AN ESSAY ABOUT RESEARCH ON SPARSE
NP COMPLETE SETS

By

J. Hartmanis
and
S.R. Mahaney

TR 80-422

Department of Cbmputer Science
Cornell University
Ithaca, New York 14853

AN ESSAY ABOUT RESEARCH ON SPARSE
EP COMPLETE SETIS

J. Hartmanis and S. R. Mahaney
Department of Computer Science
Corneéll University -
Ithaca, New York 14853

Abstract

The purpose of this paper is to review the origids and motivation for the con-
jecture that sparse NP complete sets do not exist (unless P = NP) and to describe
the development of the ideas and techniques which led to the recent solution of this

conjecture,

l. Introduction

The research in theoretical computer science and computational complexity
theory has been strongly influenced by the study of such feasibly computable fami-
lies of languages as P, NP and PTAPE. This research has revealed deep and
unsuspected counections between different classes of problems and it has provided
completely new means for classifying the computational complexity of problems.
Furthermore, this work has raised a set of interesting new research problems and
created an unprecedented consensus about what problems have to be solved before real

understanding of the complexity of computations can be achieved.

In the research on feasible computations the central role has been played by
the families of deterministic and nondeterministic polynomial time computable
languages, P and NP, respectively [AHU, €, GJ, K]. 1In particular, the NP complete

languages have been studied intensively and virtually hundreds of natural NP com~

Plete prodblems have been found in many different areas of applications [AHU, GJ].
Though we do not yet know whether P z NP, we accept today a proof that a problem is
NP complete as convincing evidence that the problem is not polynomial time comput=
able (and therefore not feasibly computable); a proof that a problem is complete for
PTAPE is viewed as even stronger evidence that the problem is not feasibly comput-

able (even though there is no proof that P # NP # PTAPE).

As part ot the general study of similarities among NP complete problems it was
conjectured by Berman and Hartmanis, for reasons given in the next section, that all
NP complete problems are isomorphic under polynomial time mappings and - therefore
there could not exist (sparse) NP complete sets with considerably fewer elements

than the known classic complete problems (e.g. SAT, CLIQUE, etc. [BH]).

When the conjecture was first formulated in 1975, the understanding of NP com-
plete problems was more limited and several energetic frontal assaults on this prob-
lem failed, As a matter of fact, the_problem looked quite hopeless after a consid-
erable initial effort to solve it. Fortunately, during the next five years ; number
of different people in Europe and America contributed a set of ideas and techniques
vhich recently led to an elegant solution of this problem by S. Mahaney of Cornell

University [M],

The purpose ot this paper is to describe the origins of the sparseness conjec-
ture about NP complete sets, to relate the information flow about this problem and
to describe the development of the crucial ideas that finally led to the proof that

if sparse NP complete sets exist, then P = NP [M].

We believe that this is an interesting and easily understandable development in
the study of NP complete problems and that there are some lessons to be learned

about computer science research from the way this tantalizing problem was solved.

Furthermore, it is hoped that these results may provide a new impetus for work

on the main conjecture that all NP complete sets are p-isomorphic.,

2. Preliminaries and the Sparseness Conjecture

Let P and NP denote, respectively, the families of languages accepted by deter-

ministic and nondeterministic Turing machines in polynomial time.

A language C is said to be NP complete if C is in NP and if for any other
language B in NP there exists a polynomial time computable function f such that

x € B < f(x) € C,

The importance of the family of languages P stems from the fact that they pro-
vide a reasonable model for the feasibly computable problems. The family NP con-
tains many important practical problems and a large number o6f problems from dif-
ferent areas of applications in computer science and mathematics have been shown to
be complete for NP [AHU, C, BJ, K]. Since today it is widely conjectured that
P # NP, the NP complete problems are believed n;t to be solvable in polynomial time.
Currently one of the most fascinating problems in theoretical computer science is to

understand better the structure of feasibly computable problems and, in particular,

to resolve the P = NP question. For an extensive study of P and NP see [AHU, GJJ.

A close study of the classic NP complete sets, such as SAT, the satisfiable
Boolean formulas in conjunctive normal form, HAM, graphs with Hamilteénian circuits,
or CLIQUE, graphs with cliques of specified size, revealed that they are very simi-
lar in a strong technical sense [BH]. Not only can they be reduced to each other,

they are actually isomorphic under polynomial time mappings as defined below:

Two languages A and B, A & E* and B ¢ F*. are p-isomorphic iff there exists a

. * & . .
bijection f:3 +[" (i.e. a one-to-one and onto mapping) such that

1, £ and f-l are polynomial time computable,

2, f is a reduction of A to B and f.l is a reduction of B to A,

Further study revealed that all the "known™ NP complete sets are p-isomorphic
and that one could formulate (after a number of technical lemmas) a very simzple con-
dition for NP complete sets to be p-isomorphic to SAT in terms of two padding func-

tionls [BHJ .

JTheorem L: An NP complete set B is p-isomorphic to SAT iff there exists two polyno-

mial time computable functions D and $ such that

10 (Vx.y) [D(x.y) € B QXCBJ
2. (Vx,y) [soD(x,y) = yl.

All the known NP complete sets have these padding functions and in most cases
they are easy to find. A good example is SAT, for which y can easily be encoded in
any given formula in terms of mew variables which do not change the satisfiability

of the formula [BH].

From these studies grew the conviction that all NP complete sets are p-

isomorphic and this conjecture was explicitly stated in [BHI.

Clearly, if all NP complete sets aré p-isomorphic then they all must be infin-
ite and therefore P # NP, Thus it was realized that this conjecture may be very
hard to prove, but the possibility was léft open that it may be easier to disprbve
it. One way of disproving the p-isomorphism conjecture is suggested by the fact
that p-isomorphic sets have quite similar densities. To make this precise we define

sparseness below:

A set B, B¢ st is said to be sparse if there exists a polynomial p(n) such
that
I Ba(e+2)" | < pla).

Thus p{n) bounds the number of elements in B up to size n.

It is easily seen that SAT and other known NP complete sets are not sparse (any
set possessing the padding functions D and S is not sparse) and that a sparse set
cannot be p-isomorphic to SAT. These considerations lead to the conjecture [BH] that
there do not exist sparse NP complete sets (unless § = NP). In particular, it was

. *
conjectured that no set over a single letter alphabet say Bca , can be NP complete.

It is interesting to note that the p-isomorphism conjecture quickly leads to

the sparse set conjecture and then to the innocuous looking conjecture that no

language on a single letter alphabet could be NP complete. We return to this last

conjecture in the next section, it was the first to be solved.

A more indirect motiyation for the p-isomorphism conjecture comes from the sug-
gested analogy between recursive and recursively enumerable languages and P and NP
as their feasibly computable counterparts. This analogy becomes particularly intri-
gueing and suggestive when it is extended to the Kleene Hierarchy and the polynomial
time hierarchy [S]. The NP complete sets correspond in this analogy to the r.e.
complete sets, which are known to be the same as the creative sets and they are all
recursively isomorphic. This suggests tﬁat by analogy the NP complete sets should

be p-isomorphic, as conjectured in [BH].

Lastly, a sparse NP complete set would imply that the necessary information to
solve NP problems can be condensed in a sparse set. In other words, the sparse set
could be computed and then used as a polynomiallf long oracle tape to solve other NP
compléte problems. At the time of stating the sparseness conjecture this looked
very unlikely, and now we know that it is not possible unless P = NP. For related
results discussing the consequences of the existence of polynomial size circﬁits for

the recognition of SAT, see [KLJ].

3. Sparse Ranges and SLA Languages

The p-isomorphism and sparseness conjecture and the more specialized conjecture
that no language on a single letter alphabet can be NP complete received a fairly
vide exposure at conferences and journal publications in the United States and
Europe [BH, HBl, HB2]. Unfortunately, in spite of different attempts, no progress
vas made on this problem for several years and it started to look like an interest-

ing problem about NP complete sets which was not likely to be solved in the near

future.

The situation changed suddenly when Piotr Berman from Poland submitted a paper
"Relationships Between Density and Deterministic Complexity of NP-Complete
Languages™ to ICALP '78. In this paper, motivated by the sparseness conjecture, P.

Berman considered the consequences of P-time reductions with sparse range,

particularly NP complete subsets of a*. One of the authors was on the program com-
ﬁittee for ICALP '78 and the paper, which in its first version was not easy to
understand, was studied at Cormell with great interest. After some effort, with the
help of S. Fortune, we convinced ourselves that indeed P. Berman's result was
correct. In retrospect it is surprising how elegant and simple P. Berman's proof is

and why so many other people who had thought about this problem missed it.

The paper was, as it amply deserved, accepted for ICALP '78 and received con-
siderable attention. Unfortunately, P. Berman did not attend ICALP '78 himself and
the paper was read at the conference by Ron Book, who had also worked on single

€

letter alphabet languages [BWSDJ.
We state P. Berman's Theorem below and outline a proof:

Theorem 2: a) If there is a P-time reduction with sparse range for an NP complete

set, them P = NP,
b) If there is an NP complete subset of a*. then P = NP,

Note carefully that P. Berman's hypothesis of part a) is that there is a reduc-
tion g so that [{g(x) : Ix! < n}] is polynomially bounded. Though his proof used
CLIQUE as an NP complete problem, we will consider the SAT problem in our outline of

the proof. Part b), of course, is immediate from part a).

Proof: Let g be a p-time reduction of SAT to a sparse range., We outline an algo-
rithm to determine if a boolean formula F(xl.....xn). is satisfiable (and if so,
finds an assignment). The algorithm will search part of a binary tree of self-
reductions of F. The root is F(xl.....xn). Each node will correspond to F with cer-
tain variables instantiated by 0 or 1 as follows: if F(bl""'bi-l'xi""'xu) is at
& node, then its offspring will be
F(bjseeeaby 1400, veensx)
and

F(blnlt-.bi_l .l .xi’l .o.onxn)-

We construct the tree depth first, computing a label g(F) at each formula F

gncountered. The algorithm determines that certain formulas, F, correspond to unsa-
fisfiable formulas and their labels, g(F), are marked as follows: a leaf with for-
mula 0 (i.e. FALSE) is marked unsatisfiable; if both offspring of a node are marked
unsatisfiable thén the label at that node is marked unsatisfiable also. When a

label is marked unsatisfiable other nodes occurring with the same label are simi-

larly marked.

A careful analysis shows that whenever a bottom-most node is selected, then
either a satisfying assigoment is found or a new value g(F) is marked unsatisfiable
in examining the next n nodes of the tree. Thus, the running time is polynomial in

the size of F(xl.....xn).

QED

A close inspection of this proof shows that no explicit use has been made of

the fact that the set A is in NP. Thus we have actually proved:
Corollary 3: 1If SAT can be reduced to a sparse set, then P = NP.

Even more fully formalized, P. Berman's proof is quite simple, but it provided
the first important step in the solution of the sparseness conjecture. We believe
that in the solution of this problem interaction between different groups played an
important role and that a solution of even a highly specialized conjecture, like the

sparse range case, provided the necessary impetus for further work.

4. No Sparse CO-NP Complefe Sets.

In the attempt to understand P. Berman's proof of the single letter case, Steve
Fortune, who at that time was a graduate student at Cornell, noticed that in
Berman's proof the negative answers yielded valuable information. When a formula F
is found to be unsatisfiable, its label g(F) is marked; one never has to explore
beneath any other node of the tree wiéh the same label value. Furthermore, such

negative answers can be found only polynomially often before the possible values

from g SAT®) are exhausted.

This insight lead S. Fortune to a proof that the complete sets in CO-NP cannot

be reduced to sparse sets, if P z NP [F].
Iheorem 4: If a CO-NP complete set can be reduced to a sparse set S, then P = NP.

Proof: Applying the same tree search method as before, observe that only negative
ansvers are propogated up the tree by conjunctive self-reducibility (i.e., a node is
not satisfiable if and only if both soms are not satisfiable). Since only the nega-
tive answers are used to prune the tree search, the polynomial running time is

pPreservea under this weaker hypothesis.,

QED

For a casual observer of théoretical computer science research the above result
may look artificial since it does not answer the sparseness question, but instead
solves a strange new problem about complete sparse sets for CO-NP, On the other
hand, this was a critical step, as will be seen, in the solution of the general

sparseness conjecture for NP complete sets.

3. The Census Function

Early in 1980, while working on his Ph.D. dissertation under Juris Hartmanis at
Cornell, Steve Mahaney observed that if the exact number of elements in a sparse NP
complete set can be computed in polynomial time, then some very interesting conse-

quences followed, as stated below [HM].

For a set S let the gepsus function Cs be defined by

Cs(n) = | s n(esn)® |
Mahaney's observation leads to the following result.

Theorem 5: If there exists a sparse NP complete set § with a polynomial time com-

putable census function, Cs. then

NP = CO-NP.

Proof: We will show that under the hypothesis we can recognize the complement of §
in nondeterministic polynomial time. Since §° is complete for CO-NP this guarantees

that NP = CO-NP,

Civen a string w, compute the census function Cs(lvl)=k. Using a nondeter-
ministic polynomial time machine guess k different sequences VsV e e eV, such that
|vilsln|. for i=1,24..4,k and verify that they all are in S using the NP recognizer

of S. If the guessing and verification succeeds then w is in s¢

iff UZHi.
izl 3244eesk. Thus, s€ is in NP and therefore NP = CO-NP.

QED
Combining the above result with Fortune's theorem we get the following.

gorollary 6: If there exists a sparse NP completé set, S, with a polynomial time

computable census function then P = NP.

Proof: From the previous theorem, under the hypothesis of the corollary, we get
that NP = CO-NP. But then every set complete for NP is complete for CO-NP and then,

because S is a sparse complete set for CO-NP, by Fortune's result we get that P =

NP.
QED

Again, the assumption that we have a sparse NP complete set with am easily com-
putable census function may appear like imposing unnatural and restrictive condi-
tions just to be able to derive a result. Surprisingly, the careful exploitation of

the census functions lead a step closer to the solution of the sparseness conjec-

ture.

6. Solution of the Sparseness Conjecture

During the spring of 1980 Karp and Lipton made available to us a draft of their
forthcoming SIGACT paper "Some Connections Between Nonuniform and Uniform Complexity
Classes" [KL]. This paper investigates the consequences of having Madvice functions"
(or oracles) which give values that depend only on the length of the input to be
decided. Karp and Lipton develop uniform algorithms that utilize the existence, but

not the easy computability, of such advice,

_ Two results in that paper are relevant to the sparseness conjecture. The first

considers the consequence of having 8 Turing reduction of SAT to a sparse set or,

equivalently, the existence of polynomial size circuits to solve NP (see Discussion
below). The second result considered advice functions that yield only 0(log(n))

bits of advice for inputs of size n.

Iheorem 7: Suppose h(.) is an advice function for NP satisfying
1. for some ¢, | h(n) | S ¢ log(n), and
2. there is a deterministic polynomial time algorithm using
¢ log(n) bits of advice that correctly decides SAT with advice h(.).

Then P = NP.

The proof of this theorem shows that all potential values of the ¢ log(n) bits

can be examined and the correct answer determined uniformly in polynomial time.

The deciphering of the Karp and Lipton paper, though it did not deal directly
vith the sparseness conjecture, suggested to Mahaney a new approach to the sparse-
' mess conjecture which combined the previously developed methods and led to its solu-

tion.

The intuitive link between Theorem 7 and the sparseness conjecture is found in
the census results (Theorem 5 and Corollary 6). The unnmatural hypothesis of the
census results was that the census function, Cs(n). was easily computable. Instead,
observing that Cs(n) is bounded by a polynomial, we see that the census may be writ-
ten in 0(log(n)) bits. The census results suggest a method to construct an algo-

rithm that uniformly tries potential values of the census.

The essence of Mahaney's idea is to apply a census-like method (without knowing
the exact census) to a sparse NP complete set to construct a p-time reduction of a
CO-NP set to the sparse set, and then to use a Berman-Fortune depth first search
method to solve SAT. The lack of knowledge about the census function is overcome by
trying all of the polynomially many values for the census function and proving that

the incorrect values can either be detected or that they cannot give a wrong answer.

In the proof below the ignorance about the census function is overcome by con-

structing a pseudo-complement of the sparse NP complete set S. The pseudo-complement

incorporates guesses about what the corresponding census is and it is used to con-

struct the desired sparse set of labels for the depth first search.

The outline of the proof below is as follows: We first give an NP recognizer-
for the "pseudo-complement™ of the sparse set S. A reduction of this set to the
sparse set S is used to provide the sparse set of labels for SATC; however, the cer-
tain computation of this set of labels requires knowing the census of S. Finally,
the depth first search is modified to determine satisfiability of a formula (without

exact knowledge of how to generate the sparse set of labels for SATC).

For the following discussion let S c (0.1)* be a sparse complete set for NP.
Let Hs be a2 nondeterministic polynomial time recognizer of § and let
Cs(n) = | 5 n (e+2)7 | s p(n)

vhere Cs(.) is the true cemsus function of S, and p(.) is a polynomial that bounds

the s1ze of the census,

We begin by constructing a Turing machine to recognize the pseudo-complement of
$ in pondeterministic polynomial time. Inputs include a padding #" and an integer k
vhich is a possible value of Cs(n). Define the non-deterministic recognizer M by the
following procedure:
M, s,k)
Check |s] £ n; otherwvise reject.
Check k s p(n); otherwise reject.
Guess) seacss, 60 that
i. for alli, lsil < n.
ii. for all i and j, izj = sixsj.
iii. for all i, check that s; is accepted by Mg»
the recognizer of S.

iv. check that for all i, s 2 8o

Lemma 8: Let |s| S n and k < p(n), Then on input (#%,5.k) the machine M will:

1. accept if k < c(n);

2. reject if k > ¢(n); and

3. ifk-= Cs(n). then M accepts if and only if Mg rejects s.

Proof of Lemma: We show part 3, If M accepts, them it will have enumerated the
elements of S up to size n, verified that they belong to S, and shown that s is dis-

tinct from these elements. Since k is the true census, M accepts if and onmly if s

is not in S,

QED

Intuitively, for k = Cs(n). M is a recognizer of S complement., Moreover, M
accepts its language in non-deterministic polynomial time (the input £ isa padding

to ensure this),

We vill require labelling functions for pruming tree searches. The following
discussion shows how to conmstruct such functions from the sparse set S and many-one

reductions of L(M).

Since M is an NP machine and S is NP complete, there is a p-time many-one

reduction

g:L(M) + s

so that for some monotonic polynomial q(.), ioputs to M of size n are reduced to
strings of size at most q{n) (cf. [C] and [K]). Similarly, for the NP-complete
problem SAT, there is a P-time many-one reduction

£2SAT + §
and & monotonic polynomial r(,) bounding the increase in size.

Let F of size m be a formula to be decided and let n = r(m). Then any formula
F' occurring in the tree of all self reductions will have size < m and f(F') will

have size at most n. Regarding k as a possible value for Cs(n). we define

ty = n '
Lok (F') = (L £(F") k)
which will be the labelling function,

.Lemma 9: Let F be a formula of size m and let n = r(m). Furthermore, let k =

Cs(n) be the true census. Then the function

]
Ln.k(i')
for formulas F' of size at most m satisfies:

1. F' is not satisfiable if and only if L k(F) is in S;

2. The unsatisfiable formulas of size at most m are mapped by Ln g to at most
. »

p{q(2n+clog(n))) < p(q(3n))
distinct strings of S where ¢ is a conmstant depending only on p(.).

Proof: Part 1 is immediate from Theorem 5. For part 2 observe that 2n+tlog(m) £ 3n

is a bound on the size of (#", £(F'), k). Applying p o q gives an upper bound on the

census of strings that the triple could map to.

QED

We now know that a suitable labelling function exists for k = Cs(n); but we do
not know Cs(n). the true census! The algorithm in the following theorem shows how we

can try Ln.k for all k S p(n).
JTheorem 10: If NP has a sparse complete set, then P = NP,

Proof: We give a deterministic procedure to recognize SAT. Let F be a formula of

size m, Apply the following algorithm:

begin
For k = 0 to p(r(m)) do
Execute the depth first search algorithm using

(F')

labelling function: Ln.k
at each node F' encountered in the pruned search tree.
1f a satisfying assigmment is found,
then halt; F is satisfiable,
If a tree search visits more than
m+m+ p(q(3 r(m))) internal nodes,
then halt the search éor this k,
end;

F is not satisfiable;

end

The algorithm clearly runs in polynomial time since the loop is executed at most
p(r(m)) times and each iteration of the loop visits a polynomially bounded in m

number of nodes.
The correctness of the algorithm is established in the following result.

Lemma 1l: If F is satisfiable, then for k = Cs(r(m)) the search will find a

satisfying assignment.

Proof: By Theorem 5, this k gives a labelling function that maps the unsatisfiable
formulas of size at most m to a polynomially bounded set. Fortune shows that the
depth first search will find a satisfying assignment visiting at most

n+mx p(q(3r(m)))

internal nodes.

QED

It is interesting to note here that we have not computed the census: a satisfy-
ing assignment could be found with any number of k's; similarly, if no satisfying

assignment exists, many of the trees could be searched but the tree with k =

cs(r(m)) is not distinguished.

The method of conducting many tree searches is parallelled in the uniform algo-
rithm technique by Karp and Lipton [KL]., They show that if NP could be accepted in P
with log() advice, then P = NP, The census function might be compared to a

log()-advisor to the polynomial information in the set S.

It is not necessary to assume an NP recognizer for the sparse set: just that 8

is NP-hard,

Lemma 12: 1If S is sparse and NP-hard, then there is a set SF that is sparse,

NP complete, and has a P-time reduction: SAT --> S# that is length increasing.

Proof: Let f: SAT + S be a p-time reduction and let # be a new symbol. Define
f#: SAT - S# by -
£A(F) = £(F)#F

vhere p = max{0, [f(F)| - |F|}. Clearly S# is sparse. The mapping f# reduces SAT to
S#. Membership of s in S# is verified by guessing a satisfiable formula that maps to

s and verifying satisfiability.,

QED
Lorollary 13: 1If NP is sparse reducible, then P = NP.
L. Discussion

Although the isomorphism results [BH] are the direct ancestors of the work dis-
cussed here, the concept of sparseness has another motivation as stated in the
Introduction: ban a "sparse amount of information™ be used to solve NP problems in
polynomial time? The approach here assumes the information is given as a many-one

reduction to a sparse set.

For Turing reductions, the information is given as a sparse oracle set. A.
Meyer has shown that a sparse oracle for NP is equivalent to the existence of poly-
nomial size circuits to solve NP [BH]. The recent work by Karp, Lipton and Sipser

[KL] has shown that if NP has polynomial size circuits, then the polynomial time

hierarchy [S] collapses to 25. Their result is weaker than Theorem 10, but it also
has a weaker hypothesis. It is an interesting open problem to determine if polyno-

mial size circuits for NP implies P = NP,

Similarly, now that we know that sparse NP complete sets cannot exist unless P
NP, it would be interesting to determine whether there can exist sparse sets in NP
- P. By ladner's result [L] we know that if P # NP then there exist incomplete sets
in NP - P; the proof of this result does not yield sparse sets and we have not found

a way to modify it to yield sparse sets.

For a related study of the structure of NP complete sets, see [LLR]. In this
paper Landweber, Lipton, and Robertson explore the possibility of having large gaps

in NP complete sets.

Finally, it is hoped that the success in solving the sparsemess conjecture will

initiate a new attack on the p-isomorphism conjecture for NP complete sets.

In conclusion, it is interesting to see how many people have directly or
indirectly worked and contributed to the solution of the sparseness conjecture,
among fhem. referenced in this paper are L. Berman, P. Berman, R. Book, D. Dobkin,
s. Fortune, J. Hartmanis, R. Karp, L. Landweber, R. Lipton, S. Mahaney, A. Meyer, M.

Patterson, E. Robertson, A. Selman, M. Sipser, and C. Wrathall.

References

[AHU] Aho, A.V., Hopcroft, J.E., and Ullman, J.D., The Design and Analysis of Com-

puter Algorithms, Addison-Wesley (1974).

[B] Berman, P. "Relationship Between Density and Deterministic Complexity of NP-
Complete Languages,” Fifth Int. Colloquium on Automata, Languages and Programming,
Italy (July 1978), Springer-Verlag Lecture Notes in Computer Science Vol. 62, pp.

63-71.

[BH] Berman, L. and Hartmanis, J., "On Isomorphisms and Density of NP and Other Com-
plete Sets," SIAM J, Comput., 6 (1977), pp. 305-322. See also Pfoceedings 8th

Annua! ACM Symposium on Theory of Compﬁting. (1976) PP- 30-40.

[BWSD] Book, R., Wrathall, C., Selman, A., and Dobkin, D., "Inclusion Complete Tally

Languages and the Hartmanis-Berman Conjecture.”

[C) Cook., S.A., "The Complexity of Theorem Proving Procedures," Proc. 3rd Annual ACM

Symposium on Theory of Computing, (1977) pp. 151-158.

[F) Fortune, S., "A Note on Sparse Complete Sets," SIAM J. Comput., (1979), pp.

431-433.

[GJ) Garey, M.R., and Johnson, D.S., "Computers and Intractability, A Guide to the

Theory of NP-Completeness," W.H. Freeman and Co., San Francisco, 1979.

{HB1] Hartmanis, J., and Berman, L., "On Polynomial Time Isomorphisms of Complete
Sets," Theoretical Computer Science, 3rd GI Conference, March, 1977, Lecture Notes

in Computer Science, Vol. 48, Springer-Verlag, Heidelberg, pp. 1-15.

[B2) Hartmanis, J., and Berman, L., "On Polynomial Time Isomorphisms of Some New

Complete Sets," J. of Computer and System Sciences, Vol. 16 (1978), pp. 418-422.

(uM) Hartmanis, J., and Mahaney. S.R., "On Census Complexity and Sparseness of NP-

Complete Sets," Department of Computer Science, Cornell University, Technical Report

TR 80-416 (April 1980).

[X] Karp, R., "Reducibility Among Combinatorial Problems," in Complexity of Computer

Computations (R.E. Miller and J.W, Thatcher, eds.), Plenum, New York (1972).

{KL] Karp, R.M., and Lipton, R.J.., "Some Connections between Nonuniform and Uniform

Complexity Classes," Proc. 12th ACM Symposium on Theory of Computing, (May 1980).

[L) Ladner, R.E., "™0n the Structure of Polynomial Time Reducibility,™ J. Assoc.

Computing Machinery, Vol. 22 (1975), pp. 155-171.

[LLR] Landweber, L.H., Lipton, R.J., and Robertson, E.L., "On the Structure of Sets
in NP and Other Complexity Classes,” Computer Sciemce Tech. Report 342 (December

19/8), University of Wisconsin-Madison.

[M] Mahaney, S.R.., "Sparse Complete Sets for NP: Solution of a Conjecture by Berman
and Hartmanis," Department of Computer Science, Cornell University, Techmical Report

TR 80-417 (April 1980).

[MP) Patterson, M, and Meyer, A.R., "With What Frequency are Apparently Intractable
Problems Difficult?®, Laboratory for Computer Science, M.I.T. Tech. Report., Febru-

ary 19/9.

[s] stockmeyer, L.J., "The Polynomial-Time Hierarchy," Theoretical Computer Science

Vol. 3. (1977)’ PP 1-22,

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif

