approaches due to its straightforward
conceptualization and straightforward implementation [36].

For timeseries y, the first changepoint calculation t̂(1) is computed using Equation (23).

t̂(1) = argmin
1≤t<T−1

V(T = {t}) = argmin
1≤t<T−1

C(y0..t) + C(yt..T) (23)

At t̂(1), the signal is split in half, and the same process is then carried out repeatedly on
each of the resulting sub-signals until a stopping requirement is satisfied. Furthermore, this
procedure is “greedy” in that it looks for the change points that will minimize the total cost
the most. Hence, motivated by its low complexity, we adopt BinSeg as the search algorithm
of the change-point detection method proposed in our study.

As for the cost function, the least squared deviation (denoted as CostL2) was employed
in this study, which measures the mean shifts in a time series as written in Equation (24).

C(yI) = ∑
i∈I
‖yi − y‖2 (24)

where yI represents the subsequence set and y is the mean of subsequence yi.

5. Case Study

In order to validate the practicability and effectiveness of the designed SAGRU–
BinSegCPD method in actual application of wind turbine condition monitoring (WTCM),
actual fault cases of main bearings were studied only using SCADA data, and the experi-
mental results, comparative analysis, and a brief conclusion are presented in this section.

5.1. Dataset Description

The SCADA data utilized in this study were collected from multiple wind turbines
on a wind farm situated in southern China, which consist of 33 wind turbines (EN-70/1.5)
with a rated power of 1500 kW. The records from the SCADA system were sampled every
10 min, and every record includes nearly 100 discrete pieces of information as well as
32 continuous parameters as displayed in Table 1.
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Table 1. Continuous status parameters in SCADA system.

Continuous Parameters

Wind direction Ambient temperature Generator speed Reactive power

Wind speed Hub temperature Generator front bearing
temperature Power factor

Blade 1 angle Nacelle temperature Generator rear bearing temperature Current phase L1

Blade 2 angle Main shaft speed Generator stator winding
U temperature Current phase L2

Blade 3 angle Main bearing temperature Generator stator winding
V temperature Current phase L3

Blade 1 motor temperature Gearbox front bearing temperature Generator stator winding
W temperature Voltage phase L1

Blade 2 motor temperature Gearbox rear bearing temperature Actual torque Voltage phase L2
Blade 3 motor temperature Gearbox oil temperature Active power Voltage phase L3

In this paper, 155,818 data records collected from five wind turbines were studied
during the periods of 1 January 2019–31 December 2019, 1 April 2020–9 April 2020, 9 August
2020–16 August 2020, and 22 August 2020–23 August 2020, among which 153,567 data
samples were used to construct the normal behavior model of the main bearings, 1166 data
samples for the normal condition monitoring validation, and 1085 data samples for the
abnormal condition monitoring validation. The detailed dataset description is shown
in Table 2.

Table 2. Description of dataset used for modeling.

Dataset
Name of

Wind
Turbine

Time Range
(dd/mm/yyyy) Fault Time Fault Mode

Number
of Raw

Data

Number of
Valid Data

Modeling dataset A
for training,

validation, and
testing

A09, A12, A16 1 January 2019–
31 December 2019 / / 153,567 125,080

Dataset B1 for
normal condition

monitoring
A20 1 April 2020–

9 April 2020 / / 1166 /

Dataset B2 for
abnormal condition

monitoring

A17
9 August 2020–
16 August 2020

15:38
16 August 2020

Main bearing
overtemperature 1085 /

22 August 2020–
23 August 2020

As can be seen from Table 2, WTs A09, A12, A16, and A20 operated under normal
conditions during the studied time periods, whereas WT A17 suffered from main bearing
over-temperature fault at 15:38 on 16 August 2020. Before being utilized to build the
condition monitoring model for the main bearings, the raw SCADA data of WTs A09, A12,
and A16 should be subjected to data cleaning to obtain a health dataset. Additionally,
125,080 normal data samples were reserved and split into three sub-datasets (i.e., A1, A2,
and A3) in a ratio of 0.8:0.1:0.1, one for model training, one for model validation, and the
other for model testing, respectively. Meanwhile, all three datasets A, B1, and B2 also need
to be normalized prior to modeling.

Considering the model performance and computing efficiency, it was necessary to
implement variable selection based on the Rs calculated using Equation (4) to remove
variables with lower correlation coefficients and reserving variables with higher correlation
coefficients. The partial Spearman correlation coefficient (SCC) calculation results for the
variable selection is presented in Table 3.
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Table 3. Result of Spearman correlation coefficients (SCCs).

No Variable Unit |Rs| No Variable Unit |Rs|

1 Hub temperature ◦C 0.7490 9 Generator front bearing temperature ◦C 0.4997
2 Ambient temperature ◦C 0.6951 10 Gearbox oil temperature ◦C 0.4708
3 Control cabinet temperature ◦C 0.6649 11 Gearbox front bearing temperature ◦C 0.4559
4 Gearbox inlet oil temperature ◦C 0.5542 12 Wind speed m/s 0.3703

5 Generator rear bearing
temperature

◦C 0.5343 13 Gearbox rear bearing temperature ◦C 0.3681

6 Nacelle temperature ◦C 0.5305 14 Main shaft speed rpm 0.3634
7 Blade 1 motor temperature ◦C 0.5200 15 Generator speed rpm 0.3632
8 Active power kW 0.5105 16 Generator stator winding U temperature ◦C 0.3376

As displayed in Table 3, 16 variables, including ambient temperature, hub temperature,
nacelle temperature, and active power, were selected as model inputs, while the main
bearing temperature was used as the model output.

5.2. Model Validation

After the data preprocessing and variable selection, using the three sub-datasets (i.e.,
A1, A2, and A3) described in Section 5.1, the SAGRU normal behavior model for the main
bearings for condition monitoring was established and trained. Meanwhile, to validate
the practicability and superiority of the constructed SAGRU model, five other models,
including conventional algorithms (e.g., XGBoost and BPNN), standard recurrent neural
networks (e.g., RNN and GRU), and attention recurrent neural networks (e.g., feature-
attention GRU, denoted as FAGRU, and time attention GRU, denoted as TAGRU), were
used for comparison.

The number of estimators and the learning rate of XGBoost were set to 100 and 0.1,
respectively. The structure of the BPNN model was designed as 16-32-16-8-1. Additionally,
the hyperparameters of the rest of the RNN (i.e., RNN, GRU, FAGRU, TAGRU, and SAGRU)
models were set to identical values for comparison, which are displayed in Table 4.

Table 4. Hyperparameters of RNNs.

Hyper-Parameters Algorithms/Values Hyper-Parameters Algorithms/Values

Loss function MSE Number of steps 8
Optimization

algorithm Adam Number of epochs 1000

Batch size 64 Learning rate 0.001

Next, the constructed SAGRU model and six other models (i.e., XGBoost, BPNN, RNN,
GRU, FAGRU, and TAGRU) were trained, validated, and tested. Additionally, for the test
sub-dataset A3, the quantitative evaluation metrics of the prediction results from all models
were calculated, which are listed in Table 5.

It can be clearly observed from Table 5 that, compared with non-RNN models (i.e.,
XGBoost and BPNN), RNN models had better forecasting performances and lower RMSEs
and MSEs, and a higher R2. This is mainly because RNNs are a class of neural networks
with short-term memory capabilities that are used to handle sequential data and can mine
the temporal features inherent in the SCADA time series. Thus, RNN models can better
learn the normal behaviors of the temperature of the main bearings.
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Table 5. Evaluation results of different models.

Model MAE (◦C) RMSE (◦C) R2 Model MAE (◦C) RMSE (◦C) R2

XGBoost 0.7363 1.1587 0.7861 TAGRU 0.4219 0.6485 0.8906
BPNN 0.756 1.0602 0.8129 FAGRU 0.4072 0.6434 0.8995
RNN 0.628 0.8724 0.8572 SAGRU 0.3048 0.4937 0.9203
GRU 0.4941 0.7683 0.878 Mean of AMGRUs 0.3779 0.5953 0.9035

Additionally, from Table 5, we can also discover that, in terms of three metrics (i.e.,
MSE, RMSE, and R2), the GRU model performed better than the RNN model. The primary
factor is that, by the introduction of a gated mechanism, GRU can solve the vanishing or
exploding gradients problem that exists in RNNs when the input sequence is relatively
long, thereby improving the model performance to a certain extent.

The curves displayed in Figures 5 and 6, intuitively display the prediction results of
main bearing temperatures for the test sub-dataset A3 using an RNN and GRU. As can be
observed in Figures 5 and 6, both models were able to capture the normal behavior of the
main bearings, but GRU was superior to the RNN.
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As described in Section 3.2.1, an attention mechanism (AM) can optimize resource
allocation and enable RNN models to concentrate on the input variables that are more criti-
cal and highly correlated with the output variable, thus further improving the prediction
accuracy of RNN models. Therefore, through introducing three attention mechanisms (i.e.,
feature attention, time attention, and self-attention), we can further achieve a performance
improvement for the GRU model.

As indicated from the quantitative evaluation results in Table 5, the AMGRUs (i.e.,
FAGRU, TAGRU, and SAGRU) generally gave a higher modeling precision. In terms of
RMSE and MSE, the average values of the AMGRUs were 0. 3779 ◦C and 0. 5953 ◦C, which
were 23.51% and 22.53% lower than that of GRU, respectively. Additionally, the mean R2 of
the AMGRUs was 0.9035, which was 2.55% higher than that of GRU.

It can be also found from Table 5 that, compared with the other two attention mecha-
nisms, the self-attention mechanism produced the maximum performance improvement
for GRU from the following three aspects: RMSE, MSE, and R2. The MSE and RMSE of
SAGRU were 0. 3048 ◦C and 0. 4937 ◦C, which were 38.3% and 35.7% lower than those
of GRU, and the R2 of SAGRU as 0.9203, which was 4.23% higher than that of GRU. In
other words, among the three AMGRU models, the constructed SAGRU model had the
best prediction performance due to having the lowest RMSE and MSE, and highest R2.

Meanwhile, as presented in Figures 7 and 8, the prediction results of SAGRU were
closer to the practical main bearing temperature in the comparison with FAGRU and
TAGRU. Thus, from Figures 7 and 8, a similar conclusion that SAGRU can better track the
dynamic changing trend of the main bearings can be drawn, corresponding to the results in
Table 5. This is mainly because the proposed SAGRU model can better mine the nonlinear
dynamic temporal features inherent in the SCADA data and learn the normal behaviors
of the main bearings by introducing a self-attention mechanism. Hence, it is feasible and
promising to establish the SAGRU model for potential fault detection of wind turbine
main bearings.

Consequently, according to the above evaluation results and comparative analysis, in
this study, the SAGRU network was employed to construct a normal behavior model of
main bearings for condition monitoring.
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5.3. Normal Condition Monitoring

Based on the well-trained SAGRU model and the test sub-dataset A3, the residuals
between the measurements and the predictive values of the main bearing temperature
when the wind turbine is operating under normal conditions was obtained, which is shown
in Figure 9. Next, according to the KDE algorithm described in Section 4.1, the PDF of
the predicted residuals was estimated using Equation (16) and is presented in Figure 10.
Additionally, for a given confidence α = 99.7% set using the three-sigma rule (3σ rule), the
alarm threshold was calculated as 2.03 ◦C using Equations (17) and (18).

According to the operation and maintenance (O&M) records, during the period of
1 Apirl 2020–9 Apirl 2020, WT A20 operated under normal conditions and did not experi-
ence a main bearing fault. Therefore, dataset B1, the available historical SCADA data for
WT A20, was gathered and preprocessed to test the capability of the proposed SAGRU for
normal behavior condition monitoring, and the condition monitoring results are displayed
in Figure 11. As seen in Figure 11, all residuals that indicated a difference between the
measurements and prediction values of the main bearing temperature of WT A20 fell within
the alarm threshold of 2.03 ◦C. Thus, it can be inferred that the constructed SAGRU model
was able to precisely learn the normal behavior of the main bearings.
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5.4. Abnormal Behavior Detection Validation

To further validate the effectiveness of the designed SAGRU–BinSegCPD method in
identifying the abnormal behavior of the main bearings of wind turbine, WT A17 was used
for investigation. According to the O&M records, WT A17 experienced a main bearing
over-temperature fault at 15:38 on 16 August 2020 and restarted at 12:10 on 22 August 2020
after maintenance. Therefore, dataset B2, consisting of 1085 SCADA samples collected from
two periods (i.e., 9 August 2020–16 August 2020 and 22 August 2020–23 August 2020) was
utilized to verify the early fault warning capability of the designed method. Additionally,
the detailed fault information of WT A17 is as follows.

A fault alarm message of main bearing over-temperature was issued by the SCADA
system at 15:38 on 16 August 2020. Then, after receiving the alarm signal, the technicians
of the wind farm immediately went to address the fault and found that the temperature
sensor PT100 wire was loose. However, after tightening the wire, they found that the
main bearing temperature was still fluctuating at higher values compared with the health
reference values in normal conditions. Next, through endoscopic examination, they found
that there was regional damage and extrusion marks on the outer raceway, inner raceway,
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and rollers of the main bearings. Therefore, it can be inferred that, during the operation
of WT A17, the bearing damages caused by abnormal loads had accumulated over the
measurement time period and became sufficiently severe so as to result in over-temperature
fault in the main bearings. The endoscopic examination results of the roller, inner raceway,
and outer raceway of the WT A17 main bearings are shown in Figure 12.
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5.4.1. Threshold Alarm

Based on the well-trained SAGRU model, the prediction results for the fault dataset B2
(WT A17) are shown in Figure 13. Additionally, according to the hybrid anomaly detection
strategies (i.e., threshold alarm and change-point detection) described in Section 4, the fault
detection results of WT A17 main bearings are displayed in Figure 14.

As found in Figures 13 and 14, the predicted residual between the actual measurements
and the predicted values fluctuated steadily around 0 before 14:50 on 13 August 2020,
then started to increase generally until exceeding the alarm threshold 2.03 ◦C at 15:50 on
15 August 2020. Then, starting at 06:40 on 16 August 2020, the residual began to vibrate
violently, and rose to the maximum value at 15:30 on 16 August 2020 corresponding
to the time when the SCADA system issued a main bearing over-temperature signal.
Consequently, it can be concluded that, compared with the actual failure time, the alarm
threshold calculated in Section 5.3 can detect the main bearing over-temperature fault
approximately 23.8 h in advance.
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Figure 14. Fault detection result based on the predicted residual of SAGRU for the fault dataset B2
(WT A17).

Nevertheless, the threshold alarm strategy has limitations in that a too large or small
alarm threshold would result in missed alarms or false detections, respectively. Therefore,
to address the limitations mentioned above and improve the timeliness and reliability of
anomaly detection, a hybrid anomaly detection strategy was proposed for wind turbine
condition monitoring. In other words, for the prediction residual sequence generated using
the SAGRU model in this study, we not only used the alarm threshold to detect the potential
faults of the main bearings, but also employed the BinSegCPD algorithm to automatically
identify deterioration statuses of the main bearings.

5.4.2. Change-Point Detection

Based on the SAGRU model and the BinSegCPD algorithm described above, for the
fault dataset B2 (WT A17), the change-point detection result of the prediction residual
sequence is displayed in Figure 15. As can be concluded from Figure 15, there were
altogether four changepoints in the prediction residual sequence, namely 15:10 13 August
2020, 16:10 15 August 2020, 06:50 16 August 2020, and 15:30 16 August 2020, which
correspond to the deterioration states of the main bearings.
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Additionally, Figures 16–18 display the wind speed, main shaft speed, and active
power of WT A17 during the fault period from 9 August 2020 to 16 August 2020.

Consequently, combined with the O&M logs, the conclusions can be drawn as follows.
Starting at 15:10 on 13 August 2020 (i.e., change-point 1), it can be clearly observed that
the main bearings had begun to suffer from mechanical damage, which may have been
caused by violent wind changes in a short time. As can be observed in Figures 16–18,
the wind speed of WT A17 sharply climbed from 4.2 m/s to 9.47 m/s during the period
14:20 13 August 2020–15:30 13 August 2020, and the main shaft speed and power of WT
A17 rapidly increased from 11.92 rpm to 18.79 rpm and from 109.41 kW to 1135.75 kW,
respectively.

After long-term operation with potential mechanical damage, the main bearing grad-
ually deteriorated and the prediction residual of the SAGRU model started to increase
correspondingly. Around 16:10 on 15 August 2020 (i.e., change-point 2), the residual further
significantly increased, which indicates more severe damage for the WT A17 main bearings.
Figures 16–18, during the period 15:40 15 August 2020–17:00 15 August 2020, indicate that
another wind rapid change, rapidly rising from 3.74 m/s to 9.04 m/s, may have resulted in
the above residual fluctuations.
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Figure 16. Wind speed of WT A17 during the fault period from 9 August 2020 to 16 August 2020.
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Meanwhile, change-points 3 and 4 were detected in the period of 5:10 16 August
2020–15:30 16 August 2020, during which the predicted residual sharply rose to 13.01 ◦C, as
shown in Figure 14, and the wind speed, main shaft speed, and power of WT A17 quickly
increased from 4.08 m/s to 10.64 m/s, from 11.93 rpm to 18.80 rpm, and from 62.03 kW to
1282.58 kW, respectively, as shown in Figures 16–18. Hence, the PT100 wire likely became
loose around 06:50 on 16 August 2020 (i.e., change-point 3), whereas change-point 4 (15:30
16 August 2020) corresponds to the time point when the SCADA system issued an alarm
signal at 15:38 on 16 August 2022.

In summary, compared with the actual failure time, the BinSegCPD algorithm could
identify the deterioration conditions of the WT A17 main bearing 72.47 h in advance.
Additionally, the proposed hybrid anomaly detection strategy (i.e., combining threshold
alarm and changepoint detection) can not only improve the timeliness and reliability
of anomaly detection, but also provide data and theoretical support for follow-up fault
analysis.

6. Conclusions

In this study, based on a GRU network with a self-attention mechanism (SAGRU) and
the binary segmentation changepoint detection algorithm (BinSegCPD), a novel condition
monitoring approach for wind turbines was designed. Additionally, compared with five
other models, the effectiveness, superiority, timeliness, and reliability of the proposed
SAGRU–BinSegCPD method were fully validated using two years of SCADA data collected
from multiple wind turbines.

On the one hand, a normal behavior model for wind turbines was established based on
the SAGRU model, which can more effectively learn the sophisticated nonlinear correlations
and temporal characteristics within different monitoring variables. Compared with the
GRU model, the MSE and RMSE of SAGRU were 0. 3048 ◦C and 0. 4937 ◦C, which were
38.3% and 35.7% lower than those of GRU, and the R2 of SAGRU was 0.9203, which was
4.23% higher than that of GRU. On the other hand, a hybrid anomaly detection strategy,
combining a threshold alarm and changepoint detection, was introduced for wind turbine
condition monitoring. The hybrid strategy can significantly improve the timeliness and
reliability of wind turbine anomaly detection. Based on the fault dataset B2 and compared
with the actual failure time, the experimental results demonstrated that the hybrid strategy
automatically identified deterioration conditions in the main bearings 72.47 h in advance.

In future studies, we plan to employ intelligent optimization algorithms (e.g., sparrow
search algorithm, particle swarm optimization algorithm, and crisscross optimization
algorithm) to optimize the SAGRU hyperparameters to further enhance model performance.
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Additionally, the proposed condition monitoring method will be extended to a wider
application, such as the generator, gearbox, and blade of wind turbines.
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