
An Early Resource Characterization of Deep Learning on
Wearables, Smartphones and Internet-of-Things Devices

Nicholas D. Lane‡, Sourav Bhattacharya‡

Petko Georgiev†, Claudio Forlivesi‡, Fahim Kawsar‡

‡Bell Labs, †University of Cambridge

ABSTRACT

Detecting and reacting to user behavior and ambient context are
core elements of many emerging mobile sensing and Internet-of-
Things (IoT) applications. However, extracting accurate infer-
ences from raw sensor data is challenging within the noisy and
complex environments where these systems are deployed. Deep
Learning – is one of the most promising approaches for overcom-
ing this challenge, and achieving more robust and reliable infer-
ence. Techniques developed within this rapidly evolving area of
machine learning are now state-of-the-art for many inference tasks
(such as, audio sensing and computer vision) commonly needed
by IoT and wearable applications. But currently deep learning al-
gorithms are seldom used in mobile/IoT class hardware because
they often impose debilitating levels of system overhead (e.g.,
memory, computation and energy). Efforts to address this bar-
rier to deep learning adoption are slowed by our lack of a system-
atic understanding of how these algorithms behave at inference
time on resource constrained hardware. In this paper, we present
the first – albeit preliminary – measurement study of common
deep learning models (such as Convolutional Neural Networks
and Deep Neural Networks) on representative mobile and embed-
ded platforms. The aim of this investigation is to begin to build
knowledge of the performance characteristics, resource require-
ments and the execution bottlenecks for deep learning models
when being used to recognize categories of behavior and context.
The results and insights of this study, lay an empirical foundation
for the development of optimization methods and execution envi-
ronments that enable deep learning to be more readily integrated
into next-generation IoT, smartphones and wearable systems.

Categories and Subject Descriptors: H.1.2 [User/Machine
Systems]: Human Information Processing.

General Terms: Design, Experimentation.

Keywords: Deep Learning, Internet-of-Things, Wearables

1. INTRODUCTION

Extracting user behavior and ambient context from sensor
data is a key enabler for mobile and Internet-of-Things (IoT)
applications. Increasingly, emerging networked appliances
(e.g., [4, 3]) monitor user activities (such as, speech, oc-
cupancy, motion) to provide an improved user experience.
Similarly, for wearables and phones the tracking of the user
(e.g., [24]) and surrounding conditions (e.g., [25]) has long
been a core building block. Even though sensor applications
and systems are highly diverse, a prominent unifying ele-
ment is their need to make these types of sensor inferences.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

IoT-App’15, November 1 2015, Seoul, Republic of Korea.

Copyright c© 2015 ACM ISBN 978-1-4503-3838-7/15/11 ...$15.00.

DOI: http://dx.doi.org/10.1145/2820975.2820980 .

Reliably mining real-world sensor data for this type of in-
formation remains an open problem. The world is dynamic
and complex; such conditions often confuse the signal pro-
cessing and machine learning techniques employed for sen-
sor inference. The most promising approach for coping with
this challenge today is deep learning [9, 14]. Advances in
this field of machine learning have transformed how many
inference tasks related to IoT and mobile applications are
performed (e.g., speech [17] and face [27] recognition). Ex-
ploration of deep learning for these systems is now underway
(e.g., [11, 16, 19]), with promising early results.

Despite its benefits, the adoption of deep learning within
IoT and mobile hardware face significant barriers due to
the resource requirements of these algorithms. Demands on
memory, computation and energy make it impractical for
most models to directly execute on target hardware. As a
result, prominent examples of deep learning seen on phones
(e.g., speech recognition) are largely cloud-assisted. This
introduces important negative side-effects: first, it exposes
users to privacy dangers [8] as sensitive data (e.g., audio)
is processed off-device by a third party; and second, the
inference execution becomes coupled to fluctuating and un-
predictable network quality (e.g., latency, throughput).

Enabling wide-spread device-side deep learning inference
will require a range of brand-new techniques for optimized
resource sensitive execution. Our existing knowledge of deep
learning algorithm behavior on constrained devices is largely
limited to one-off task-specific experiences (e.g., [1, 10]).
Such examples only offer a proof-by-example that forms of
local execution are possible, while providing a few pointers
for potential directions. What is needed is the development
of techniques like off-line model optimization and runtime
execution environments that shape inference-time require-
ments to match the resources available on target wearable,
mobile or embedded platforms. A cornerstone of such efforts
will be a detailed understanding of how existing algorithms
perform on these platforms. Furthermore, systematic obser-
vations of deep learning runtime behavior (e.g., data/control
flow) will be pivotal for understanding how to best use up-
coming hardware accelerators (e.g., [11]) that perform key
phases of these algorithms (e.g., convolution layers).

In this paper, we present an initial measurement study de-
signed to provide critical first-order insights in the develop-
ment of embedded and mobile device support for deep learn-
ing. Specifically, in this study we present systematic profil-
ing of the two most commonly used deep learning model
architectures (viz. CNNs – Convolutional Neural Networks,
and DNNs – Deep Neural Networks) as used in four exist-
ing deep models (viz. [10, 18, 23, 21]) that process audio
and image sensor data. Experiments are conducted using
three hardware platforms representative of those used by
IoT, wearable and mobile applications (viz. [6, 2, 5]). Most

prior work has focused on how these algorithms behave as

they are scaled up, and distributed across large cloud in-
frastructure for the purpose of training more robust models
based on large amounts of data and more complex architec-
tures (e.g., [13]). A core contribution of this investigation is
that it provides, for the first time, insights into how these
algorithms behave as they are scaled down – and perform
inference on edge devices where resources are scarce.

Although preliminary in nature, the investigation reported
here provides insights into a number of key areas. First,
whole-model benchmarks (see §3) are performed for all plat-
forms to better understand what is currently feasible, and
importantly how energy consumption and execution time
corresponds to existing application requirements. Second,
the relationship with resource usage and internal model ar-
chitecture is studied (see §4) as it relates to architecture
design and related algorithmic choices. Third, and finally:
memory and model footprint needs (see §5) are investigated,
especially within the context of hardware capabilities. We
believe these results will prove valuable as a foundation for
more comprehensive measurement studies of deep learning
at inference-time, and in the development of techniques to
address the resource overhead these algorithms impose.

2. STUDY PRELIMINARIES

We begin with a primer on the deep learning algorithms
that underpin the deep models in our study; we also briefly
sketch each model, and the target hardware.

Deep Learning Primer. To understand the experimen-
tal results we now present the basic concepts of DNNs and
CNNs; further details can be found in [9, 14].

Deep Neural Network. Various forms of deep learning (e.g.,
Restricted Boltzmann Machines, Deep Belief Networks) share
a common architecture shown in Figure 1, and are often col-
lectively referred to as Deep Neural Networks. A DNN is
comprised of fully-connected layers, each of which contain
a collection of units (or nodes). Raw data (e.g., audio, im-
ages) initialize the values of the first layer (the input layer).
The output layer (the last layer) corresponds to inference
classes, with units capturing individual inference categories
(e.g., music or cat). Hidden layers are contained between
input and output layers. Collectively, they are responsible
for transforming the state of the input layer into the infer-
ence classes captured in the last layer. Every unit contains
an activation function that determines how to calculate the
units’s own state based on units from the immediately pre-
vious layer. The degree of influence of units between layers
vary on a pairwise basis determined by a weight value.

Inference for a DNN occurs through a feed-forward algo-
rithm that operates on sensor data segments in isolation.
The algorithm begins at the input layer and moves forward
layer by layer, updating the state of each unit one by one.
The process terminates at the output layer when all units
have been updated. The inferred class corresponds to the
output layer unit with the greatest state value.

Convolutional Neural Networks. CNNs are an alterna-
tive to DNNs that still share many architectural similar-
ities. As shown in Figure 2, a CNN is composed of one
or more: convolutional layers, pooling or sub-sampling lay-
ers, and fully connected layers (with this final type being
equivalent to those used in DNNs). The aim of these layers
is to extract simple representations at high resolution from

Sensor Data

Output Layer

Inferences

Input Layer

Hidden Layers

Figure 1: A DNN contains fully-connected feed-forward layers.

Sensor Data

Feed-forward LayersConvolutional

Layers

Pooling Layer
Convolution Layer

Output
Layer

Figure 2: A CNN mixes convolutional and feed-forward layers.

the input data, and then converting these into more com-
plex representations, but at much coarser resolutions within
subsequent layers. This is achieved by first applying con-
volutional filters (with small kernel width) to capture local
data properties. Next follow max or min pooling layers caus-
ing representations to be invariant to translations, this also
acts as a form of dimensionality reduction. Finally, fully
connected layers (i.e., a DNN) are applied to complete clas-
sification.

Inference under a CNN is very similar to that of a DNN.
Again, inference operates only on a single segment of data at
a time. Sensor data is first vectorized into two dimensions.
Next, data is provided to convolutional layers at the head
of the architecture. This can be considered a form of fea-
ture extraction before the fully connected layers are engaged.
Inference then proceeds exactly as previously described for
DNNs until ultimately a classification is reached.

Type Size Architecture

AlexNet CNN 60.9M c:5ı; p:3‡; h:2⋆; n:{all 4096}†

SVHN CNN 313K c:2ı; p:2‡; h:2⋆; n:{1600,128}†

Deep KWS DNN 241K h:3⋆; n:{all 128}†

DeepEar DNN 2.3M h:3⋆; n:{all 512 or 256}†
ıconvolution layers; ‡pooling layers; ⋆hidden layers; †hidden nodes

Table 1: Deep Learning Models

Representative Deep Models. Table 1 presents key
characteristics of the models examined in this study.

AlexNet. This object recognition model [18] supports more
than 1,000 object classes (e.g., dog, car), and is by far the
most complex model studied (60.9M parameters, the next
highest is just 2.3M). In 2012, it offered state-of-the-art lev-
els of accuracy for well-known datasets like ImageNet.

SVHN. Specializing in extracting numbers from complex
and noisy scenes, this model [23] has been used to recognize
house numbers from Google Streetview images.

Deep KWS. Designed for resource constrained devices, this
audio model [10] recognizes 22 spoken words. It targets use
cases like phones reacting to specific phrases (“Hey Siri”), an
inference task often called keyword spotting (KWS).

DeepEar. This also is an audio model [21] designed for con-
strained use. Unusually, it is a composite of 3 coupled DNNs
offering separate recognition tasks (viz. emotion recognition,
speaker identification and ambient sound classification).

Target Hardware Platforms. Experiments are per-
formed on three hardware platforms detailed below. Fig-
ure 3 shows breakout boards used by each SoC.

(a) Snapdragon 800 (b) Tegra K1 (c) Edison

Figure 3: Wearable, Smartphone and IoT Hardware

Qualcomm Snapdragon 800. By a wide margin, this SoC [6]
is the most widely available of the three platforms and is
shipping, for example, inside a variety of smartphones (e.g.,
Nexus 5). Primarily designed for phones and tablets, it con-
tains 3 processors: a Krait 4-core 2.3 GHz CPU, an Adreno
330 GPU and a 680 MHz Hexagon DSP. We find the CPU
can address 1GB of RAM, but the DSP only 8MB.

Intel Edison. Targeting wearables and form-factor sen-
sitive IoT, the Edison [2] is the smallest (3.5 x 2.5 x 0.39
cm) but least computational powerful of all tested hardware.
However, it still has a 500MHz dual-core Atom“Silvermont”
CPU assisted by a 100 MHz Quark processor. Perhaps sur-
prisingly given its size, it also includes 1 GB of RAM.

Nvidia Tegra K1. This SoC [5] provides extreme GPU
performance not found in other mobile and IoT hardware.
The heart of this chip is the Kepler 192-core GPU, which
is coupled with a 2.3 GHz 4-core Cortex CPU and an addi-
tional low-power 5th core (LPC) that is designed for energy
efficiency. The K1 SoC is used in IoT devices such as June
IoT Oven [3] and IoT-enabled cars. Mobile examples of
the Tegra include the Nexus 9 along with the development
smartphone in Google’s Project Tango. The CPU can access
up to 1.7GB of RAM, largest of all processors profiled.

3. PERFORMANCE BENCHMARKS

Our first set of experiments are designed to test the raw fea-
sibility of executing deep learning models across our target
hardware plaforms. We also consider end-to-end model per-
formance metrics of execution time and energy consumption,
especially in terms of how these map to application needs.

Experiment Setup. For these experiments, we measure
the execution time and energy consumption of each hard-
ware platform using a Monsoon Power Monitor and code
annotation; every model performs 1,000 separate inferences,
we report average performance levels. Datasets (and input
specifications such as image and audio parameters) for infer-
ence and model training closely adhere to the expectations of
the model authors/developers. We use two implementations
for our experiments. Tegra based profiling uses Torch [7], a
deep learning framework that includes a number of state-of-
the-art optimizations; we also use Torch for training all mod-
els used in all experiments. Snapdragon and Edison exper-
iments instead use a C/C++ implementation of DNN and
CNN inference that we internally develop. This implementa-
tion is able to load Torch trained models. In cases where the
platform includes multiple processors we perform individual
tests on each one available for use. Note, the Snapdragon
GPU is not currently supported by our implementation and
the Edison Quark is not openly programmable at the time
of our tests; consequently, neither is used in experiments.

We also perform coarse estimates of battery life. As all
deep models selected use either image or audio data, we
use energy usage for mobile microphones and cameras re-
ported in [22, 15]. For the processor-dependent cost of sen-

sor interaction, we assume a constant compute time across
all platforms based on the actual time observed within the
Snapdragon. Otherwise processors are assumed to only per-
form model inference. A 5 second pause between inferences
occurs, some processors (Snapdragon and Edison) are able
to engage a low-power idle mode during this waiting period.
Finally, estimates assume the processor is powered from a
2000mAH battery with a perfect discharge curve.

Tegra Snapdragon Edison
CPU GPU CPU DSP CPU

Deep KWS 2.2 5.2 11.3 10.2 12.1
DeepEar 18.7 15.2 119.1 19.9 21.3
AlexNet 1,678.6 232.2 256,925.3 - 110,385.3
SVHN 43.1 13.3 2,604.9 - 1,389.2

Table 2: Energy Consumption (mJ.)

Tegra Snapdragon Edison
CPU GPU CPU DSP CPU

Deep KWS 0.8 1.1 7.1 7.0 63.1
DeepEar 6.7 3.2 71.2 379.2 109.0
AlexNet 600.2 49.1 159,383.1 - 283,038.6
SVHN 15.1 2.8 1,616.5 - 3,562.3

Table 3: Execution Time (msec.)

Feasibility Observations. Table 2 and 3 provide a per-
formance snapshot for all studied deep models running on
the target mobile- and IoT-class hardware. Almost all model
and processor combinations (18 out of 201) are able to ex-
ecute; even large-scale models like AlexNet are supported
by the weakest of our processors (Edison). This indicates a
deep learning approach to a wide variety of inference tasks
(the 6 different tasks described in §2) is possible on latest
versions of constrained hardware. Furthermore, because the
architecture (e.g., layer types, layer and node size) is the
primary factor in determining if a deep model will execute
on a specific processor; then, this result also suggests mod-
els of similar architecture to our study set – but targeting
different inference tasks – will also function to some degree.
The range of inference tasks offered by this set of similar
models is enormous [9, 14], and comprise tasks generally not
seen on IoT or mobile/wearable hardware; examples include:
place classification (categories like: library, gas station, art
gallery), gender and age estimation, textual descriptors of
images and sounds, and language understanding. This is
significant because deep models have been ignored for years
due to concerns over their basic feasibility on wearable and
IoT hardware. Although, it is important to keep in mind
the extreme performance issues that still remain to be solved
(described next). Moreover, many deep models remain out
of reach due to their shear complexity; while AlexNet (60.9M
parameters) barely executes on study hardware, the latest
deep methods for important tasks are much larger, two ex-
amples being DeepFace [27] (120M) used for face recognition
and VGG [26] (143M) that recognizes objects.

Energy and Latency. Beyond indicating basic levels of
feasibility, Table 2 and 3 also highlight clear examples of seri-
ous performance bottlenecks. As would be expected, simpler
models (as measured by the number of model parameters)
such as Deep KWS have acceptable performance (with ex-
ecution times ranging between 63 and <1 msec. across all

1AlexNet and SVHN can not execute on the Snapdragon DSP because
it is limited to only 8MB of RAM.

hardware). DeepEar is an exception to this tendency; for
instance, although it has 7× more parameters than SVHN
it is also on average is 22× faster in execution time. This
follows the pattern of CNN performance being much worse
than their DNN counterparts. We observe the non-GPU
processors appear to struggle with convolutional layers, this
is most conspicuous for AlexNet under the Snapdragon and
Edison where it has execution times of 2.6 and 4.7 minutes

respectively. To put these values in context, audio sensing
with shallow models (such as, Gaussian Mixture Models and
features like Perceptual Linear Prediction) have been shown
to require ≈ 500 msec. for emotion recognition on the Snap-
dragon CPU [15], and 105 msec. for speaker identification on
the Edison [20]. Collectively, these findings emphasize the
ease by which deep models can overwhelm target hardware.
We observe layer type appears to have a large bearing on en-
ergy and execution efficiency. There is also evidence of the
efficiency of executing certain layer types varying widely de-
pending on the processor type; for example, the Tegra GPU
is by far the most efficient processor for CNN layers while
DNN layers have a more uniform processor performance.

Tegra Snapdragon Edison
CPU GPU CPU DSP CPU

Deep KWS 14.34 9.16 5.00 134.41 27.78
DeepEar 21.74 22.02 16.93 342.47 30.99
AlexNet 3.49 10.36 3.80 - 13.88
SVHN 13.98 14.81 3.97 - 15.38

Table 4: Battery Life Estimate (hrs.)

Application Requirements. Execution time for deep
models is an important aspect as it dictates the responsive-
ness of an application to events and user actions. Table 3
shows inference is often completed in < 1 sec. Superficially,
this suggests execution time is not a bottleneck. However,
the table also shows model complexity at the AlexNet level
causes latencies of multiple minutes on wearable hardware.
This is not adequate for systems needing near real-time re-
sponses like fall detection or cognitive support. Neverthe-
less, in contrast to response time sensitive systems, all mod-
els are suitable for life-logging applications that tolerate long
processing delays (as the aim is to collect longitudinal data).

Energy consumption is an equally important metric. Many
applications run continuously and need to track user behav-
ior and context all day (e.g., [24]), ideally these systems
must have a battery life that spans the waking hours of
users (e.g., 16 to 18 hours). From Table 4, we see only the
DeepEar DNN models running on the various processors and
the Deep KWS running on the Snapdragon DSP or Edison
result in battery lifetimes of this length. AlexNet, and to a
lesser extent SVHN, cause poor battery life due to the com-
pute time they require. For instance, on the Snapdragon
CPU when these CNNs are continuously processing image
data a standard 2000mAh battery would last < 4 hours.
In contrast, the Tegra executes all models very quickly and
so maintains a very low per-inference cost; but critically it
lacks the ability to idle in a low-power state and this severely
limits battery life. Excluding the issue of execution delays,
our analysis also indicates broad support for a delay-tolerant
life-logging applications as tens or hundreds of inferences can
be performed with only a fraction of the battery. For exam-
ple, for less than 20% of the battery, we find even AlexNet
can execute > 4000× on the Tegra CPU, > 16× on the
Snapdragon CPU, and > 25× on the Edison CPU.

Layer type
Tunable Time

parameters (%)
1 Convolution 34, 944 37.20
2 Non-linear - 0.05
3 Normalization - 0.12
4 Pooling - 0.15
5 Convolution 307,456 2.05
6 Non-linear - 0.05
7 Normalization - 0.21
8 Pooling - 1.11
9 Convolution 885,120 30.89
10 Non-linear - 0.46
11 Convolution 663,936 13.56
12 Non-linear - 0.08
13 Convolution 442,624 7.45
14 Non-linear - 0.38
15 Pooling - 0.74
16 Feed-forward 37,752,832 0.49
17 Non-linear - 0.15
18 Dropout - 0.06
19 Feed-forward 16,781,312 0.19
20 Non-linear - 0.14
21 Dropout - 0.07
22 Feed-forward 4,097,000 4.34
22 Softmax - 0.06

Table 5: Layer-by-layer runtime performance of AlexNet. Aver-
age inference time for a color image of dimension 3× 256× 256 is
67 msec. approximately. The layers can be conceptually grouped
into two cases: convolution-oriented feature extraction and feed-
forward based classification; this division is shown with the hori-
zontal line between layers 15 and 16. (Execution on Tegra GPU).

1 2 3 4 5 6 7 8 9 10 11 12 13

Layers

0

5

10

15

20

25

T
im

e
(%

)

Convolutional

Feed-Forward

(a) SVHN

1 2 3 4 5 6 7 8 9 10 11

Layers

0

10

20

30

40

50

60

70

T
im

e
(%

)

(b) Deep KWS

Figure 4: Layer-by-layer computational overhead for one DNN
and one CNN. (Execution on Tegra GPU).

4. LAYER AND UNIT PROFILING

We next examine factors contributing to the computation-
related overhead observed in the prior section. Computa-
tional load is tied closely with other performance metrics
including execution time and energy efficiency. We focus in
particular on the consequences of architecture (e.g., layer
type) and algorithmic choices (e.g., activation function).

Experiment Setup. We repeat the same core experi-
ments described in §3, however through code annotation the
execution time of individual layers and units is profiled. We
highlight performance characteristics not tied to platform
differences, and emphasize this by reporting the percentage
of execution time (for unit, or layer) as the primary metric
used. Similarly, all reported effects are based on measure-
ments from a single platform – the Tegra GPU; importantly,
we also observe the same performance trends across other
test hardware platforms. Experiments to test the sensitiv-
ity to activation functions are done by replacing the relevant
layer, retraining the model, and repeating inference tests.

Layer Analysis. Table 5 shows each internal layer of
the CNN-based AlexNet model. For each layer we provide
the number of parameters and the relative contribution of
the layer to overall model execution time. Clearly compute

Layer type
Tunable Time

parameters (%)
1 Feed-forward 115,200 22.30
2 Non-linear - 1.40
3 Dropout - 2.0
4 Feed-forward 262,656 32.60
5 Non-linear - 1.30
6 Dropout - 1.50
7 Feed-forward 262,656 32.40
8 Non-linear - 1.10
9 Dropout - 1.20
10 Feed-forward 7,182 3.20
11 Softmax - 1.10

Table 6: Layer-by-layer performance of the DNN within Deep-
Ear that performs emotion recognition. Inference time for a 30
msec. audio frame is 0.00035 msec. (Execution on Tegra GPU).

Sigmoid Tanh ReLU
(%) (%) (%)

Deep KWS 6.3 0.4 0.2
DeepEar (emotion only) 6.1 0.4 0.2

Table 7: Contribution to overall runtime of non-linear layers for
Deep KWS and DeepEar (only the DNN responsible for emotion
recognition). Influence of activation function choice is shown.
(Execution on Tegra GPU).

time varies widely between layers, with a general trend of
early layers requiring more computation than later ones –
an effect largely due to the dimensionality reduction occur-
ring as progressive pool layers take effect. This trend is
even more strongly present in SVHN (Figure 4a) that, like
AlexNet, is CNN-based. Table 5 also shows a pronounced
division between the time taken by layers tied to the convo-
lutional operations (94.5%) and the later feed-forward layers
(5.5%). Interestingly however, these same convolution tied
layers only account for 2.3M (3.7%) of the 60.9M parameters
of this model; this has important implications for managing
model footprint discussed further in §5. But, with respect
to shaping computational usage, this is a strong signal that
performance for CNNs can be improved by leaning on ad-
ditional feed-forward layers as substitutes for convolutional
ones (where possible given an inference task). This is acutely
relevant for platforms that are computation-limited but with
adequate memory to cope with the additional parameters
that come with extra feed-forward layers; the wearable-class
Edison, for example, precisely matches this hardware profile.

In contrast, Table 6 presents the same analysis but for
the DNN-based DeepEar (specifically, we show the internal
DNN responsible for emotion recognition). A flatter rela-
tionship between layer depth and computational load is seen
in this table than in two prior CNN models, with compu-
tation even increasing during middle layers – a pattern not
seen in any other deep model we study. Although, Deep
KWS (Figure 4b) reverts back to the same pattern estab-
lished by the CNNs and in fact has the steepest decline of
per-layer computation across all models. Collectively, these
results highlight the uniqueness of the internal computa-
tional load profile each model brings to bear on hardware.

Unit Analysis. Common design choices at the unit-
level largely relate to the activation function and the use of
techniques like dropout [12] that influence how nodes inter-
connect. Table 7 shows the impact of selecting one of three
popular activation functions, in terms of how their computa-
tion throughout the model contributes to overall execution

101 102 103 104 105

Memory (MB)

AlexNet

Deep KWS

SVHouseNum

DeepEar

Snapdragon DSP (8 MB)

Edison (900 23 MB)

Snapdragon CPU (1000 MB)

Tegra CPU (1700 MB)

Figure 5: Memory required to complete end-to-end inference,
the whole model resides in memory during this process. The
maximum availabile memory to the test processors are shown for
comparison purposes. (Execution on Snapdragon CPU).

time for the two DNN-based models. This table indicates
none of these choices have the same level of import as the
decision to use a convolution or feed-forward layer (that rou-
tinely consume more than 25% each). However, sigmoid is
clearly the most expensive – although fortunately its usage
is declining in favor of functions like ReLU that are faster
to compute. Similarly, dropout is both increasing in usage
(appearing, for example in AlexNet and DeepEar) and has
significantly lower computation – in this case it causes 50%
of pairwise unit connections in both models to be ignored
and so do not need to be calculated (this depends on the
dropout parameter used, though 0.5 is common). Finally,
the parameters of convolutions in early phases of CNNs also
can have large effects on runtime. We find the runtime of
these layers are dominated by the size and number of filters.

5. MODEL FOOTPRINT

Our final experiments examine the memory footprint of each
model, this is known to be a key bottleneck in the use of
deep learning on resource constrained devices due to their
many parameters. We compare model memory requirements
against availability on each hardware platform.

Experiment Setup. In these experiments we determine
overall, and per layer, memory usage during inference for
each model using the aforementioned C/C++ implemen-
tation. An aim of this implementation is to carefully use
memory during execution, and in its representation of mod-
els. By default the whole model resides in memory during
processing. However, for per-layer profiling this behavior
is changed and only the layers being operated upon reside
in memory. We report measurements from the Snapdragon
CPU, we find these generalize well across the platforms.

Whole Model Requirements. Figure 5 shows the over-
all DNN/CNN model size across all layers in comparison to
the maximum available memory. From the figure we can see
this is a potential bottleneck especially in the case of mo-
bile device memory that will be typically shared by multi-
ple applications. For instance, AlexNet occupies nearly 300
MB which is roughly a third of the memory available for
the Edison and Snapdragon CPU, and is 37× the maximum
memory available to the Snapdragon DSP. This problem
is even worse for previously mentioned (see §3) models like
DeepFace (462MB) and VGG (548MB) that have even larger
memory requirements2 Two implications from these results
are: first, even when processors have sufficient computa-

2Memory for these two models are estimated, and not measured.

1 3 5 7 9 11 13 15 17 19 21

Layers

0

20

40

60

80

100

120

140

160

180
M

e
m

o
ry

(M
B

)

(a) AlexNet

1 2 3 4 5 6 7 8 9 10 11 12 13

Layers

0.0

0.2

0.4

0.6

0.8

1.0

M
e
m

o
ry

(M
B

)

(b) SVHN

1 2 3 4 5 6 7 8 9 10 11

Layers

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
e
m

o
ry

(M
B

)

(c) DeepEar (emotion only)

1 2 3 4 5 6 7 8 9 10 11

Layers

0.0

0.2

0.4

0.6

0.8

1.0

M
e
m

o
ry

(M
B

)

(d) Deep KWS

Figure 6: Memory requirements during inference on a per layer
basis; only the layers of the model being operated upon are left in
memory to lower requirements. (Execution on Snapdragon CPU).

tional resources to run these models they maybe prevented
due to memory bottlenecks; and second, this promotes solu-
tions that partition inference across processors (when their
memory varies significantly, as the case in experiments).

Memory Fluctuations. While Figure 5 shows the over-
all memory requirement for a complete inference to be per-
formed, Figure 6 displays per-layer memory requirements.
As shown, the memory needs of deep models can fluctuate
dramatically from one layer to another, and may only peak
for a short burst of time. For example, Figure 6a shows 93%
of memory is only required during the processing of 3 of the
22 layers, with all 3 of the layers occurring briefly in the
later part of inference. This is an important finding because
memory usage under deep models is much more bursty and
transient than expected. Thus, mitigating techniques need
only focus on a few layers; this also suggests running concur-
rent deep models might be more feasible than first thought.

Figure 6 also illustrates the considerable difference be-
tween the memory needs of DNNs and CNNs. CNNs require
far less space than their DNN counterparts. This is due to
convolution layers requiring far fewer parameters than those
of DNNs (although of course they still require a lot of com-
putation). Similar to our prior comments (see §4) regarding
computation, this implies for platforms that are restricted
in memory, but have computation available, then the use
of feed-forward layers might be reduced. One example of
this is the Snapdragon DSP, which is severely memory lim-
ited but has a processor that excels at certain computations.
Interestingly, this intersects with ongoing discussions inside
the computer vision community as to the value of fully con-
nected layers that follow convolutional ones. It is suggested
performance can improve if feed-forward layers (in CNNs)
are replaced with cheaper to compute shallow methods.

6. CONCLUSION

In this work, we perform a preliminary measurement study
into deep learning algorithms relevant to IoT and mobile ap-
plications. The aim of this study has been two fold. First,
to provide initial observations as to the execution perfor-
mance of this type of sensor processing when deployed on
mobile- and IoT-class hardware. Second, to begin build-
ing the knowledge necessary to design general-purpose so-
lutions for both reducing and managing the resources con-

sumed by these learning algorithms. Few studies of this type
currently exist, we hope these early findings prove valuable
to those researchers seeking to bring deep learning into more
widespread usage within IoT and wearable systems.

7. REFERENCES
[1] How Google Translate Squeezes Deep Learning onto a

Phone. http://googleresearch.blogspot.co.uk/2015/07/
how-google-translate-squeezes-deep.html.

[2] Intel Edison. http://www.intel.com/content/www/us/en/
do-it-yourself/edison.html.

[3] June Oven. http://juneoven.com/.
[4] Nest Themostat.

http://nest.com/thermostat/meet-nest-thermostat.
[5] Nvidia Tegra K1.

http://www.nvidia.com/object/tegra-k1-processor.html.
[6] Qualcomm Snapdragon 800. http:

//www.qualcomm.com/products/snapdragon/processors/800

[7] Torch. http://torch.ch/.
[8] Your Samsung SmartTV Is Spying on You, Basically. http:

//www.thedailybeast.com/articles/2015/02/05/your-
samsung-smarttv-is-spying-on-you-basically.html.

[9] Y. Bengio, et al. Deep Learning. MIT Press, 2015.
[10] G. Chen, et al. Small-footprint Keyword Spotting using

Deep Neural Networks. ICASSP ’14.
[11] T. Chen, et al. Diannao: A Small-footprint

High-throughput Accelerator for Ubiquitous
Machine-learning. ASPLOS ’14.

[12] G. E. Dahl, et al. Improving Deep Neural Networks for
LVCSR using Rectified Linear Units and Dropout.
ICASSP ’13.

[13] J. Dean, et al. Large Scale Distributed Deep Networks.
NIPS ’12.

[14] L. Deng and D. Yu. Deep Learning: Methods and
Applications. Now Publishers, 2014.

[15] P. Georgiev, et al. DSP.Ear: Leveraging Co-processor
Support for Continuous Audio Sensing on Smartphones.
SenSys ’14.

[16] N. Hammerla, et al. PD Disease State Assessment in
Naturalistic Environments using Deep Learning. AAAI ’15.

[17] G. Hinton, et al. Deep Neural Networks for Acoustic
Modeling in Speech Recognition. Signal Processing
Magazine, 2012.

[18] A. Krizhevsky, et al. Imagenet Classification with Deep
Convolutional Neural Networks. NIPS ’12.

[19] N. D. Lane, et al. Can Deep Learning Revolutionize Mobile
Sensing? HotMobile ’15.

[20] N. D. Lane, et al. Zoe: A Cloud-less Dialog-enabled
Continuous Sensing Wearable Exploiting Heterogeneous
Computation. MobiSys ’15.

[21] N. D. Lane, et al. Deepear: Robust Smartphone Audio
Sensing in Unconstrained Acoustic Environments using
Deep Learning. UbiComp ’15.

[22] R. LiKamWa, et al. Energy Characterization and
Optimization of Image Sensing Toward Continuous Mobile
Vision. MobiSys ’13.

[23] Y. Netzer, et al. Reading Digits in Natural Images with
Unsupervised Feature Learning. NIPS workshop on deep
learning and unsupervised feature learning. 2011.

[24] M. Rabbi, et al. Passive and In-situ Assessment of Mental
and Physical Well-being using Mobile Sensors.
UbiComp ’11.

[25] S. Rallapalli, et al. Enabling Physical Analytics in Retail
Stores using Smart Glasses. MobiCom ’14.

[26] K. Simonyan, et al. Very Deep Convolutional Networks for
Large-scale Image Recognition. ICLR ’15.

[27] Y. Taigman, et al. Deepface: Closing the Gap to
Human-level Performance in Face Verification. CVPR ’14.

http://googleresearch.blogspot.co.uk/2015/07/how-google-translate-squeezes-deep.html
http://googleresearch.blogspot.co.uk/2015/07/how-google-translate-squeezes-deep.html
http://www.intel.com/content/www/us/en/do-it-yourself/edison.html
http://www.intel.com/content/www/us/en/do-it-yourself/edison.html
http://juneoven.com/
http://nest.com/thermostat/meet-nest-thermostat
http://www.nvidia.com/object/tegra-k1-processor.html
http://www.qualcomm.com/products/snapdragon/processors/800
http://www.qualcomm.com/products/snapdragon/processors/800
http://torch.ch/
http://www.thedailybeast.com/articles/2015/02/05/your-samsung-smarttv-is-spying-on-you-basically.html
http://www.thedailybeast.com/articles/2015/02/05/your-samsung-smarttv-is-spying-on-you-basically.html
http://www.thedailybeast.com/articles/2015/02/05/your-samsung-smarttv-is-spying-on-you-basically.html

	Introduction
	Study Preliminaries
	Performance Benchmarks
	Layer and Unit Profiling
	Model Footprint
	Conclusion
	References

