
An earth pressure coefficient based 
on the geomechanical and geometric 
parameters of backfill in a mine stope

Yan Levesque1, Ali Saeidi2*  and Alain Rouleau2

Introduction

Mine backfilling is a technique that has been used for decades in Canada and across the 

globe [1, 2]. �is method has several advantages such as stabilizing the drifts and stopes 

of a mine and increasing worker safety. Backfilling serves to fill excavations in a mine 

and allows ore to be extracted more completely because the underground excavations 

have better support. Environmental benefits result from the use of tailings as backfill 

material: problems related to the disposal of surface tailings can be reduced as substan-

tial quantities of potentially polluting tailings can be returned underground. �is backfill 

material generally consists of a mixture of tailings, water and cement.

�e backfilling process has several technical aspects that interact with one another. 

�is includes the hydrogeology, mineralogy and geochemistry of both the host rock 

and backfill material as well as the mechanical behavior of these two media. Mechanical 
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interactions occur at the interface between the backfill and the host rock mass. �e 

mechanical properties of these two media are very different from each other. For exam-

ple, the backfill is of lower density and rigidity than the host rock. �ese contrasting 

properties must be accounted for in a thorough analysis of the mechanical interactions 

between the two media. �e freshly placed backfill tends to compress under its own 

weight and generates shear stress at the backfill–rock interface due to friction. A certain 

amount of weight is transferred laterally from the backfill to the rock mass. �is transfer 

is associated with arching, which occurs mostly in narrow stopes and where a lower den-

sity material is placed between denser materials [3, 4]. �e stresses exerted on the mine 

pillars by the backfill must be determined to avoid failure of the pillars. �is requires 

accurate estimates of the geomechanical parameters of both the backfill and the rock 

mass.

�e arching effect has been demonstrated by several authors through field measure-

ments or analytical and numerical models. Important studies on this topic include that 

of Li and Aubertin [3], which presents the results of large-scale numerical investiga-

tions focused on stope geometry and backfill properties. �ey conclude that the greatest 

effect on stress distribution within backfill results from the cohesion (c) and the friction 

angle (φ′) of the backfill. However, the values of the earth pressure coefficient (K) used 

in these studies were obtained from the geotechnical engineering literature, particularly 

from analyses involving retaining walls, that applied values such as the Rankin, Cou-

lomb and at-rest earth pressure coefficients [5]. �ese analytical methods were based on 

simplifying assumptions that excluded the possibly important variations in K resulting 

from changes in the geomechanical parameters (e.g., E and c) and excavation geometry, 

thereby affecting the accuracy of the stress distribution models.

Ting et al. [6] studied the stress distribution along an inclined stope focusing on sev-

eral geomechanical and geometrical parameters. �ey demonstrated that the inclination 

of a stope is another critical factor for predicting stress distribution in backfill. How-

ever, they did not consider that K in backfill will vary inevitably with variations in stope 

geometry.

It is necessary to develop more accurate values of K that account for the variability of 

geometrical and geomechanical parameters. A method is proposed for modifying the 

value of K depending on the geometry of the excavation and the geomechanical param-

eters of the backfill. Graphs are developed to estimate K for different values of these 

parameters. �is method is validated by comparing the resulting K values with values 

obtained using existing models and analytical approaches.

Analytical methods

Despite their limiting assumptions, analytical methods for estimating values of K, such 

as the method of Marston [7, 8] and overburden solutions [5], are useful to mining engi-

neers as they can be used to obtain a preliminary K value. �e Marston theory [7] is 

particularly suitable for sites where arching occurs. �is theory accounts for both the 

weight of the fill and the shear forces between a vertical wall and the backfill at a given 

depth.
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Figure 1 illustrates the parameters required for using the standard Marston and over-

burden methods to determine K for a backfilled stope having vertical walls. �ese meth-

ods require the following assumptions [9]:

  • �e backfill is bounded by two parallel vertical walls;

  • A two-dimensional plain strain condition is present;

  • �e vertical stress is uniformly distributed along a horizontal plane at all depths;

  • �e adhesion between the rock face and the backfill is equal to the cohesion of the 

backfill.

In Fig. 1, H and B are, respectively, the height and width of the backfill. �e backfill 

is subjected to a lateral compressive stress C, a shear force S and a vertical force V, all 

of which vary with depth Z. W represents the weight of the backfill per unit thickness. 

�us,

where γ is the unit weight and dz is the thickness of the layer element in the backfill.

�e equation for the balance of forces in the fill section th provides an estimate of 

the stresses acting throughout the backfill [3, 10]. From these deductions, the horizontal 

stress can be obtained from the equation:

(1)W = γBdz

(2)σhz = γB

(

1 − exp(− 2Kz/Btanδ

2tanδ

)

Fig. 1 A vertical backfilled stope and the forces acting on a layer element
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where 

�e parameters σvz and σhz are, respectively, the vertical and horizontal stress at depth 

z, and δ is the interface friction angle, which is approximately 2/3 of φ′. Pirapakaran and 

Sivakugan [11] demonstrated that for a backfill cohesion of zero, t friction angle δ at the 

interface is approximately 2/3 of φ′ when K = K0. However, depending on the blasting-

related roughness and irregularities in the stope walls, this parameter could be consid-

ered as equivalent to the friction angle of backfill, i.e. φ′. Under these conditions, the 

estimated vertical stress obtained from the analytical model approximates the true value. 

�e value of K depends on the material properties and the horizontal displacement of 

the wall.

�ree cases were considered for estimating K in Marston theory [7]:

1. When there is no relative displacement of the walls, the backfill isaid to be at rest 

(neutral), and K is equal to the at-rest earth pressure (K0) given by Jaky [5]:

2. When considering an active earth pressure coefficient (Ka),

3. When considering a passive earth pressure coefficient (Kp),

Equation 2, developed by Marston [7], was used by Li et al. [10]. However, these two 

studies each proposed different definitions of the earth pressure coefficient (K): Marston 

[7] defined K as the active earth pressure developed by Rankine (Ka = 0.33), whereas Li 

et al. [10] concluded that K0 (approximately 0.5) was the most suitable value for vertical 

walls after they compared the at-rest (K0), active (Ka) and passive (Kp) earth pressures.

Figure 2 presents a comparison between the overburden theory (σvz = γH and σhz = K 

σvz) and the Marston solution (Eq. 2) for horizontal and vertical stress when K is assigned 

a value of 0.5. �e overburden theory does not account for any arching and σvz and σhz 

are linearly related. However, the Marston model [7] clearly indicates the presence of 

arching (Fig. 2) in that the curves of σhz and σvz gradually approach a stress limit. �is 

arching occurs because the mass transfer to the stope walls is significant and tends to 

reduce the horizontal (σhz) and vertical (σvz) stresses on the walls [12]. Arching occurs 

only in narrow stopes, and the traditional overburden model can provide a meaningful 

estimate of the stresses in stope backfill near the top, where arching is insignificant, or 

when the width of the backfill is very large relative to the height.

(3)K = σhz/σvz.

(4)K = K0 = 1 − sinφ
′

.

(5)
K = Ka =

1 − sinφ
′

1 + sinφ
′
.

(6)K = KP =
1 + sinφ

′

1 − sinφ
′
.
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Numerical modeling

A series of numerical calculations were performed using the software Phase 2 [13] to 

check the validity of the analytical models. �e model includes a narrow stope that is 

45 m tall by 6 m wide, and has a base located at a depth of 250 m (Fig. 3a). �e verti-

cal stress σv at a given depth in the rock mass is obtained from the overburden weight 

at that depth. �e horizontal stress (σH) in the rock mass is assumed to be twice that 

of the vertical stress (σV), typical for rock masses in the Canadian Shield [3]. �is host 

rock is assumed to be isotropic, homogeneous, linear elastic that behaves in accordance 

with the failure criterion of Hoek and Brown [14]. �e backfill is assumed to behave in 

accordance with the Mohr–Coulomb failure criterion. �e interface between the backfill 

and the rock mass is represented by a joint in Phase 2. �is joint is assigned a cohesion 

of 0 and an interface friction angle (δ) being 2/3 of the backfill friction angle (φ′ = 30°).

�e results of the numerical modeling (Fig.  4) can be compared with estimates 

obtained from the analytical models. Figure 5 illustrates the arching in the backfill and 
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and mechanical properties of the backfill and the rock mass; b finite element model
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the transfer of loads to the walls. Reductions in the vertical (σvz) and horizontal (σhz) 

stress, relative to the overburden weight, are indeed observed in the backfill from the top 

to the bottom of the stope. �e stress distribution is nonuniform and, at any given eleva-

tion, the horizontal (sigma xx or σhz) and vertical (sigma yy or σvz) stresses are lower 

along the walls than in the center of the backfill.

Figure 5 shows the results of the analytical model for K values of 0.5 and 0.33, based 

on the findings of Marston [7] and Li and Aubertin [10]. for a narrow vertical stope hav-

ing a backfill friction angle of 30°. �e curve of the numerical model is below the curve 

of the analytical overburden model and nearly coincides with the curve of the Marston 

model that has a K value of 0.3. �e question that arises is how to determine the value of 

K that is best suited for adjusting the analytical model to the numerical results for differ-

ent values of the geomechanical and geometric parameters. �e value of K is dependent 

Fig. 4 Distribution of the induced horizontal stress (a sigma xx (σhz)) and vertical stress (b sigma yy (σvz))
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on both the geomechanical parameters of the backfill and on the geometry of the stope. 

A suitable K value therefore varies with fluctuations in these parameters. An adjustment 

is necessary based on the geomechanical and geometric parameters of the backfill. Fig-

ure 5 shows that a K value of 0.33 yields a very good fit with the numerical model for a 

stope measuring 6 × 45 m.

Determination of the earth pressure coefficient based on geomechanical parameters

Several geomechanical parameters affect the distribution of vertical and horizontal 

stresses in the backfill, including friction angle (φ′), cohesion (c), Young’s modulus (E), 

unit weight (γ) and Poisson’s ratio (ν). �e relative importance of the effects of each 

parameter on K was determined from a sensitivity analysis in which several values were 

assigned to each of these parameters while keeping the other parameters constant.

Sensitivity analysis

�e geomechanical parameters evaluated by the sensitivity analysis were the Young’s 

modulus E (Fig.  6), the cohesion (c) (Fig.  7) and the friction angle φ′ (Fig.  8) of the 

backfill.

�e effect of Young’s modulus on horizontal stress in the backfill appears to be insig-

nificant (Fig.  6). Variations in cohesion, however, produce a range of horizontal stress 

values of approximately 0.04 MPa. �ese values appear to be constant below a depth of 

40 m (Fig. 7). When cohesion exceeds 0.1 MPa, the results remain similar and the curves 

are nearly superposed. �e friction angle exerts by far the greatest effect on horizontal 

stress (Fig. 8), as it produces horizontal stress values having a range of 0.15 MPa. �e 

estimated horizontal stress increases gradually with decreasing friction angles (φ′), and 

arching occurs for every value of φ′. �is arching is evident in the stabilization of the 

curves at the bottom of the stope. Figure 6 indicates that the variation of Young’s mod-

ulus in the backfill has negligible effects on the distribution of horizontal stress when 

compared with the variations in the friction angle. Furthermore, as shown in Fig. 7, a 

backfill cohesion value of more than 50 kPa above the variation of vertical stress does 

not have a substantial effect on vertical stress. Friction angle has a much greater effect on 

the estimated horizontal stress than does the Young’s modulus and cohesion. �erefore, 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 10 20 30 40 50

S
ig

m
a

 x
x

 (
M

P
a

) 

Depth Z(m) 

E=50 MPa

E=100 MPa

E= 150 MPa

E= 200 MPa

E= 250 MPa

E= 300 MPa

Fig. 6 Effects of Young’s modulus (E) of the backfill on horizontal stress (sigma xx) in a stope measuring 

6 × 45 m



Page 8 of 15Levesque et al. Geo-Engineering  (2017) 8:27 

only the friction angle was subsequently used to obtain a corrected value for the earth 

pressure coefficient.

Analytical and numerical adjustment

�e analytical model of Marston [7] can be adjusted based on the results of numerical 

modeling by varying the value of K in the Marston equation (Eq. 2) so that the analytical 

and the numerical curves overlap. By gradually changing the value of K, it is possible to 

obtain nearly perfectly matching curves. �is yields the appropriate K value for use with 

the corresponding values of these geomechanical parameters.

Figures 9 and 10 show the curve fitting process for determining the appropriate value 

of K for various values of φ′ in two similar models having a height/width (H/B) ratio of 

7.5, specifically models measuring 6 × 45 m and 12 × 90 m. �e curve fitting has been 

determined by trial and error. �ese two figures indicate that the best-fit values of K 

decrease with increasing φ′. Moreover, the best-fit K values are the same in these two 

systems having the same H/B ratio. Stopes of similar geometry (with similar arching), 

for example with a backfill having φ′ = 15°, will have a K value of approximately 0.55. 
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Backfill having φ′ = 20° will have a K value of 0.45, and so forth. Appropriate K values 

can be determined for stopes of any size having a similar H/B ratio. �e Rankin active K 

value used in Eq. 5 is presented in Figs. 9 and 10. From this, we see that there is a greater 

difference between the two curves. �us, only using the active Rankin equation can lead 

to greater error in estimating backfill pressure.

Figure 11 shows that the best-fit value of K decreases considerably (from 0.6 to 0.15) as 

the friction angle (φ′) increases from 10° to 50°.

Determination of the earth pressure coefficient based on stope geometry

As discussed above, mass transfer due to shearing and arching is possible only in nar-

row stopes. It is therefore important to determine the variation of K associated with dif-

ferent stope geometries, including the geometric threshold at which arching—strong or 

weak—occurs gradually in the backfill. A low H/B ratio likely produces very little arching 

because very little friction is generated at the backfill–rock interface. In addition, a value 

of K can be estimated for each H/B value. �is permits the determination of several best-

fit K values and thus yields more accurate results for determining horizontal stress (σhz).
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Figure 12 illustrates the estimates of horizontal stress based on numerical models of 

several backfilled stopes of the same height (H = 45 m) but having various widths (B) 

ranging from 4.5 to 22.5 m. �e geomechanical parameters, such as cohesion, friction 

angle and Young’s modulus, are held constant in all models at the values shown in Fig. 3. 

Figure 12 clearly shows that arching is greater at higher H/B ratios, resulting in a slower 

increase in horizontal stress with depth. �e arching effect is visible in the stabilization 

of the curve, i.e. the decreasing slope. At the other extreme, the curve for an H/B of 2 

shows very little arching, approaching that of the overburden model. In this case, the 

horizontal stress continues to increase. �e curve for an H/B of 10 shows substantial 

arching, and the increasing rate of σhz and σvz decrease toward the footwall. In summary, 

the arching effect appears to be negligible at an H/B of 2 and gradually increases with 

higher H/B ratios.

It is clear from Fig.  12 that altering the geometry changes sigma xx substantially. 

�erefore, a single K value cannot be applied. An appropriate K value must be obtained 

for a given H/B ratio and for given values of geomechanical parameters, such as the fric-

tion angle (φ′).
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To validate the representativeness of the H/B ratio as a standard geometric parameter, 

Fig. 13 presents the numerical results corresponding to different stopes having the same 

H/B value of 7.5. Depth (Z) is normalized to total height (H). As such, the normalization 

is applied to the stress values by dividing the actual horizontal stress estimates by the 

maximum value, which is present at the bottom of the stope (Fig. 13). In this case, the 

curves overlap almost perfectly, producing a curve that represents all model configura-

tions having an H/B ratio of 7.5. �is superposition confirms the validity of the H/B ratio 

as a reference parameter for determining the value of K in stope backfill.

Similar to the analysis of the friction angle presented in Figs. 9, 10 and 11, a best-fit 

value for K can be determined as a function of the geometry represented by the H/B 

ratio. �is step was performed by adjusting the analytical model of Marston based on 

the results of the numerical models. It is assumed that with a given set of geomechani-

cal parameters, the appropriate K value obtained from this adjustment is the same for 

all stopes having an identical H/B ratio. Figure 14 illustrates the case where H/B = 7.5 

and the appropriate K value for backfilled stopes of three different sizes is 0.33. �e 

results are consistent with Marston theory for this set of geometric and geomechanical 

parameters.

�e K value can be determined for different values of the H/B ratio. For a given set 

values of geomechanical parameters, the value of K gradually decreases with increasing 

H/B ratios (Figs. 15, 16 and 17). An appropriate value of K can therefore be determined 

for each value of this ratio.

A graphic method for application to the Marston solution

Figures 18 and 19 allow for determining an appropriate K value by adjusting the ana-

lytical method of Marston for stopes of various geometries and backfills having vari-

ous geomechanical parameter values. �ese graphs were developed from the numerical 

modeling results in comparison with estimates obtained via the Marston method [7]. 

�ese graphs serve as charts for determining the earth pressure coefficient based on 

the friction angle and various H/B ratios. Figure  18 (in which δ = φ′) is complemen-

tary to Fig. 19, the latter able to be applied to stopes having a minimal wall roughness 

(δ = 2/3φ′ ).
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Fig. 18 Variation of K as a function of the H/B ratio and φ′. In this case, δ = φ′
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Conclusions

�is study suggests that the determination of the earth pressure coefficient (K) must 

account for the stope geometry and geomechanical parameters of the backfill as these 

parameters can vary markedly even within a given mine. In general, most authors do not 

adjust the value of K based on their model parameters and instead apply a constant K 

value.

A sensitivity analysis of the geomechanical parameters demonstrated the relative 

effects of cohesion, Young’s modulus and friction angle of the backfill on the estimates of 

horizontal stress; the friction angle (φ′) exerts the greatest effect.

Two charts were developed and provide improved estimates of the earth pressure 

coefficient (K). �ey are based on the Marston solution and account for both the stope 

geometry (the H/B ratio) and the geomechanical parameters (the friction angle φ′) of the 

backfill. �is method provides more accurate estimates of the earth pressure coefficient 

and reflects the often heterogeneous characteristics of backfilled stopes.

Notations

φ′: friction angle of the backfill (degrees); φ′

res: residual friction angle of the backfill (degrees); B: stope width (m); H: 

height of the backfill (m); H/B: height/width ratio of the backfill; c: cohesion of the backfill (N/m2); cres: residual cohesion 

of the backfill (N/m2); K: earth pressure coefficient; Ka: active earth pressure coefficient (thrust); Kp: passive earth pressure 

coefficient; K0: at-rest earth pressure coefficient; V: vertical force at depth Z (N); W: backfill weight (N); m, s: constants 

in the Hoek and Brown failure criterion for the rock mass; C0: uniaxial compressive strength in the intact rock; Z: depth 

below the top of the backfill (m); Z/H: normalized height at depth Z; γ: unit weight of the backfill (MN/m3); δ: friction 

angle along the interface between the backfill and stope wall; E: Young’s modulus of the rock or backfill (MPa); ν: Pois-

son’s ratio of the rock mass or backfill; σhz = sigma xx: Horizontal stress exerted by the backfill on the wall at depth Z (Pa); 

σvz = sigma yy: Vertical stress at depth Z (Pa); τ: shear stress along the stope wall at depth Z (Pa); σH: in situ horizontal 

stress in the rock mass; σV: in situ vertical stress in the rock mass.
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