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Abstract

The identities of the regulators that mediate commitment of hematopoietic precursors to the T

lymphocyte lineage have been unknown. The last stage of T lineage commitment in vivo involves

mechanisms to suppress natural killer cell potential, to suppress myeloid and dendritic cell potential,

and to silence the stem cell or progenitor cell regulatory functions that initially provide T cell

receptor–independent self-renewal capability. The zinc finger transcription factor Bcl11b is T cell–

specific in expression among hematopoietic cell types and is first expressed in precursors

immediately before T lineage commitment. We found that Bcl11b is necessary for T lineage

commitment in mice and is specifically required both to repress natural killer cell–associated genes

and to down-regulate a battery of stem cell or progenitor cell genes at the pivotal stage of commitment.

T lymphocyte precursors begin the T lineage differentiation program in the thymus, before

they fully lose alternative differentiation potentials inherited from their stem cell precursors

(1). Through a sequence of distinct stages coupled with proliferation, termed DN1 to DN3,

these cells shed B cell, myeloid cell, dendritic cell, and natural killer (NK) cell options while

turning on successive batteries of T cell genes. A necessary, although not sufficient, driver of

this process is triggering of Notch1 through interaction with Delta-like (DL) ligands in the

thymic microenvironment, and many transcription factors must collaborate with Notch to

establish T cell identity. A pivotal stage in the process is the DN2 stage. This is when the first

fully committed cells emerge, and their commitment is marked by the concerted, permanent

down-regulation of a group of stem cell– or progenitor cell–associated regulatory genes (2).

Repression of these genes is crucial for completing normal T lineage specification; at least

three of them—Tal1, Lyl1, and Sfpi1 (PU.1)—can each block T cell development or cause T

cell leukemia if sustained beyond this point (3–6). Correct silencing of such genes can be

directly implicated in the extinction of certain alternative lineage potentials [for a review, see

(7–9)] and probably also underlies the loss of broader stem cell properties. A major challenge

for the field has been to identify the rate-limiting regulator that triggers this complex of

silencing events (10).
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We have used the expression patterns of multiple transcription factors in T cell precursors as

clues to identify candidates that might provide a rate-limiting function to trigger commitment.

Bcl11b is highly unusual both in its T lineage specificity and for its steep onset of expression

in the early DN2 stage, just preceding commitment (11,12). Expression is then sustained

throughout T cell development, placing Bcl11b expression at the right places and the right

times to contribute to T lineage commitment. Previous reports have shown that loss of Bcl11b

blocks development of T cell receptor (TCR) αβ T cells after commitment, at the first TCR-

dependent selection event in the thymus (13,14); later, conditional deletion of this gene causes

impaired survival and profound abnormalities of CD4+ CD8+ TCRαβ T cells (15). Genetic

evidence also suggests that Bcl11b acts as a tumor suppressor for thymocytes (16,17). Although

abnormalities in precommitment development without Bcl11b have not been described

previously, early stages when Bcl11b is normally first expressed were not dissected in detail

in those reports, and cohorts of differentiating cells were not followed kinetically. Therefore,

to examine the earliest roles Bcl11b might play in T cell development, we deleted Bcl11b from

floxed Bcl11bL2/L2 conditional knockout prethymic precursor cells (18) using retroviral

transduction of Cre recombinase (fig. S1). To track their development through the T cell

specification process, we then cultured these cells and Cre-transduced wild-type cells in vitro

with OP9 stromal cells that express Delta-like 1 (DL1) and cytokines Flt3L (FMS-like tyrosine

kinase 3 ligand) and interleukin-7 (IL-7) (19), conditions that induce T cell differentiation in

vitro (19) (Fig. 1A).

Definitive T lineage initiation is marked by the appearance of Kit+ CD44+ CD25+ DN2 cells;

these normally give rise to Kitlow CD44low CD25+ DN3 cells after commitment. Both control

and Bcl11b-deleted progenitor cells from fetal liver or adult bone marrow generated early

Kithigh DN2 cells (DN2a) (Fig. 1, B and C). Bcl11b-deleted cells differentiated poorly to DN3

cells, however, arresting instead at DN2 and producing an abnormally large population of

CD44+ Kit+ CD25− DN1-like cells. Both of these types of descendants from Bcl11b-deleted

precursors expressed distinctively high amounts of the progenitor cell growth factor receptor

Kit, especially when derived from fetal precursors (Fig. 1B). The most striking feature of

Bcl11b-deficient cells, however, was that differentiation was blocked despite proliferation at

least as strong as in controls (fig. S2, A to D). When Bcl11b-deficient arrested DN2a cells were

purified by fluorescence-activated cell sorting and replated for further differentiation, they

consistently generated more DN2 cells and more DN1-like cells for at least another 12 days

but did not progress to a later stage (table S1); under the same conditions, control cells

progressed through DN3 stage and beyond (Fig. 1, D and E, and figs. S2E and S3), to the

CD4+ CD8+ stage (fig. S3D). Bcl11b-deficient cells grew as well as controls in reduced

concentrations of IL-7, but, whereas controls progressed faster to DN3 in these conditions, the

Bcl11b-deleted cells did not (fig. S2, E and F). Cells that did leak through this block (Fig. 1,

B and C; “DN2b” in Bcl11bL2/L2) were highly enriched for retention of at least one Bcl11b

allele (fig. S4). However, loss of Bcl11b provided a survival advantage for DN2a and DN1-

like cells. In experiments where initial Bcl11b deletion was inefficient, cells with a more

“advanced” DN2b or DN3 phenotype were generated (Fig. 1B and fig. S4A). After purification

and replating, however, these populations yielded “retrograde” DN1 and DN2a descendants

(Fig. 1D and table S1) that were highly enriched for complete loss of Bcl11b (fig. S4, B and

C) The robustness and self-renewal capacity of both DN1-like and DN2 cells without Bcl11b

contrast with the reported poor viability of later T lineage cells that are deprived of Bcl11b

(15).

Whereas normal DN2a cells generate few non-T progeny and normal DN2b and DN3 cells are

fully committed (2), both DN2a- and DN2b-like cells from Bcl11b-deficient precursors

generated cells that expressed non-T markers (Fig. 2A). The DN1-like cells generated in

cultures of Bcl11b-deficient precursors were not early T cell precursors. Most of them

expressed B220 together with CD11c, as well as moderate to high amounts of Kit and
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substantial Thy1 (Fig. 2A). A substantial fraction of DN1-like cells also expressed the NK cell

marker NK1.1 (fig. S5). Cells with these non-T features were generated efficiently from

purified Bcl11b-deficient DN2 precursors when Notch-DL1 signaling was reduced by transfer

to OP9 cells without DL1 (Fig. 2B) or by adding γ-secretase inhibitor (fig. S5), and with the

support of Flt3 ligand and IL-7 they expanded in culture on OP9 cells without DL1 (fig. S6).

Although expression of B220, CD11c, and NK1.1 is usually associated with disparate lineages

(20–25), gene expression analysis implied many DN1-like cells to be Kit+ precursors of

interferon-producing killer dendritic cells (IKDCs), proposed to be a subtype of NK cell (20,

21) (Fig. 3). Although they were B220+, they expressed no other B cell genes tested (fig. S7;

Cd19, Ebf1). Their modest expression levels of Mac1 (Itgam), PU.1 (Sfpi1), SpiB, and

RORγt (Rorct) made them unlikely to be myeloid cells, conventional or plasmacytoid dendritic

cells, or lymphoid tissue inducer cells (Fig. 3 and figs. S7 to S9). They were not precursors

because they had lost expression of canonical stem cell or progenitor cell genes (see below).

Instead, these “DN1-like” cells expressed high amounts of the NK genes Id2, Il2rb, Tbet, and

Eomes, along with Il7r and Gata3 expression typical of thymus-derived NK cells (26). The

transcription factor genes Plzf (Zbtb16) and Nfil3 (E4bp4), also implicated in NK cell

development (27,28), were also strongly expressed (Fig. 3 and figs. S7 to S9). Thus, after the

DN2 stage, expression of Bcl11b may limit T cell access to this NK-like program.

Although access to the NK-like option was most favored under standard OP9 culture

conditions, it was not the only one enhanced by loss of Bcl11b. Normally, competence to make

myeloid progeny is also reduced between the early T cell precursor DN1 stage and DN2a, then

extinguished at DN2b (2). Deletion of Bcl11b enabled DN2 cells to remain fully competent to

generate Mac1+ Gr-1+ myeloid cells if transferred to myeloid supportive conditions (Fig. 2C).

Bcl11b-deficient cells therefore retain access to at least two different non–T lineage

alternatives.

For normal thymocytes, DN2a is the last stage not only to preserve alternative developmental

potentials but also to maintain an extensive complement of stem cell and progenitor cell

regulatory gene expression (2). Several highly T cell–specific genes are normally up-regulated

at DN2a, including Bcl11b, but full T lineage–specific gene expression awaits the DN3 stage

(1,2). The profound shift in regulatory state after the DN2a stage has not been explained by

changes in expression of previously studied T lineage transcription factors (10). We therefore

asked whether Bcl11b might also have a specific role either in triggering T lineage gene

expression or in repression of stem cell and progenitor cell genes after the DN2a stage, by

comparing gene expression in Bcl11b-deficient DN2 cells with that in DN2- and DN3-stage

controls (three independent experiments shown in Fig. 3 and figs. S7 to S9).

Bcl11b-deficient precursors began T cell specification in a manner similar to controls, as

indicated by the up-regulation of Cd3e, Cd3g, Ptcra, and Rag1 between the DN1 and DN2a

stages in both Bcl11b-deficient and control cells (1,2) (Fig. 3). Expression of these genes was

sustained in replated progeny of Bcl11b-deficient precursors that retain a DN2a-like

phenotype, resembling wild-type DN2a cells (fig. S9). These cells also fully expressed

regulatory genes known to be essential for T cell specification (e.g., Gata3, Tcf7, Runx1,

Ikzf1, Myb, Ets1, Tcfe2a, Tcf12, the lymphoid growth factor receptor Il7r, and Notch targets

Hes1, Notch1 itself, and Myc, which supports DN3 cell viability) (1,29). Unlike control cells,

Bcl11b-deficient DN2 cells in primary culture simultaneously expressed elevated amounts of

NK-promoting genes: Id2, Il2rb, Nfil3 (E4bp4), and Plzf (Zbtb16) (27,28). These genes were

further up-regulated in progeny that became NK-like, but continued even in cells maintaining

a long-term DN2 phenotype (Fig. 3 and figs. S7 to S9). Thus, loss of Bcl11b may permit early

T cell specification to occur in parallel with regulatory “priming” for an innate-like

differentiation alternative.
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In the context of gene networks that control T cell differentiation, the Bcl11b-deficient DN2a

cells also failed in another aspect of repression (10). A “legacy” of progenitor cell regulatory

genes (11,12), including several proto-oncogenes (Tal1, Sfpi1, Lyl1, Gfi1b, Erg, and Bcl11a),

may normally help to sustain proliferation to the DN2a stage. During commitment, the cells

normally shift their survival requirements, becoming Notch-dependent, and the progenitor cell

genes are repressed in this process (2,30). Although in vitro T cell differentiation has some

abnormal features, all the subsets of cells generated in these cultures from control fetal liver

precursors correctly shut off stem cell and progenitor cell genes during secondary culture.

When replated, Bcl11b-deficient DN2a cells consistently did not do so (Fig. 3 and figs. S7 and

S8). Initially, Bcl11b-deficient cells expressed similar amounts of stem cell and progenitor cell

transcription factors as control cells, although often with slightly higher amounts of the

progenitor cell cytokine receptor Flt3. With sustained culture, Bcl11b-deficient cells continued

to resemble the decreasing proportion of control cells that retained a DN1-like or DN2a-like

phenotype (fig. S9). However, as the majority of control cells generally progressed to more

mature T cell development stages, Bcl11b-deficient cells as a whole diverged from controls.

They not only failed to silence but sometimes further up-regulated progenitor cell genes.

Alternative lineage markers such as the mast cell gene Cpa3 and the myeloid growth factor

receptor gene Csfr2b were also abnormally sustained. The inability of the cells to differentiate

further in the T lineage may thus be explained not by a failure to initiate T cell program

activation, but by a failure to mobilize repression, under conditions of Notch and cytokine

signaling, if Bcl11b is absent (fig. S10).

Germline Bcl11b knockouts can generate some TCRγδ cells despite a block in TCRαβ
development (13). Bcl11b-deficient cells could also generate surface TCRγδ+ progeny in vitro

(fig. S11). Do these cells not require the same commitment mechanism? Normally, Rag1

expression is not fully up-regulated until the DN3 stage (1,2), and this would limit TCRγδ gene

rearrangement until after commitment. Even so, DN2a cells can normally generate larger yields

of TCRγδ descendants per precursor than DN3 cells (2,31), which suggests that some

TCRγδ emergence may indeed precede mainstream commitment events. Consistent with the

strong expression of Rag1 in Bcl11b-deficient DN2a cells, mutant cells within both DN1 and

DN2a samples expressed Vγ-Jγ joined transcripts (Fig. 3 and figs. S7 to S9). Frequently,

Bcl11b-deficient cells expressed the fetal-specific Vγ3-Jγ1Cγ1 transcript more than did

controls. Fetal-type TCRγδ cells, like NK cells, are programmed to develop in a unique context

of high Id2 expression, which is less permissive for other TCR rearrangements (32). Other

“innate” lineages of TCRγδ cells require high levels of Plzf, which here are promoted by Bcl11b

loss (33). This may indicate that particular TCRγδ sublineages sharing NK-like features may

escape an absolute requirement for Bcl11b. Nonetheless, the absolute yield of TCRγδ+ cells

from any cohort of Bcl11b-deleted precursors was always substantially reduced relative to

controls (20 to 30%) (fig. S11). Thus, although in vivo such cells might appear enriched against

a more profound TCRαβ deficiency, Bcl11b loss still inhibits the events in T cell development

that require passage from DN2a to DN3 stages.

Through dysregulation of progenitor genes, the absence of Bcl11b directly or indirectly

disables a crucial component of T lineage–specific commitment machinery. This profound

underlying defect may explain why the DN3-like surface phenotype reported for Bcl11b-

deficient cells in neonatal germline knockout mice does not confer competence to undergo β-

selection (14). The conditions of in vitro culture that reveal the latent self-renewal potential in

Bcl11b-deficient DN2a cells undoubtedly sustain greater expansion of DN2-stage cells than

the conditions that predominate in the normal thymus. Similar conditions could occur in some

intrathymic niches, however, and in these sites loss of Bcl11b could be “rewarded,” lowering

a threshold to leukemogenesis. Most important, these results show that Bcl11b’s role

distinguishes initial responses of T cell precursors to Notch signaling from a second set of

regulatory events that are required for T lineage commitment (fig. S10). Bcl11b may also
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dissect “adaptive” from “innate” modes of T cell development at an unexpectedly early stage.

Our results thus establish this factor as a crucial contributor to both the quality control and the

repression of stemness in T cell development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.

Generation and developmental arrest of Bcl11b-deficient T cell precursors. (A) Experimental

scheme. Fetal liver precursors (Lin−c-kit+ CD27+; FLP) from embryonic day 13.5 embryos or

bone marrow hematopoietic stem cells (BM LSK) were isolated from Bcl11bL2/L2 or wild-type

mice, transduced with hNGFR-Cre retrovirus, and sorted 48 hours later and cocultured with

OP9-DL1 cells. After 9 days of culture, DN subsets of cells were sorted (red populations). A

fraction of each subset was returned to OP9-DL1 coculture for later analysis (blue populations).

The remaining cells were analyzed for RNA expression. (B) Flow cytometric analysis of

transduced fetal liver–derived precursors after 9 days of OP9-DL1 coculture. (C) As in (B),

for bone marrow–derived precursors after 14 days of OP9-DL1 coculture. (D) Flow cytometric
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analysis of sorted DN2a and DN2b cells from fetal liver precursors after an additional 12 days

of OP9-DL1 coculture. (E) As in (D), but for sorted DN2a and DN2b cells from bone marrow

precursors. (F) Schematic of normal differentiation.
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Fig. 2.

Non–T lineage differentiation of Bcl11b-deleted DN2 and DN1-like cells. (A) Flow cytometric

analysis of B220, CD11c, and NK1.1 coexpression on progeny of DN2a and DN2b precursors

in OP9-DL1 secondary culture. (B) Flow cytometric analysis of cells derived from DN2

precursors transferred to OP9 control secondary culture. (C) Myeloid developmental

competence of T cell precursors from control and Bcl11b-deficient precursors. DN1, DN2a,

and DN2b cells were generated from bone marrow precursors in primary culture with OP9-

DL1 (see fig. S3), sorted after ~20 days, and transferred to OP9 control secondary cultures

supplemented with macrophage colony-stimulating factor only. Flow cytometric analyses of

Mac1 and Gr-1 expression are shown. Results in each panel are from different independent,

single experiments, each representative of three or four experiments.
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Fig. 3.

Gene expression comparison between normal and Bcl11b-deleted cells in early T cell

development in vitro. Subsets of control and Bcl11b-deleted cells were sorted both after

primary 9-day culture and after secondary culture as indicated. For sorting gates and

quantitation of expression levels in fixed units, see fig. S7. “DN4” cells generated by controls

in secondary culture may include later stages. Real-time quantitative polymerase chain reaction

data are shown as a heat map normalized to levels of each gene in control DN2a cells. Color

scale units are log10 for a 104 overall range. Vertical bars on right highlight gene groups of

interest. Results are from one of four representative experiments (independent experiments are

shown in figs. S8 and S9).
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