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AN EARTH-FLATTENING TRANSFORMATION FOR WAVES FROM 

A POINT SOURCE* 

BY DAVID P. HILL 

ABSTRACT 

An earth-flattening transformation is developed for wave-propagation problems 

that can be formulated in terms of uncoupled scalar Helmholtz equations. Through 

the transformation, wave problems in isotropic, spherically symmetric media with 

a specified radial heterogeneity can be expressed in terms of a flat geometry with 

a suitably vertical heterogeneity. The transformation is exact for homogeneous 

(no source) problems and is useful for normal mode studies. When a point source 

of waves is present, the earth-flattening transformation together with the Watson 

transform converts the reflected wave field from a sum over discrete, spherical 

eigenfunctions to an integral over continuous wave numbers in a flat geometry. 

The far-field form of this integral shares many properties with the Weyl integral 

and is useful for body-wave studies in a spherical earth. 

INTRODUCTION 

Earth-flattening transformations provide a means for including the Earth's curvature in 

plane layer formulations of wave-propagation problems. Through such transformations, 

the existing store of analytical and numerical methods for treating flat problems become 

available for treating problems with spherical geometry. With emphasis on the resolution 

of progressively more subtle details of the Earth's structure using both phase and ampli- 

tude information on seismograms, it becomes important to include the effects of curva- 

ture for even relatively short propagation paths and wave lengths. 

Earth-flattening approximations based on a linear modification of the index of re- 

fraction have been used for some time in making corrections for the Earth's curvature in 

radio-wave propagation problems (Schelling et al., 1933; Budden, 1960). Alterman et al. 

(1961) introduced an analogous approximation into the seismological literature for 

short-period Love waves. Kovach and Anderson (1962) and Anderson and Toks6z (1963) 

developed a more general earth-flattening transformation for Love waves that involves 

transforming radially symmetric, isotropic shells into flat, vertically heterogeneous, 

anisotropic layers. More recently, Sat6 (1968) and Biswas and Knopoff (I 970) introduced 

transformations that exactly convert toroidal, or SH-wave motion in a spherically 

symmetric, radially heterogeneous earth to S H  motion in plane, vertically heterogeneous 

layers. The exact earth-flattening transformations developed by these authors for homo- 

geneous (no sources) equations of S H  motion are most useful for normal mode or 

surface-wave problems. Analogous exact transformations for homogeneous spheroidal, 

or P - S V  wave motion have not been reported; one might expect that such a trans- 

formation cannot be made exactly because the velocity gradients that serve to map 

spherical to plane geometries would introduce spurious P - S V  coupling. 

Muller (1971) has developed an approximate earth-flattening transformation for body 

waves using arguments based on geometric ray theory. In this paper, we develop an 

earth-flattening transformation suitable for body waves from a wave-theoretical ap- 

proach by incorporating an exact flattening transformation into the inhomogeneous 

*Publication authorized by the Director, U.S. Geological Survey. 
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equations of motion for waves generated by a steady point source in a radially hetero- 

geneous earth. The transformation is developed for wave problems that can be formu- 

lated in terms of uncoupled scalar Helmholtz equations in spherically symmetric, 

radially heterogeneous media. Because acoustic, electromagnetic, and elastic wave pro- 

pagation problems can be expressed in terms of uncoupled Helmholtz equations under 

a wide range of conditions, this earth-flattening operator applies to a variety of geo- 

physical applications. Analogous earth-flattening transformations are readily developed 

for any wave-propagation problem in which the equations of motion are separable in a 

spherical coordinate system and in which the radial eigenfunctions are associated with a 

Sturm-Liouville operator. 

Our approach will be first to summarize briefly the potential representations known to 

reduce the acoustic and elastic equations of motion in radially heterogeneous media to 

canonical wave equations (or Helmholtz equations in the steady state). Because a 

primary motivation for this paper is to obtain an earth-flattening transformation for 

seismic body waves, we give particular attention to the elastic displacement potentials 

recently introduced by Richards (1971) that result in high-frequency decoupling of P - S V  

motion in both radially and vertically heterogeneous media. 

Next, we develop an exact earth-flattening transformation for the homogeneous Helm- 

holtz equation for waves in a spherical medium in which the wave velocity and density 

may vary smoothly with radius (this transformation is parallel to those obtained by Sat6 

(1968) and Biswas and Knopoff (1970) for the SH-wave equation). In addition, we will 

indicate how the continuity conditions across an abrupt change in velocity and density 

behave under the transformation using S H  motion as an example. 

Finally, taking acoustic motion as a simple example and introducing the exact earth- 

flattening transformation together with the Watson transform, we convert the response 

of a radially heterogeneous body to a steady point source from an infinite sum over 

discrete order numbers to an integral over continuous wave numbers in a vertically 

heterogeneous half-space. Here we will show that for conditions generally satisfied by 

body waves in the crust and upper mantle, this integral reduces to the form of a Weyl (or 

Sommerfield) integral in which the effects of curvature are included in a generalized re- 

flection coefficient. 

EQUATIONS OF MOTION AND POTENTIAL REPRESENTATIONS 

We will restrict our considerations to plane layered and spherically layered hetero- 

geneous, isotropic media. Specifically, we will consider acoustic and elastic isotropic 

media in which the scalar material parameters may vary as a function of either depth or 

radius beneath the reference surface z = 0 or r = a (across which the material para- 

meters change discontinuously). Furthermore, we will consider a single, isotropic steady 

point source of angular frequency, co, so that the resulting field depends on only two 

coordinates (z and p in a cylindrical system and r and 0 in a spherical system, see Figures 1 

and 2). 

In inviscid fluid media, the acoustic approximation to the equations of motion can be 

written as 

V 2 p + k 2 p - p  - tVP'Vp = 0 (1) 

where P is the deviation from the static ambient pressure, p is the density and k = o9/c, 

c being the acoustic velocity. Following Brekhovskikh (1960), we introduce the pressure 

potential 

= P p -  ~ (2) 
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FIG. 1. Coordinate system for a spherically symmetric medium with a boundary at r -- a between a 
homogeneous region (Co) and a radially heterogeneous region (C(r)) .  The point source and receiver 
are located at ro and r, respectively. 

Z 0 

C 0 

c(z) 

~ P  

FIG. 2. Coordinate system for a cylindrically symmetric medium with a boundary at z = 0 between a 
homogeneous region (Co) and a vertically heterogeneous region (C(z)) .  The point source and receiver 
are located at Zo and z, respectively. 

which reduces (1) to the form of a Helmholtz  equat ion 

V2~+k2~ = O. (3) 

In  obtaining (3) the assumption is made that 

3 " -  \21 1 z vp  

i.e. the density gradients are small with respect to the wave number ,  k. In  this representa- 

t ion a steady point  source of pressure, ~ ,  is given by the potential  

F = ~ p - ¢  

where 

~ =  

in a spherical coordinate system. 

6 ( r  - ro )6 (O  - 0+)e-io~t 

2~r 2 sin 0 
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Richards (1970) has developed potential representations for the vector-wave equation 
in radially heterogeneous and vertically heterogeneous (in spherical and Cartesian 
systems, respectively) isotropic, elastic media. From his formulation, he is able to show 
that coupled P and SV solutions exist for all possible displacement solutions, SH solu- 
tions are decoupled from the P-SV solutions, and, at sufficiently high frequencies, P-SV 
solutions tend to decouple into forms that can be identified with the standard irrotational 
P-wave and solenoidal SV-wave solutions in homogeneous media. The last two results 
are particularly useful here because they permit formulation of the radially or vertically 
inhomogeneous elastic wave propagation problems in terms of three uncoupled Helm- 
holtz equations for frequencies commonly encountered in crustal and upper-mantle 

body-wave studies. 
In a spherically symmetric system, Richard's displacement potentials for P, SV, and 

SH motion (P, S, and T, respectively) have the following relation to the displacement 

vector, U(r), at r = (r, O, q$) 

U(r) = If(r)]-1 {grad f f(r) \ ~  P(r)) 

+curlcurl(\[p(r)]~rf(r) S0r, 0 ,0)  } 

+curl ( ~  T(r), 0, 0) (4) 

where p(r) and I~(r), the density and shear modulus, are functions of radius and the 
scale factor, f(r), is any sufficiently smooth, bounded function of radius. The associated 
source potentials are related to the applied force per unit mass, F, by 

F = f - l { g r a d ( f  D)+curlcurl(~F,O,O)} 

+curl ( D  E, 0, 0 ) (5) 

The spheroidal (P-SV) equations of motion can be written in terms of P(r) and S(r) as 
a fourth and fifth-order pair of coupled equations. Richards (1971) shows that if the 
scaling factor, f(r), is chosen such that 

= -~ 2p' 

\x+2 /f p x+2 ' 

where 2 and/x are Lam6 parameters and the prime indicates differentiation with respect 
to radius, and if the source potential is of the form 

6(r- ro)6(O- 0+) e i°>' 
D = 2~r 2 sin 0 , F = 0, E = 0 

then the following relations for P and S are both sufficient and necessary for high- 
frequency decoupling of the P and S potentials in the spheroidal equations of motion 

2~2-----/1+ V 2 P + ~  P =  0(1)'P (6) 

and 

v s+ po - s = o. (7) tl 
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For sufficiently high frequencies, (6) can be written 

V2p+ P ~- (8) 
+ It 2+2it  

where the S-coupled potential is two orders down in frequency with respect to P. In 

other words, for an appropriate source of compressional energy and for sufficiently high 

frequencies, the P and S displacement potentials approximately satisfy the separate 

Helmholtz equations (7) and (8). 

The toroidal, or SH, equation of motion is simply 

2 

V2T+ p°9~ T+er(r)T = -P- E 
It It 

for a steady source of the form 

E = 6(r-r°)6(O-O+)e i~°t, D = O, F = 0 
2rcr 2 sin 0 

where 

~r( r )=¼ +½ It rit 

(Richards, 1971). If we assume that shear modulus gradients are small with respect to the 

SH-wave number so that 

then the torsional potential satisfies the Helmholtz equation 

V2- P °9z P ~t+ T = - -  E. (9) 
It It 

Note that the assumption of small shear modulus gradients is analogous to the assump- 

tion of small density gradients made in obtaining the Helmholtz representation for 

acoustic motion(3). 

The displacement potential representations for a vertically heterogeneous Cartesian 

system are similar to those for a spherical system. In particular, the displacement and 

source vectors are represented at the point r = (x, y, z) by 

f(z) f(z) 
U(r )=[ f ( z ) ] -~{grad(~ -~P(r ) )+cur l cur l (O ,O ,~S( r ) ) }  

+ curl (0, 0, [~t(z)] - ~T(r)) (10) 

and 

~ = f - l  {grad(J~ D)+curlcurl(O, O, f~ F)} 

+curl (0, 0, #-  ~E). (11) 

These potentials decouple at high frequencies in the same manner as those in the 

spherical system. Equations (7), (8), and (9) apply to both systems. 

Richards (1971) points out that the commonly chosen potential representation for 

P-SV motion 
U = grad @ + curl curl (0, 0, X) 
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where • and X are assumed to satisfy 

v2,~+ P(z)~ 2 q) = 0, v 2 x +  p(z)~°2 x = 0 
2(z) + ~(z )  ~(z) 

does not lead to decoupled equations in (1) and X at high frequencies except in the 

special case of constant density. If we are to allow for the effects of a variable density, the 

potential representations (4) or (10) must be used. 

THE TRANSFORMATION 

Consider a spherically symmetric medium that is homogeneous for r > a and radially 

heterogeneous for r < a and in which the scalar field, ~, satisfies the Helmholtz equation. 

I f  a point source is located in the homogeneous medium at r = ro(r o > a) and 0 = 0+, 

the field in the homogeneous medium ~>,  will be given by 

V2~> +koa~ = 6(r-r°)~(O-O+) (12a) 
> 2nr 2 sin 0 

Inside the boundary r = a, the field ~< will be given by 

VZ~,< +kZ(r)~< = 0 (12b) 

where ko = const and k = k(r) (see Figure 1). The general solution to (12a) in r > a 

will be 

g'> = ~ 0 + G  (13) 

where ~o is the solution to the homogeneous equation, which includes the effects of both 

a boundary at r = a and the underlying heterogeneous medium in a reflection coefficient, 

and ~bp is a particular solution to the inhomogeneous equation. 

An appropriate particular solution to (12a) is the infinite space Green's function, or 

elkR 

O P -  R (14) 

where R is the straight line distance between the source at r = (r0, 0+) and any point 

r = (r ,  0) .  

We apply a Legendre transform to (12a, b), where the Legendre transform pair is 

defined by 

~l(r) = ]'~) @(r, 0)Pl(cos 0) sin 0 dO (15a) 

O(r, O) = ~ (l+½)~,(r)P,(cos 0), (15b) 
l=0 

to obtain 

~ F 2 q - - ? ~ -  [- k 2 F2 = (16) 

HOMOGENEOUS CASE 

Our aim is to rearrange the homogeneous form of (16) so that it resembles the analo- 

gous differential equation in z for a cylindrical system, r = (p, ~ ,  z), or 

~-~+(kl2-~c z) • = O. (17) 
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To accomplish this, we transform the independent variable in (16) according to 

- z  = a In (a/r) (18) 

and the dependent variable according to 

~l = (1)l = el) t e-Z/2L (19) 

Putting these two expressions into the homogeneous form of (16) gives 

which is the desired result. 

A direct comparison between (20) and (17) yields the following exact earth-flattening 

transformation for the homogeneous Helmholtz equation 

~c z _ l ( l + 1 ) + ¼  
a 2 

with 

z = a In (r/a), r = ae ~/a 

@l = ~t (21) 

where k :  and k are the fiat and spherical wave numbers, respectively. The expression in 

the brackets multiplying qb t in (20) is the radial wave number component in the spherical 

case. Thus, we identify ~: in (21) as the angular wave number component, and from this 

we obtain the well-known relation 

~:a = l+½. 

The propagation velocity in the medium is given by c = o~/k, giving 

c:  = Cs e-~/a (22) 

where c:  and Cs refer to the velocities in the flat and spherical systems, respectively. If  we 

are interested in the field in the vicinity of r = a, the above transformation can be 

approximated by 

c r -~ Cs(1-z/a), 
[z/a[ ,~ 1. (23) 

r -- a(1 +z/a ) ,  

This represents the earth-flattening approximation used by earlier workers (Budden, 

1960). 
Our development is similar to that of Biswas and Knopoff (1970) or Sat6 (1968) for 

their exact transformation of the homogeneous equation for S H  motion, although the 

particular potential representation and initial differential equations used result in minor 

differences in the transformation. The transformations for depth (21) and velocity (22) 

are the same as those obtained by Muller (1971) from geometrical ray theory. 
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RELATION BETWEEN SPHERICAL AND PLANE BOUNDARY CONDITIONS 

In making the above transformation, we have implicitly assumed that the properties 

of the medium vary smoothly with radius. If we allow a discontinuous jump in pro- 

perties at some level, say r = a, it is necessary to consider how the continuity (boundary) 

conditions for this jump transform. To illustrate this, we will compare the spherical and 

flat boundary conditions for S H  waves under the above transformation. 

Continuity of both displacement and stress are required across a welded boundary. 

For S H  (or torsional) motion across a spherical boundary, these conditions are 

lull.+ = [U, lo_ 
for displacement and 

for stress. The displacement potential representation for S H  motion in a spherical 

system is given by the last term in (4) or 

r aO -~ " 

The potential, T, satisfies the Helmholtz equation (7), and its eigenfunctions in a spherical 

system are of the form 

Tl(r, O) = ( l+ l)Tz(r)Pt(cos O) 

where i?~(r) is the homogeneous solution to (16). By (21), the mapping of it(r) into the 

flat potential, ~f(z),  is given by 

f(r) = ~,(z) 

From this, the exact boundary conditions in a spherical system expressed in terms of the 

flat potential, i~(z) are 

[~-~sl0+ = [.-~fsh- 

3 )]o ~ - ~  ( r / -2  -2-~/Jo- 

where the primes indicate differentiation with respect to z. 

On the other hand, the analogous continuity conditions for a flat boundary are 

[VAo+ = [VAo- 

for displacement (q~ represents the angular coordinate in a cylindrical system or the 

coordinate in a Cartesian system), and 

for stress (p represents the radial coordinate in a cylindrical system). In this case, Tp is the 

displacement potential for a plane system given by the last term in (10), or 

a r p  
IuI = us = a p ~ "  
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Again, the potential, Tp, satisfies the Helmholtz equation, and its eigenfunctions in a 

cylindrical system are 

Tp = Tp(z )Jo(np) .  

The above continuity conditions become 

: [.- tpl0- 

p-. r,j = - . % '  
O+ O -  

(25) 

where, again, the primes indicate differentiation with respect to z. Comparing (25) with 

(24), we see that the boundary conditions for the spherical boundary expressed in terms 

of the earth-flattening transformation are similar to the boundary conditions for the 

plane boundary except for the term of order ( T : / a )  subtracted from it:' in the stress 

condition in the spherical case. Because the two potentials Tp and T: enter the boundary 

conditions in the same way, it is possible to use the plane-boundary formulation and 

potential representation to obtain solutions for the spherical boundary problem, although 

for an exact spherical solution, conditions (24) must be used rather than the natural 

conditions for a plane boundary, (25). However, we note that 

TI' = 0([1/qlT:) 

where ~/is a vertical wave number. The additional term in the spherical stress-boundary 

condition (24) is thus of the order 01a)- 1 with respect to T:. In most crustal and upper- 

mantle body-wave problems I(~/a)- 11 will be small (provided we avoid grazing angles of 

incidence), and the natural plane boundary conditions (25) can be used with little loss in 

accuracy. Similar remarks hold for the transformation of boundary conditions for the 

decoupled P - S V  system in terms of Richards' potentials and for acoustic motion (Hill, 

1971). 

THE POINT SOURCE 

We now turn to the development of an approximate earth-flattening transformation 

when a point source of spherical waves is included. To keep the algebra to a minimum, 

we will use the acoustic case as an example; the elastic and S H  and P - S  V cases follow in a 

parallel manner. 

The model is shown in Figure 1 and the Legendre-transformed field equations are 

given by (16). Here we take ~ to be the pressure potential defined by (2). Using equations 

(10.1.45) and (10.1.46) in Abramowitz and Stegun (1964), the particular solution (14) can 

be represented as 

V j t ( k o r ) @ l ) ( k o r o )  -] ~ ,  r < ro 
t~ = iko ~ (2/+1) L J r , ( cos0) ;  = 

l=o j t (koro)ht(1)(ko r) r > r o 

where fi and h~ °) are spherical Bessel and Hankel functions and Pt is a Legendre poly- 

nomial. By comparing the form of the sum in the inverse Legendre transform (15b) with 

this series representation of the particular solution above, we see that 

~ ,  = 2iko ~ j t ( k ° r ) h l O ) ( k ° r ° )  r < ro (26) 
[ j l ( koro )h l~ l ) ( kor )  r > r o. 

Accordingly, the general form of the solution can be written as 

~>l(r) = 2 i k o @ l ) ( k o r o ) ] l ( k o r ) + A h l ( 1 ) ( k o r ) ;  a < r < r o 

¢ < l(r)  = B Iff~l(Z); ]~ < a.  (27) 
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The first term in the solution for r > a is the source field (26), and the second term is the 

field scattered by the sphere. In the second term, A is a constant determined by the 

boundary conditions and hz(1)(ko r) is a solution to (16) that represents outward traveling 

waves when kor > 1. We represent the solution to the field inside the sphere, which may 

be radially heterogeneous, in terms of the exact earth-flattening transformation (21). 

The boundary conditions at the surface of the sphere, r = a, require continuity of 

pressure and the normal component of particle velocity for an acoustic field, or 

= 

Po-'~(Po •>,) = Pi ~ ( P i ~ < , )  (28) 
a +  a--" 

Putting (27) into these boundary conditions gives 

PO -k ; hl(X)(ko r) --Pl- 1 ~rLPl-~r r ~ ['a'~ ~ (~l PO-- drJt(k°r)~ 

where S = 2ikoh~(1)(koro). Solving this system for A we obtain 

A = ikoht(1)(koro) Jl(k°a) hl(1)(koa) V, (29) 

where V can be regarded as a generalized spherical reflection coefficient given by 

@ Pl @ Jz (ko r) 

v = / - 

L p° p '  7rL ,P'r/ j \poll h, (kor)_J,= a 

The expression for the spectral amplitude and phase of the external field can now be 

obtained by applying the inverse Legendre transform (15b) to ~ > l in (27) with A given by 

(29). It is necessary to sum the series 

0> = ½ ~ (2l-t-1)~>,P,(cos 0). 
l = 0  

This series is known to converge slowly for large 1, which is the range of interest for 

body-wave studies. The standard way around this problem is to convert the sum into an 

integral using the Watson transform (see, for example, Bremner, 1949; Scholte, 1956; 

Chapman, 1969; or Gilbert and Helmberger, 1971). Accordingly, we obtain 

1 f vdv ~>(v)P,_½[cos (n-O)] (30) 
" = c c o s  

where v = tea = l+½, ~>(v) = ~b> l and the contour, c, is shown in Figure 3. The 

integrand in (30) is odd since ~>(v) = ~ > ( - v )  and Pv_i(X) = P_v_½(X) so that the 

path, C, can be transformed into C i or C2 as shown in Figure 3. 

Our goal here is to recast the integral representation for spherical waves scattered by a 

radially heterogeneous sphere into a form that resembles the Weyl integral representation 

for spherical waves reflected by a vertically heterogeneous half-space shown in Figure 2, 

o r  

Or = go(1)(Kp)VpO¢) e,,(=+zo ) x dK (31) 
-c¢  r] 
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where 

Vp is the plane wave reflection coefficient for the half-space z < 0 

t¢ is the horizontal wave number 

r/ is the vertical wave number 

(see Brekhovskikh, 1960 or Grant  and West, 1965). 

We begin by decomposing the integrand in (30) into terms that can more readily be 

given a physical interpretation. Using the identity 

j l (kor)  = ½[ht(1)(kor)+hz(2)(kor)] (32) 

the spherical Bessel function in the source term can be separated into spherical Hankel 

functions representing outgoing and ingoing traveling waves. Introducing this separation 

into ~ > (v) as it appears in (30), we obtain 

= tkoh~_ ½(ko r) [h~_ t(kor)  + h~_ ½(kor)] + (A 1 + A z)h~ D½(ko r) 

Imv 

C2 

CI 

v-plone 

o o o o - - - o  o--,.. Reu 

C 

FIG. 3. Integration path for Watson transform in complex v plane. The heavy line, C, is the original 
contour, and dashed lines, C1 and C2, are alternate positions for deformed contour. 

where A 1 and A2 are the parts of  A associated with the outgoing and ingoing waves from 

the source and are given by 

A 1 = - ikoh~L)½(ko r) 

A z = - ikoh~L)½(ko r) h~Z-)½ (koa) 
h~L)½(koa) V (33) 

and where V now has the form 

Po P 1 -dr P 1 r q~(v) ~(v)k°h2  (34) 
V ~ r = a  - -  

dr Pl ¢~(v) Pl ~(V)kohx 
\ P o /  

with 

and 

hi  (1)' (1) = [hv_~(kor)/h,_½(kor)],= a 

h 2 = [h(~2_~(kor)/h(~2_)½(kor)lr= . .  
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We see that the scattered field associated with the outgoing source field exactly cancels 

the outgoing source field (Phinney and Alexander, 1966), and we are left with 

• (~) r I ( 2 )  h~(kor )V  1 (35) •>(v) = tkohv_½(k o ) (1) hv_½(kor) 4 h~2)½(k°a) 
h~-½(koa) 

in the integral (30). 

Following Chapman (1969), we now introduce the representation for Legendre 

functions given by 

P,_½[cos (n-0)]  = • inv (1) D-in 'v / ' ) (2 )  r~.o 0) (36) - t  e Q~_½(cos O)+i,~ ~-½w~'o 

where asymptotically 
e ~: i(~o- ~/,0 

Q°'~(cos 0) ~ (2nv sin 0) + (37) 

for ~ < 0 < n - e ,  Iv] >> 1, and [vie >> 1 (Nussenzveig, 1965). Substituting (36)together 

with the expansion 

[cos (vn)] -1 = 2e +i~'~ ~ (--1)" e +-2i'~v't 
n=O 

into the integral (30), we obtain 

~,,(r,O) = ~ ft. (-1)"¢,~(v)O.:~_~(cosO)e'~"~dv 
n=O 

--J'cl (--1)n~> (v)a~t-)½( cos 0) e -i2rrvn vdv]. 

/-)(1,2) From the asymptotic representation of ~,_½ it is evident that the nth term in the first 

integral represents waves that have traveled around the Earth n times in the + 0 direction. 

Thus, direct body waves propagating in the + 0 direction are represented by the first 

integral with n = 0, or 

~k~ (r, 0) ~ ~> ~(2) ¢cos O)vdv. (38) = .~d~-½~ 

We next introduce the Debye asymptotic forms for spherical Hankel functions as given 

by Nussenzeig (1965) 

h i ( l ) ( 0  ,,~ ( -  ½ ( ( 2  __ V2) - ¼  eiX(O 

h / ( 2 ) ( ( )  ~ ( - 2±(( 2 - v 2) - ¼ e- iz(O ( 3 9 )  

where 

x(O = ((2 _ v2)÷ _ v cos- 1 (v/O - n/4 

v = l + ½ ,  v < ~. 

The corresponding asymptotic forms of the derivatives are 

hi(I)'(() ~ i(1 - v2/~2)½ht(1)(O 

h i ( 2 ) ' ( 0  ~ - -  i(1 - v2/(2)-~hl(2)((). 

Accordingly the terms hi and h E in (34) become 

i i 
h l ~ - ko ( k o ' - - , ~ ) ~  = - ko ,I 

i i 
h~ ~ ko ( k ° ~ -  ~ ) ~  = ko ,7 

(40) 
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and V becomes 

O(v) Iimrl q- 2p 

t 1 . , 

where the primes here indicate differentiation with respect to z, m = P~/Po and r/ = 

(ko 2 -  x2) ~. This is equivalent to the reflection coefficient for plane waves incident on a 

plane boundary when the transformed spherical boundary conditions are used and O(v) 

is a solution to (20) in the lower medium. If the natural boundary conditions for a plane 

boundary are used, the term (1/2a) will be absent, and Vwill be the true plane wave-plane 

boundary reflection coefficient. As indicated above, for crustal and upper-mantle body 

waves, [tea I >> 1 and the true plane-wave reflection coefficient can be used in (38) without 

significant loss of accuracy. 

Introducing the earth-flattening transformation (21) into the asymptotic forms of the 

spherical Hankel functions (39) and substituting this in the expression for ~ > (v) (35), we 

obtain 

~>(t¢) ~ a2(1 l{~e-i"(z-z°)(l+~2)+vid~(z+z°)(a+~3)}+6~) r I (42) 

where the 3~ are terms of O(z/a) given by 

K 2 ÷ 2 r /2  
5 a - rl ~ (z + a z°) + Ofz2/a2) 

~2 (Z+Zo) ~O(z2/a 2) 
62 - 72 a 

(zoO+z2) 
6 3 = - -  + O(z2 /a2) .  

?12a\  Z o + Z  /l 

Note that if the fii are are neglected, the first and second terms in the brackets reduce to 

the expression for the direct and reflected fields, respectively, in the case of a point source 

over a plane boundary. If the terms of O(z2/a 2) a r e  neglected, the 6 i become first order 

corrections for boundary curvature corresponding to the linear approximation to the 

earth-flattening transformation (23). 

We are primarily interested in the integral representation of the reflected field, which by 

(38) and (42) can be written as 

ein(z+zo)(1 -{- ~2 ) 

~/(1 +51) 
xdx (43) 

for Iz/al < 1. Here the variable of integration has been changed to ~ according to 

v = xa and the path c2 lies just above the real ~: axis and extends from - m to + ~ .  The 

integral is now in a form closely analogous to the Weyl integral (31). In fact, as the 

curvature of the boundary (l/a) goes to zero, the integral reduces to the Weyl integral. 

To see that this is so, we note that 

ov,2, cos0   [ v cos0  Q  coso, 1 
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(Nussenzveig, 1965). Furthermore, for 0 > 0 

Lim {P~(cos 0)} = Jo(vO) 
v--+ oO 

7r 
Lim {Q~cos 0)} = - ~  Yo(vO) 
V---r oO 

(Abramowitz and Stegun, 1964). From this 

Lim { Q~(Z)(cos O) } = ½ [Jo(vO) + i Yo(vO)] = ½Ho° )(vO) 
v ~  oC 

and 

where 

Lira {~>~} = Ho(1)(vO)Vp(~c) e '"(~+~°) - dK 
v--* oO _ 0 o  

vO = KaO ~ ~cp. 

In general, neither Weyl integral (31) nor (43) can be evaluated exactly. The usual 

practice in wave-propagation problems is to consider the far-field solution using the 

large-argument asymptotic form of the Hankel function (see Brekhovskikh, 1960). This 

puts the Weyl integral in a form that is amenable to evaluation by approximate tech- 

niques such as the method of steepest descents. In particular, we have for I~pl >> 1 

- -  e ~ ( K p - ~ z / 4 )  
H°(l)(~cP) \n tcp /  

so that the Weyl integral becomes 

~ e in~4 V p ( t ¢ )  e i t ' ~ p + ' ( z + ~ ° ) ~  tc+ e lK .  (44) 
- oo Y] 

Using the large-order asymptotic form for the Legendre function (37) in the analogous 

integral for a spherical boundary (43), we have 

~>r~ei~/4 / 1 f~o _ _  ~c~d~c (45) 
2ha sin 0 -oo V(x) e i{'~"°+"(z+~°)(1 +~3)] r/(1 +fit)  

for~_-<0__<~-~,l~a[>>l and I~+~> X 
Equation (45) is the far-field integral expression for waves generated at a steady point 

source and reflected by a radially heterogeneous medium in r < a. It gives a valid de- 

scription of the reflected wave field under the conditions: (a) ]z/a[ ~ l, the source and 

receiver distances above the boundary at r = a are small with respect to a, (b) I al >> 1 

and lea] ~> 1, the wavelength is much less than the radius, a, and both near-normal and 

near-grazing angles of incidence are avoided; and (c) 0 > ~ and Ixal 1; solutions are 

valid at angular distances greater than several wavelengths from the source (the far-field 

approximation). 

DISCUSSION 

We have developed an exact earth-flattening transformation for the class of wave 

problems that can be formulated in terms of uncoupled, scalar Helmholtz equations in 

spherically symmetric, radially heterogeneous media. This class includes acoustic and 

torsional (SH) elastic motion provided only that density or shear modulus gradients are 

small with respect to wavelengths considered. It also includes high-frequency elastic 

waves with either P or S V  motion, although general spherical (or coupled P-SV) elastic 

motion is excluded. 
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The earth-flattening transformation involves the mapping of spherical curvature into 

an exponential velocity profile according to (22) and an exponential relation between the 

radial coordinate, r, and the vertical coordinate, z, according to (21). In the absence of 

sources, this transformation is analogous to those developed for elastic S H  motion by 

Anderson and Toks~Sz (1963), Sat6 (1968), and Biswas and Knopoff (1970). As such, the 

transformation can be used to study torsional normal modes or Love waves in a radially 

heterogeneous earth in terms of plane, vertically heterogeneous layered models. For this 

application, the Thomson-Haskell matrix formalism together with the properly trans- 

formed spherical boundary conditions can be used to advantage. 

In the presence of a point source, the wavefield scattered by a spherically symmetric, 

radially heterogeneous body is expressed as an infinite sum of eigenfunctions over 

discrete wave numbers. By operating on the radial and angular parts of the solution with 

the earth-flattening transformation and the Watson transform, respectively, the solution 

is converted to an integral over continuous wave numbers in an equivalent flat, vertically 

heterogeneous model. The far-field form of this integral representation has many 

properties in common with the far-field form of the Weyl integral. As such, it offers a 

convenient means for the evaluation of body wave-propagation problems in the outer 

layers of a spherical earth. (The exact integral representation in flat coordinates offers no 

advantage for either numerical or analytical evaluation over the usual equivalent rep- 

resentation in spherical coordinates obtained by applying the Watson transform alone.) 

Comparing (45) with (44), we can see how curvature modifies the flat representation 

of the reflected field. In particular: (a) The horizontal distance, p, is replaced by a sin 0 

and aO (arc distance) in the geometric factor in front of the integral and in the exponential 

term inside the integral, respectively. Clearly for small angular distances a sin 0 --- aO ~- p. 

(b) The factors (1 +6i) multiplying the terms containing the vertical wave number, t/, 

correspond to corrections to the angle of incidence at the boundary r = a due to curva- 

ture of the boundary. For moderate angles of incidence and for IZo/al ~ 1 these factors 

will be nearly unity and can be neglected. Note that by omitting the 6 i, we are only 

neglecting the effects of curvature above the boundary r = a; the effects of curvature 

below the boundary are contained in the reflection coefficients, V(x). (c) The reflection 

coefficient V(~) given by (41) is the plane-wave reflection coefficient for the half-space 

z < 0 (r < a) in which the velocity profile is modified by the exponential factor e -z/a 

according to (22) and the transformed spherical boundary conditions are used. Because 

the function ~(v), occurring in the reflection coefficient, is the exact radial eigenfunction 

for r < a (expressed in the vertical coordinate z), the integral (45) can in principle be used 

to obtain the wave field reflected from arbitrary depths below the boundary r = a. 

In general, the analytic evaluation of (45) for realistic earth models requires that 

additional approximations be made. Closed form expressions for the radial eigen- 

function, qb, can be obtained for very few velocity distributions, and normally it is neces- 

sary to approximate the reflection coefficient using one of the several methods described 

in Brekhovskikh (1960). For example, it seems that this integral representation (45), when 

coupled with the Epstein method for evaluating flat problems with continuous velocity 

variations (Epstein, 1930; also see Phinney, 1970 for a discussion of geophysical appli- 

cations of the Epstein method), provides a promising approach for studying waves 

reflected from a variety of interesting transition zones in a spherical earth. An example of 

a specific application of (45) is given by Hill (1971). Here, the integral is used to deter- 

mine the effects of curvature and velocity gradients on critically refracted waves in the 

crust and upper mantle. In this case, the effects of velocity gradients and curvature just 

beneath the refracting boundary dominate, and it is possible to use the linear approxi- 

mation to the earth-flattening transformation (23). 
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