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INTRODUCTION

INTRINSIC SLEEP DISORDERS AND EXTERNAL STIMU-
LI CAUSE CHANGES IN SLEEP STRUCTURE. WITH THE 
DEFINITION OF EEG AROUSALS BY THE AMERICAN 
Academy of Sleep Medicine (AASM) in 1992,1 it was acknowledged 
that the concept of sleep fragmentation was not adequately captured 
by analyses based on the rules of Rechtschaffen and Kales.2

Although there is still disagreement as to whether sleep fragmen-
tation independently influences sleep quality,3,4 the AASM definition 
of EEG arousals is generally accepted today and is routinely used in 
clinical and research sleep laboratories. In the past few years, much 
insight was gained on mechanisms leading to EEG arousals and on 
effects of sleep fragmentation on daytime function.5

Two problems are frequently mentioned in the context of EEG 
arousal scoring; the analysis according to AASM rules is time 
consuming, and interobserver agreement is usually very low.6,7 
Therefore, it would be highly desirable to supplement the subjec-

tive method of visual EEG arousal analysis with a method that 
is less time consuming and more objective. Here, an automated 
algorithm would be the optimal solution, because data analysis 
time is minimal and there is no interobserver variability.

It has been repeatedly shown that EEG arousals are associated 
with transient sympathetic activation, such as increases in blood 
pressure and heart rate.8-14 These activations can be objectively 
measured by, for example, ECG, pulse transit time (PTT),15 or 
peripheral arterial tonometry (PAT);16 therefore, it might be pos-
sible to use these signals for the detection of autonomic arousals 
associated with EEG arousals.

Piston et al.15 showed a correlation between PTT and EEG fre-
quency shifts in healthy subjects in response to external stimuli. 
Pillar et al.17 proposed an autonomic arousal index (AAI) based 
on increases in pulse rate and decreases in PAT amplitude. Al-
though they demonstrated good agreement between EEG arousal 
indexes and AAI, the applicability of the AAI is restricted as the 
PAT signal is not routinely recorded in sleep laboratories, which 
may partly be due to additional costs for the PAT device and sen-
sors.

We developed an algorithm for the automatic identification of 
autonomic activations associated with cortical arousal, which is 
solely based on changes in heart rate, i.e., on the ECG signal. 
Potential advantages are that ECG data acquisition is cheap and 
uncomplicated (3 electrodes suffice). The ECG signal is highly 
reliable and less prone to artifacts than many other electrophysi-
ological signals. It is routinely sampled during polysomnography 
and is implemented in most ambulatory screening systems. In 
the latter, information on heart rate changes could be extracted 
from the pulse wave signal of pulse oximeters, as well. Hence, 
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Objectives: EEG arousals are associated with autonomic activations. Vi-
sual EEG arousal scoring is time consuming and suffers from low interob-
server agreement. We hypothesized that information on changes in heart 
rate alone suffice to predict the occurrence of cortical arousal.
Methods: Two visual AASM EEG arousal scorings of 56 healthy subject 
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were calculated and used to estimate likelihood ratios (LRs) for 10 cat-
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tests, these LRs were used to calculate the probability of heart rate re-
sponses being associated with cortical arousals.
Results: EEG and ECG arousal indexes agreed well across a wide range 
of decision thresholds, resulting in a receiver operating characteristic 
(ROC) with an area under the curve of 0.91. For the decision threshold 
chosen for the final analyses, a sensitivity of 68.1% and a specificity of 
95.2% were obtained. ECG and EEG arousal indexes were poorly cor-
related (r = 0.19, P <0.001, ICC = 0.186), which could in part be attributed 

to 3 outliers. The Bland-Altman plot showed an unbiased estimation of 
EEG arousal indexes by ECG arousal indexes with a standard deviation 
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arousal scoring was matched by at least one (22.2%) or by both (42.5%) 
of the visual scorings. Sensitivity of the algorithm increased with increas-
ing duration of EEG arousals. The ECG algorithm was also successfully 
validated with 30 different nights of 10 subjects (mean age 35.3 � 13.6 
years, 5 male).
Conclusions: In its current version, the ECG algorithm cannot replace 
visual EEG arousal scoring. Sensitivity for detecting <10-s EEG arous-
als needs to be improved. However, in a nonclinical population, it may 
be valuable to supplement visual EEG arousal scoring by this automatic, 
objective, reproducible, cheap, and time-saving method.
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large scale epidemiologic or experimental field studies could be 
performed with high explanatory power but low methodological 
expense, compared with polysomnographic studies.

METHODS

Subjects and Protocol

Subjects participated in a polysomnographic study on the ef-
fects of aircraft noise on sleep conducted between 1999 and 2004 
at the Institute of Aerospace Medicine at the German Aerospace 
Center (DLR).18 Subjects were selected in a multilevel selection 
process, which included a medical history, a physical examination, 
blood and urine samples, and audiometry. A one-night screening 
of peripheral hemoglobin oxygen saturation and pulse rate was 
performed in most of the subjects. Subjects were required to have 
normal hearing thresholds for age and no history of loud snoring. 
The study protocol was approved by the ethics commission of 
the Medical Board of the district North Rhine. Subjects signed an 

informed consent form before the start of study. The study con-
sisted of laboratory and field phases.

Field Phase for Algorithm Development

Field phase subjects were living in the vicinity of Airport Co-
logne/Bonn, a freight hub with high densities of nocturnal air traf-
fic. They were polysomnographically investigated for 9 consecu-
tive nights. Sound pressure level (SPL) and noise events were 
recorded inside and outside the bedroom. People could adhere to 
their usual bed times, which had to include the period between 
midnight and 06:00. Design and methods applied in the field phase 
are described in detail in Basner et al.18,19 Fifty-six subjects (mean 
[SD] = 37.0 [12.8] years, 26 male) contributed one night each to 
the data set that was used for algorithm development. Nights with 
the highest traffic density (mean [SD] = 7.9 [2.9] aircraft noise 
events per hour sleep period time [SPT] on average) were cho-
sen. SPT was defined as the time between the first occurrence of 
stage 2 and the last occurrence of any sleep stage but wake.

Figure 1—A period of 30 minutes of 1 subject night is shown. Beat-to-beat heart rate (thin black line) is shown in the lower part of the figure 
together with the median heart rate (Median HR, thick black line). A hypnogram is shown in the uppermost part of the figure. The probability of 
being the first heartbeat after the onset of an EEG arousal (P[Aro-ECG]) is shown below the hypnogram. The following events are indicated as 
colored diamonds: Consensus arousals (Aro-Cons, purple), visually scored arousals by human scorer 1 (Aro-V1, red), visually scored arousals by 
human scorer 2 (Aro-V2, blue), arousals scored by the ECG algorithm (Aro-ECG, black), and control arousals (Aro-Cont, green). N indicates the 
occurrence of an aircraft noise event. There is a body movement at 1:04 going along with a movement artifact in the ECG and a sleep stage shift 
from S4 to S1. Although subjects were screened for OSA in order to be excluded from the study, this period may represent several repetitive arous-
als caused by increased upper airway resistance.
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Laboratory Phase for Algorithm Validation

Laboratory phase subjects were investigated in groups of 8 
for 13 consecutive nights in the underground sleep facility of the 
Institute of Aerospace Medicine. Here, between 4 and 128 air-
craft noise events per night with maximum SPLs between 45 and 
80 dBA were realistically played back via loudspeakers in the 8 
separate bedrooms. Lights were turned off at 23:00 and on again 
at 07:00. Design and methods applied in the laboratory study 
are described in detail in Basner et al.18,20 Ten subjects (mean 
[SD] = 35.3 [13.6] years, 5 male) contributed 3 nights each for 
the validation of the ECG algorithm.

Polysomnography

Sleep was polysomnographically recorded with an EEG-ampli-
fier developed at the German Aerospace Center and using the stan-
dard setup (EEG C3-A2, C4-A1, left and right EOG and submen-
tal EMG). The following additional channels were recorded: nasal 
airflow (thermistor), electrocardiogram (ECG), chest wall motion 
(piezo electrodes), body position, actimetry, and SPL and light in-
tensity in the bedroom. Sleep stages were classified by 2 experienced 
scorers following standard criteria,2 using 30-second epochs. The in-
terobserver agreement was 88.1% on average (mean total Cohen’s21 
kappa 0.812). Body movements accounting for more than half of 
the epoch that would have otherwise been scored as movement time 
were classified as wake, because it was assumed that these kinds of 
movements do not occur without respective cortical activation.

Electrocardiogram Analysis

The ECG was derived from the chest wall (derivation Einthoven 
II) and sampled at 1000 Hz. R-waves were automatically detected 
with a software developed in a LabVIEW environment.22 The time 
of each heartbeat was stored in a separate line of an ASCII file to-
gether with the heart rate (beats per minute [bpm]) derived from the 
interval to the preceding beat. Printouts of heartbeat against time 
were generated automatically for 30-min intervals (see Figure 1) 
and inspected visually. The beginning and the end of periods with 
signal loss (e.g., due to temporary disconnections or loose elec-
trodes) were recorded. This procedure took less than 1 to 2 minutes 
per night. Periods with ECG signal loss were later excluded from 
the analysis. Of the 56 nights of the field study, there were 23 nights 
(41%) with ≥1 period of signal loss, covering 1.7% of SPT. Of the 
30 nights of the laboratory study, there were 2 nights (6.7%) with at 
least 1 period of signal loss, covering 0.1% of SPT.

Similar to a moving average, a moving median (see “Medi-
an HR” line in Figure 1) was calculated with a time window of 
± 90 seconds for every heartbeat in SPT. The moving median was 
aimed at following trends in basic heart rate throughout the night 
(e.g., notice the sudden decrease in heart rate between 01:04 and 
01:05 in Figure 1). For beats at the beginning or end of SPT, beats 
before sleep onset and after the final awakening were included 
in the calculation of the moving median, while periods of ECG 
signal loss were excluded.

EEG Arousal Analysis

EEG arousals of the 56 field and the 30 laboratory nights were 
scored according to AASM criteria1; i.e., any EEG frequency shift 

for ≥3 seconds was scored as an arousal in NREM sleep. During 
REM sleep, an increase in EMG was needed as well. Two visual 
AASM arousal scorings were obtained for each night (Aro-V1 
and Aro-V2). In order to increase transferability, the scorers were 
deliberately chosen from 2 different centers, DLR (V1) and a col-
laborating clinical center at Marburg University (V2). An arousal 
was called consensus arousal (Aro-Cons) if the start of Aro-V1 
differed from the start of Aro-V2 by ± 5 s or less. If an arousal 
met these criteria, start time and duration of Aro-Cons were al-
ways obtained from scorer V1, as this scorer marked the start of 
the arousal event in 87.8% of consensus arousals earlier or at the 
same time as scorer V2.

For the development of the ECG algorithm, only consen-
sus arousals were used. For each Aro-Cons, a control arousal 
(Aro-Cont) was randomly placed by a computer program in 
parts of the night without indication of cortical arousal, i.e. con-
trol arousals were not allowed to overlap with Aro-V1, Aro-V2, 
R&K wake epochs, or times of ECG signal loss (including a 
safety margin of 60 s). Each Aro-Cont had the same length as its 
Aro-Cons counterpart. We additionally required that the average 
heart rate of 3 beats prior to the onset of Aro-Cons and Aro-
Cont should differ by less than one bpm. With this procedure, 
the prevalence of both Aro-Cons and Aro-Cont was artificially 
set to 0.5, and it was possible to calculate the sensitivity of the 
ECG algorithm based on Aro-Cons and its specificity based on 
Aro-Cont. The different types of arousals are shown in Figure 1. 
For Aro-V1 and Aro-V2, arousal indexes were calculated as the 
number of arousals per hour of TST minus periods of ECG-sig-
nal loss.

Likelihood Ratio Estimation

For each Aro-Cons and Aro-Cont, and for every beat from 2 
beats before (b2) to 38 beats after (a38) arousal onset, the differ-
ence in heart rate of the beat under investigation to the median 
heart rate was calculated and stored. Based on the pooled differ-
ences of both Aro-Cons and Aro-Cont conditions, likelihood ra-
tios (LRs) were calculated for 10 intervals of heart rate differenc-
es. A computer algorithm assured that the number of data points 
was similar for each of the 10 intervals. If Aro-Cons contributed 
more data points to an interval than Aro-Cont, LRs greater than 1 
resulted. They indicated that heart beat differences falling in such 
an interval were more likely to be associated with an EEG arousal 
than with a control condition. Likewise, LRs less than 1 indicated 
that heart beat differences were less likely to be associated with 
an EEG arousal than with a control condition.

Receiver operating characteristics (ROC) were generated for 
each of the 40 categories (b2 to a38), and areas under the curve 
(AUC) were calculated. They show how accurately each specif-
ic heart beat (b2 to a38) would be able to differentiate between 
arousal and control conditions if applied as a single “diagnostic 
test.” Based on the 40 ROC plots and the associated LRs it was 
decided to use 5 consecutive beats (a1 to a5) only for the calcula-
tion of the probability of each heartbeat being the first beat after 
the onset of an EEG arousal.

Probability of EEG Arousals Based on Likelihood Ratios

For each heartbeat in SPT, the probability of this beat being 
the first beat after the onset of an EEG arousal was calculated 
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based on prior probability (PrP) and LRs. PrP was calculated as 
the average of Aro-V1 and Aro-V2 (5940 arousals) divided by 
the total number of investigated valid heart beats during SPT 
(1,446,174 beats), yielding a ratio of ~0.004. Hence, on average 
every 250th heartbeat is likely to be the first beat after the onset 
of an EEG arousal. Arousals during periods with ECG-signal 
loss were not considered in this calculation. The prior probabil-

ity (PrP) was transformed into prior odds (PrO) according to 
equation (1):

(1). PrO = PrP / (1 – PrP)

If there is just one category (e.g., a1), comparable to a single 
diagnostic test, the difference between the heart rate measured at 
a1 to the median heart rate is associated with a specific LR. The 
posterior odds (PstO) are then calculated by multiplying the prior 
odds (PrO) with the LR, which can be transformed in the poste-
rior probability (PstP) according to equation (2):

(2). PstP = PstO / (1 + PstO)

If there is more than one category (e.g., a1 to a5), comparable 
to several sequential diagnostic tests, PstO is calculated by multi-
plying all LRs and the PrO with each other, exemplified in equa-
tion (3) for 5 categories:

(3). PstO = PrO * LRa1 * LRa2 * LRa3 * LRa4 * LRa5

For this calculation, it is assumed that the tests are conditionally 
independent, given the arousal status. The calculation of the prob-
ability of an EEG arousal based on LRs is exemplified in Table 2 in 
the results section. The probability of being the first beat after the 
onset of an EEG arousal is also shown in Figure 1 as P(Aro-ECG).

Table 1—Likelihood Ratios

 a1 a2 a3 a4 a5
Category LL UL LR LL UL LR LL UL LR LL UL LR LL UL LR
1   -3.4 0.5361   -2.8 0.2216   -2.6 0.1469   -2.7 0.1447   -2.8 0.2302
2 -3.3 -1.6 0.5456 -2.7 -1.1 0.2145 -2.5 -1.0 0.1508 -2.6 -1.0 0.0863 -2.7 -1.1 0.1071
3 -1.5 -0.6 0.4153 -1.0 0.0 0.3117 -0.9 0.1 0.1610 -0.9 0.2 0.1212 -1.0 0.1 0.1475
4 -0.5 0.2 0.5675 0.1 1.0 0.3672 0.2 1.4 0.2395 0.3 1.5 0.2376 0.2 1.4 0.2053
5 0.3 1.1 0.5622 1.1 2.1 0.5299 1.5 2.7 0.5021 1.6 3.1 0.4836 1.5 3.0 0.3760
6 1.2 2.0 0.8710 2.2 3.5 1.2317 2.8 4.6 1.1652 3.2 5.3 1.2566 3.1 5.3 1.0231
7 2.1 3.3 1.0482 3.6 5.3 1.8880 4.7 7.1 3.1445 5.4 8.2 3.7838 5.4 8.8 3.6601
8 3.4 5.3 1.7931 5.4 7.8 3.6340 7.2 10.1 7.1163 8.3 11.8 11.9273 8.9 12.6 15.3023
9 5.4 8.8 4.0993 7.9 12.1 7.8734 10.2 14.7 20.4848 11.9 16.3 42.8125 12.7 17.4 38.5556
10 8.9  5.7642 12.2  16.3659 14.8  33.0952 16.4  57.7500 17.5  100.0000

Likelihood ratios (LR) for the 1st beat after the onset of an EEG arousal (a1) until the 5th beat after the onset of an EEG arousal (a5). The lower 
limit (LL) and upper limit (UL) of differences to median heart rate are shown together with the associated LR for each of 10 categories. Category 
1 includes all values equal to or below the UL of this category, while category 10 includes all values equal to or above the LL of this category.

Table 2—Example of EEG Arousal Probability Calculation Based on Likelihood Ratios

Beat# Median HR Actual HR Difference Category LR Prior Prob. Post. Prob.
 a1 49.8 54.7 +4.9 8 1.7931 0.0040 0.0071
 a2 49.8 54.3 +4.5 7 1.8880 0.0071 0.0134
 a3 49.8 54.7 +4.9 7 3.1445 0.0134 0.0410
 a4 49.8 55.6 +5.8 7 3.7838 0.0410 0.1392
 a5 49.9 64.8 +14.9 9 38.5556 0.1392 0.8618

Calculation of the probability of being the first beat after the onset of an EEG arousal based on differences of 5 consecutive beats (a1 to a5) to 
median heart rate (example). Notice that the posterior probability of one “test” is the prior probability of the next “test”. In this example, the prior 
probability of 0.004 increased to a probability of 0.8618 after the 5 “tests”. HR: heart rate, LR: likelihood ratio, Prior Prob.: Prior Probability, Post. 
Prob.: Posterior Probability

Table 3—Pearson’s Moment Correlation Coefficients and Associ-
ated P-Values for 4 Arousal Scorings and a Visual Analogue Scale 
(VAS) Score with “Alert” and “Tired” as Anchors

 ECG- Visual Visual Average of
 algorithm Scoring 1 Scoring 2 Visual Scoring
    1 and 2
Visual Scoring 1 0.284*
 0.559*** 1  
Visual Scoring 2 0.078 0.766***
 0.327* 0.660*** 1 
Average of Visual 0.191 0.938*** 0.941***
Scorings 1 and 2 0.488*** 0.913*** 0.909*** 1
VAS alert/sleepy 0.041 0.134 0.129 0.140
 0.070 0.085 0.079 0.090

Above: r including the 3 outliers shown in Figures 6A and 6B; below 
(in italics): r excluding the 3 outliers; * = P <0.05, ** = P <0.01, *** 
= P <0.001
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Decision Threshold Determination

Although it directly conveys information about the relevance of 
heart rate increases, the probability of being the first beat after the 
onset of an EEG arousal alone is not helpful in differentiating be-
tween EEG arousals and non-EEG arousals. A decision threshold is 
needed (for definition and examples, refer to chapter 3 of Hunink et 
al.23). A two-dimensional decision-threshold space was chosen with 
number of consecutive beats (dimension 1, values ranging between 
1 and 15) above a certain probability (dimension 2, values rang-
ing between 0 and 1) of being the first beat after the onset of an 
EEG arousal. Based on the number of consecutive beats above the 
EEG arousal probability, 15 ROC plots were generated for decision 
thresholds in EEG arousal probability between 0 and 1. A decision 
threshold with a sensitivity of 68.2% and a specificity of 95.1% was 
chosen for the following analyses. For this threshold, the begin-
ning and the end of all ECG arousals (Aro-ECG) was determined 
and stored. Similar to the AASM EEG arousal definition, 2 periods 
with probabilities above the decision threshold had to be separated 
by ≥10 seconds with probabilities below the decision threshold to 
be scored as 2 single events; otherwise they were merged into one 
event including the interposed period. ECG arousals are shown in 
Figure 1 in black. EEG arousals are per definition not scored during 
periods of wakefulness, but these periods were not excluded for 
ECG arousal analyses. Therefore, the ECG arousal index was based 
on SPT, and not on TST. It was calculated as the number of arousals 
per hour of SPT minus periods of ECG-signal loss.

Comparison of Arousal Scorings

Indexes of Aro-V1, Aro-V2 and Aro-ECG were compared for 
differences between groups with the Friedman test. Wilcoxon 
tests were performed post hoc to test for pair wise differences, and 
the significance level was Bonferroni corrected (0.05/3 = 0.017). 
Pearson’s moment correlation coefficients were calculated pair 
wise for the indexes of Aro-ECG, Aro-V1, Aro-V2, the mean of 
Aro-V1 and Aro-V2, and a visual analogue scale (VAS) score. 
Using 10-cm analogue scales the participants assessed their ac-
tual state between the extremes alert - tired, active - idle, fresh - 
sleepy, and enterprising - languid. Statistical tests were performed 
with SPSS 11.5.1.

Usually, a new method is compared to a gold standard. Here, 
2 visual EEG arousal scorings were surrogates for the gold stan-
dard. As the true EEG arousal score was unknown, the mean of 
the 2 scorings was the best estimate of the true score. Therefore, 

scatter plots as well as Bland-Altman-plots24 were generated 
comparing the index of Aro-ECG with the mean of Aro-V1 and 
Aro-V2 indexes. A case 3 intraclass correlation coefficient (ICC) 
according to Shrout and Fleiss25 was calculated with SAS (version 
9.1). Additionally, the agreement between the 3 scoring methods 
was visualized in a Venn diagram, and the proportion of specific 
agreement (PSA) was calculated. Ninety-five percent confidence 
limits of PSA were calculated with a bootstrap method based on 
1000 replications.

Algorithm Validation

The validation of the ECG algorithm was based on data of 10 
subjects who participated in the laboratory study on the effects 
of aircraft noise on sleep and contributed 3 nights each to the 
validation data set: A noise-free baseline night, a night with 64 
identical noise events with maximum SPLs of 45 dBA each, and 
a night with 64 identical noise events with maximum SPLs of 
65 dBA each. The 45 dBA noise event was generated by reducing 
the SPL of the 65 dBA noise event by 20 dBA, both lasted for 
about 25 seconds and reached their maximum SPL after about 
15 seconds. Five of the 10 subjects participated both in field and 
laboratory phases, and one of their field phase nights was one of 
the 56 nights used for algorithm development.

The validation of the ECG algorithm consisted of 2 parts. In 
part 1, agreement between EEG arousal scorings obtained by hu-
man scorer 1, human scorer 2 and the ECG algorithm was cal-
culated based on all arousals scored during SPT. In part 2, the 
analysis was restricted to the first 20 s after the start of aircraft 
noise events that were screened for arousal onset. A period of 10 
s prior to noise onset had to be free of arousals in order for that 
noise event to be included in the analysis. Spontaneous arousal 
probability was estimated in noise-free baseline nights at the 
same time noise events occurred in 45 dBA nights. In this way, 
dose-response relationships were established for EEG arousal 
scorings of human 1, human 2, and the ECG algorithm, with no 
noise, 45 dBA and 65 dBA conditions representing the dose and 
arousal probability representing the response.

RESULTS

ECG Analysis

As shown in Figure 2, major findings of studies on the relation-
ship between EEG arousals and cardiac activation were replicated 

Table 4—Pair-Wise Comparison of EEG-Arousal Detection Accuracy Using One Method as Gold Standard

 Gold  Sensitivity Specificity  Sensitivity Specificity rTPF(A,B) rFPF(A,B)
 Standard Method A Method A Method A Method B Method B Method B [95% CL] [95% CL]
 V2 V1 0.842 0.902 ECG 0.485 0.921 1.74 1.25
        [1.57; 1.92] [1.01; 1.55]
 V1 V2 0.733 0.947 ECG 0.473 0.937 1.55 0.85
        [1.40; 1.72] [0.63; 1.15]
 ECG V1 0.745 0.821 V2 0.664 0.848 1.12 1.17
        [1.04; 1.20] [1.06; 1.30]

V1: visual arousal scoring by human scorer 1; V2: visual arousal scoring by human scorer 2; ECG: arousal scoring by ECG algorithm; rTPF: rela-
tive true positive fraction; rFPF: relative false positive fraction; CL: confidence limits
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in this investigation.8,10,13 Descriptively, heart rate started to increase 
2 to 3 beats prior to onset of visually scored EEG arousals. Ampli-
tude as well as duration of the increase in heart rate depended on 
the duration of the EEG arousal. Short EEG arousals were associ-
ated with relatively small increases in heart rate, which reached or 
even fell below the prearousal level rapidly. In contrast, long arous-
als were associated with prolonged and profound increases in heart 
rate. In the case of EEG arousals lasting >15 seconds, prearousal 
levels were still not reached 30 beats after the onset of the arousal. 
In EEG arousals ≤10 seconds, as well as in the whole group, the 

maximum average increase in heart rate was reached 5 beats after 
the onset of the EEG arousal, and heart rate started to return to the 
prearousal levels afterwards. Hence, it was decided to use only the 
first 5 beats (a1 to a5) after the onset of an EEG arousal for the 
calculation of LRs. Of consensus arousals, 49.7% (n = 1779) lasted 
≤10 seconds, 20.8% (n = 745) lasted >10 seconds but ≤15 seconds, 
and 29.5% (n = 1057) lasted >15 seconds.

Figure 3 visualizes cardiac activation for control conditions (Aro-
Cont, left in Figure 3) and for consensus EEG arousal (Aro-Cons, 
right in Figure 3) in a 3D-plot. Here, several histograms with the 
difference to the median heart rate on the x-axis and the relative 
frequency of each category on the y-axis are shown from the first 
heartbeat before EEG arousal onset (-1) to the 21st beat after EEG 
arousal onset (21). In the control condition, differences to median 
heart rate were symmetrically distributed around zero from beat -1 
to beat 21. In case of consensus arousals, differences to median heart 
rate were symmetrically distributed around zero before EEG arousal 
onset. With the onset of the EEG arousal, the distributions swung to 
the right, i.e., to increased heart rates. Simultaneously, variability 
increased, i.e., the distributions became wider and more flat. After 5 
to 10 heartbeats, the distributions swung back to zero difference.

It is the information embedded in the shift of these distribu-
tions that was used for the derivation of an ECG algorithm for the 
detection of cardiac activations associated with EEG arousals in 
this publication.

Likelihood Ratios

A total of 7162 heart beat differences (calculated in bpm), 3581 
derived from Aro-Cons and 3581 from Aro-Cont, were rounded 
to one decimal place and sorted in ascending order. The values 
were assigned to 10 categories with different ranges of heart rate 
differences. An algorithm assured that each category contained 

Figure 2—Mean differences in heart rate from 10 beats before (b10) 
until 30 beats after (a30) EEG arousal onset (vertical line) compared 
to the average of b10 to b01 depending on the duration of the arous-
al. 285 EEG arousals were excluded from the analysis because ≥1 
of the 40 heart rate values being below 30 bpm or above 120 bpm, 
indicating an artifact or ectopic heartbeat.
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approximately 716 values, i.e., one tenth of all 7162 differences. 
The number of data points per category ranged from 686 to 749. 
LRs used for the calculation of posterior probabilities are shown 
in Table 1 for the 1st beat after the onset of an EEG arousal (a1) 
until the 5th beat after the onset of an EEG arousal (a5). The cal-
culation of LRs is exemplified for the 5th beat after the onset of an 
EEG arousal (a5) in Figure 4.

Posterior Probabilities

For each heartbeat in SPT, the probability of this beat being the 
first beat after the onset of an EEG arousal was calculated based on 
prior probability (PrP) and LRs that depended on the difference of 
the actual heartbeat (a1) and the following 4 heartbeats (a2 to a5) to 
the momentary median heart frequency. This procedure is described 
in detail in the methods section and exemplified for one heartbeat in 
Table 2. The probability of being the first beat after the onset of an 
EEG arousal is also shown in Figure 1 as P(Aro-ECG).

Decision Threshold Determination

With a value of 0.912, the AUC, and therefore the accuracy of 
the criterion, was maximal for the “4 consecutive beats” condi-
tion. The empirical ROC plot for this condition is shown in Fig-
ure 5. As with every diagnostic test, there are tradeoffs between 
sensitivity and specificity depending on the choice of the decision 
threshold. For the results presented below, a decision threshold of 
4 consecutive transgressions >35% probability of being the first 
beat after the onset of an EEG arousal was chosen, going along 
with a sensitivity of 68.2% and a specificity of 95.1%. There-
fore, more than 2 of 3 consensus EEG arousals (Aro-Cons) will 
be identified correctly (true positives) by the ECG algorithm, 
whereas less than 5 out of 100 non-EEG arousals (Aro-Cont) will 
be incorrectly identified as an EEG arousal (false positives). The 
decision threshold was chosen in favor of specificity as the preva-
lence of EEG arousals (4 per 1000 heartbeats) was rather low, a 
situation where a low specificity will decrease the positive predic-

Figure 4—The differences of 3581 heartbeats located 5 beats after EEG arousal onset to median heart rate were calculated both for consensus 
arousals (Aro-Cons) and control conditions (Aro-Cont) and plotted for 10 categories of heartbeat differences to a moving median. Differences in 
the control condition were symmetrically distributed around zero, whereas in the EEG arousal condition the prevalence of positive differences in-
creased continuously. As the prevalence of Aro-Cons and Aro-Cont was artificially kept at 0.5, the LR in favor of an EEG arousal can be calculated 
by dividing the frequency of Aro-Cons values by the frequency of Aro-Cont values in each category. For the last category (10), this procedure lead 
to a LR of 700/7=100.0, i.e. heart rate differences of more than 17.4 bpm were 100 times more likely associated with an EEG arousal than with a 
control condition.
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tive value of a test result dramatically. The position of the decision 
threshold in ROC space is shown in Figure 5 as a white square.

Comparison of Arousal Scorings

If periods with ECG-signal loss were included, human 1 scored 
7138 EEG arousals and human 2 scored 4883 EEG arousals in 
total. With the strict rule that the start of 2 arousals had to differ by 
less than 5 seconds to be called a consensus arousal, 3590 arous-
als were scored by both, 3548 by human scorer 1 alone and 1293 
by human scorer 2 alone. With a more lenient definition, where 
any overlap in arousal scorings sufficed for an agreement, 3886 
arousals were scored by both scorers.

If periods with ECG-signal loss were excluded, there were 
3581 consensus EEG arousals (9.5 per hour TST), human 1 scored 
7047 EEG arousals (18.9 per hour TST), human 2 scored 4834 
EEG arousals (12.9 per hour TST), and the ECG algorithm scored 
6641 arousals (16.5 arousals per hour SPT). The Friedman test 
indicated a significant difference between arousal indexes scored 
by human scorer 1, human scorer 2 and the ECG algorithm (df=2, 
χ²=47.2, P <0.001). Post hoc Wilcoxon Tests showed that all 3 
scorings differed significantly from each other with P ≤0.05.

Figure 6A shows a scatterplot of the ECG arousal index and 
the average of the two visual arousal indexes. Three outliers with 
low ECG arousal indexes but high visual arousal indexes are 
circled. Pair wise linear Pearson’s correlation coefficients were 
calculated for ECG arousal index, visual arousal indexes (Aro-
V1 and Aro-V2), the average of the 2 visual arousal indexes, and 
the VAS score. The results are shown in Table 3. All 3 scorings 
were positively correlated. The correlation decreased in the order 
visual scoring 1/visual scoring 2 (r = 0.766), ECG algorithm/vi-
sual scoring 1 (r = 0.284) and ECG algorithm/visual scoring 2 (r 

= 0.078). The ICC for the average of 2 visual arousal indexes 
and the ECG arousal index was 0.186. If the 3 outliers were ex-
cluded, correlation coefficients between the ECG arousal index 
and arousal indexes obtained by visual scorings increased mark-
edly. The ICC (0.449) increased as well. The VAS score was not 
linearly correlated with any of the arousal measures. Inferences 
remained unchanged regardless of whether Pearson’s or Spear-
man correlations were calculated.

A Bland-Altman-plot24 is shown in Figure 6B. The ECG arous-
al index was practically unbiased, as it overestimated the “true” 
arousal index by less than 1 arousal per h (+2 SD: +16.5 arousals 
per h, -2 SD: -15.3 arousals per h). However, the ECG arousal 
index tended to underestimate low average visual arousal indexes 
and it tended to overestimate high average visual arousal indexes. 
The 3 outliers that were already shown in the scatterplott in Fig-
ure 6A are again shown and circled in Figure 6B. They were the 
only data points falling outside the ±2 SD range.

A Venn diagram of 10,123 cases where ≥1 of the 3 methods 
scored an arousal event is shown in Figure 7A. Here, in contrast 
to the strict criterion for consensus arousals, agreement was de-
fined as any overlap of arousal periods. Cases with all 3 scor-
ings agreeing, with 2 scorings agreeing, and with no agreement 
were differentiated and visualized in the Venn diagram. If the 

Figure 5—Receiver operating characteristic (ROC) curve for the 
4 consecutive heartbeats condition and decision thresholds of EEG 
arousal probabilities (as estimated by the ECG algorithm) between 0 
and 1. The decision threshold used to predict EEG arousals is shown 
as a white square.
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arousal period of method 1 overlapped with the arousal period 
of method 2, and the latter overlapped with the arousal period of 
method 3, but arousal periods of methods 1 and 3 did not overlap; 
this was nevertheless considered as one case (with 3 agreements). 
With this definition, a case with 2 or 3 agreements may contain >1 
arousal event scored by the same method every time an arousal 
event scored by 1 method covers both the end and the beginning 
of 2 separate arousal events scored by another method. Hence, 
the reported numbers of arousals scored by each method slightly 
exceed the numbers shown in the Venn diagram.

In 2798 cases (27.6%) all 3 scorings agreed, in 2486 cases 
(24.6%) 2 of 3 scorings agreed, and in 4839 cases (47.8%) an 
arousal event was scored by 1 of the methods with neither of the 
2 other methods agreeing.

If only arousal events scored by the ECG algorithm are taken 
into account, none of the other scorings agreed in 35.3%, one of 
the other scorings agreed in 22.2% and both other scorings agreed 
in 42.5%, i.e., in about 2/3 of arousals scored by the ECG algo-
rithm at least 1 of the other 2 scorings agreed. Of the 2323 arous-
als scored only by the ECG algorithm, 160 (6.9%) occurred dur-
ing prolonged periods of wakefulness, i.e., during an R&K wake 
epoch preceded by ≥1 other wake epoch.

Overall, 73.2% of Aro-Cons, i.e., 2798 of 2798 + 1023 arous-
als, were correctly identified by the ECG algorithm. This number 

surpasses the expected value of 68.2% by 5%, as the more lenient 
criteria for consensus arousals were used for this comparison. The 
proportion of specific agreement between the ECG algorithm and 
both visual scorings was 59.2% (95% confidence limits 58.3% to 
60.2%), and therefore lower than PSA between visual scorings 
(65.8%, 95% confidence limits 64.8% to 66.7%).

The sensitivity of the ECG algorithm increased with a simulta-
neous increase in the duration of the EEG arousal visually scored 
by human scorer 1; 56.2% of EEG arousals ≤10 s, 80.9% of EEG 
arousals >10 ≤15 s, and 92.5% of EEG arousals >15 s were cor-
rectly identified by the ECG algorithm, respectively.

Validation of the ECG Algorithm

The algorithm was validated with 30 laboratory nights of 10 sub-
jects; recordings were analyzed visually by the same 2 scorers and 
by the ECG algorithm. A Venn diagram of 5606 cases where ≥1one 
of the 3 methods scored an arousal is shown in Figure 7B. Overall, 
69.2% of visual consensus arousals, i.e., 1573 of 1573 + 700 arous-
als, were correctly identified by the ECG algorithm. There was no 
relevant change in ECG algorithm performance compared to algo-
rithm development: None of the other methods agreed in 35.9% 
(was: 35.3%); one of the other methods agreed in 17.5% (was: 
22.2%); and both other methods agreed in 46.6% (was: 42.5%). 
Therefore, compared to algorithm development, cases with 2 
agreements slightly decreased in favor of cases with 3 agreements. 
The proportion of specific agreement between the ECG algorithm 
and both visual scorings decreased to 55.7% (95% confidence lim-
its 54.4% to 57.0%; was 59.2%), while it increased between vi-
sual scorings (68.2%, 95% confidence limits 66.9% to 69.5%; was 
65.8%). Of the 1214 arousals scored only by the ECG algorithm, 
220 (18.1%) occurred during prolonged periods of wakefulness, 
and therefore per definition could not have been scored by the other 
2 methods. Taking this into account, overall agreement with ≥1 of 
the other 2 methods was 68.5%.

Results of the event-related analysis are shown in Figure 8. On 
average, 575 events contributed to each of the 3 x 3 estimated 
probabilities. Dose-response relationships were observed for all 
scoring methods, with increasing arousal probability in the or-
der control, 45 dBA and 65 dBA. For the ECG algorithm, arousal 
probability increased from 8.5% (control) and 14.6% (45 dBA) to 
30.7% (65 dBA). Arousal probability in the control condition did 
not differ between the 3 scorings (Aro-V1: 8.3%, Aro-V2: 8.6%, 
Aro-ECG: 8.5%; all pair-wise P >0.8 in a random subject effect 
logistic regression). The ECG algorithm detected significantly 
less arousals than both human scorers in the 45 dB condition and 
in the 65 dB condition (all P <0.05). Visual scoring 1 and 2 dif-
fered significantly in the 45 dB condition (P = 0.008) but not in 
the 65 dB condition (P = 0.274).

Table 4 shows pair-wise comparisons of detection accuracy us-
ing 1 of the 3 methods as the gold standard. Compared to the ECG 
algorithm, human scorer 1 was significantly more sensitive (rTPF 
= 1.74) and significantly less specific (rFPF = 1.25), while hu-
man scorer 2 was significantly more sensitive (rTPF = 1.55) and 
more specific (rFPF = 0.85), albeit not significantly. Compared to 
human scorer 2, human scorer 1 was significantly more sensitive 
(rTPF = 1.12) and significantly less specific (rFPF = 1.17).

An in-depth analysis showed that consensus arousals between 
visual scorings 1 and 2 that were also detected by the ECG al-
gorithm were significantly longer than those that were not de-

Figure 7—Venn diagrams for arousal scorings of human scorer 1 
(Visual 1), human scorer 2 (Visual 2), and the ECG algorithm (ECG) 
based on nights used for algorithm development (A) and algorithm 
validation (B). The percentages refer to all arousals scored by the 
ECG algorithm (gray circle).
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tected by the ECG algorithm (average duration no agreement: 
10.5 s, agreement: 16.3 s; median duration no agreement: 8.4 s, 
agreement: 15.3 s; Mann-Whitney-U test: Nagreement=175, Nno agree-

ment=168, Z=-6.76, P <0.001).

DISCUSSION

This paper describes the development of an ECG-based algo-
rithm for the automatic identification of autonomic activations as-
sociated with cortical arousal. There were astonishingly few sys-
tematic attempts to develop such algorithms in the past, although 
there are potentially many advantages (see Introduction). The 
analysis of heart rate has often been restricted to the maximum in-
crease in heart rate during a specified interval following an event 
(e.g. an EEG arousal), using the average heart rate prior to the 
event as baseline. In that way, much of the information embedded 
in the autonomic response is discarded.

Adachi et al.26 introduced a so-called pulse rate rise index 
(PRRI), defined as the number of pulse rate increases ≥ 4-10 bpm 
per hour of sleep. In their study, the PRRI was compared to the 
number of EEG arousals associated with apnea, hypopnea, or re-
spiratory effort related increases in esophageal pressure. It tested 
whether the pulse rate rise index was suitable to distinguish be-
tween mild and severe forms of sleep related breathing disorders. 
Comparisons on the single event level were not presented.

Ayappa et al.27 tried to determine the frequency and hierarchy 
of occurrence of oxygen desaturations, EEG arousals, and heart 
rate changes as immediate consequences of respiratory events. 
They measured the increase in heart rate in the 10 s following the 
respiratory event, using the average heart rate calculated during 
5 s prior to event termination as baseline. They examined multiple 
definitions of heart rate increase: Either 4 or 6 bpm increases for 
either 1 or 2 consecutive beats. They chose 6 bpm increases for 2 
consecutive beats as their final criterion. This definition led to a 
sensitivity of 67.1% and a specificity of 61.1% in terms of EEG 
arousal detection.

Ayappa et al.27 also bewail that there is no consensus in the 
literature on the amplitude necessary to constitute a relevant in-

crease in heart rate.13 It is impossible to define the relevance of 
heart rate increases per se. Although Martin et al.28 suggest that 
daytime functioning may be impaired by increases in the number 
of subcortical arousals alone, this has been questioned by We-
sensten et al.,4 because the procedure used by Martin et al. inevi-
tably also induced cortical arousals and changes in sleep struc-
ture beside autonomic activations. Recent findings of a carefully 
designed experiment by Guilleminault et al.29 support the thesis 
that EEG arousals are a prerequisite for the detrimental effects of 
sleep fragmentation on daytime functioning. Therefore, it seems 
reasonable to determine the relevance of autonomic arousals, de-
pending on whether they are accompanied by cortical arousals.

For our criterion, differences to a moving median were used to 
determine the size of increases or decreases in heart frequency. 
The differences of 5 consecutive heart beats were then used to 
determine the probability of the first of the 5 beats being the first 
beat following the onset of an EEG arousal using a Bayesian ap-
proach, comparable to 5 sequentially applied diagnostic tests. In 
that way, and in contrast to past approaches, most of the heart rate 
response information was used for differentiating between EEG 
arousal and non-EEG arousal conditions.

If the criterion is based on 4 consecutive (first) heartbeats ex-
ceeding a certain probability of being associated with an EEG 
arousal, an ROC curve with an AUC of 0.912 resulted, demon-
strating high diagnostic accuracy of the criterion. Arousal indexes 
generated by the ECG algorithm correlated positively with the 
average of 2 visual EEG arousal scorings, representing the best 
estimate of the “true” arousal index. However, the correlation be-
came only significant and explained a reasonable proportion of 
the variance if 3 outliers were removed from the data set of N = 
56. The same holds for the ICC.

According to the Bland-Altman plot, scorings of the ECG algo-
rithm were unbiased with a reasonably small range of ± 2 standard 
deviations between +16.5 and -15.3 arousals per h sleep. However, 
the difference between the ECG arousal index and the average of the 
2 visual scorings tended to increase with increasing visual arousal 
indexes. If high numbers of cortical arousals were associated with 
high numbers of subcortical arousals, which lead to relevant in-
creases in heart rate without cortical activation, this could explain 
the observed tendency of the ECG algorithm to overestimate EEG 
arousal frequency in situations where both humans scored a high 
number of cortical arousals. In general, the Bland-Altman plot is 
the preferred method for assessing whether an established and a 
new measurement technique agree. The use of correlation coeffi-
cients may be highly misleading in this context.24

Both visual scorings agreed with the ECG arousal scorings 
in 42.5%, whereas ≥1 of the 2 visual scorings agreed in another 
22.2%. Cases where the ECG algorithm scored an arousal event 
exclusively (35.3%) may still indicate relevant autonomic activa-
tions not accompanied by cortical arousal, but which may never-
theless play a role in long-term cardiovascular consequences of 
sleep fragmentation.

The ECG algorithm was also successfully validated with ex-
ternal data. There was no relevant change in agreement between 
data sets used for algorithm development and validation. Arousal 
probability determined by the ECG algorithm increased with si-
multaneously increasing SPL of aircraft noise events, showing 
its potential usefulness for large-scale field studies on the effects 
of noise on sleep. However, both visual scorings detected sig-
nificantly more arousals in the noise exposure conditions than the 

Figure 8—Event-related analysis of arousal probability depending 
on exposure category (control = no noise, 45 dBA, 65 dBA) and 
scoring method (Visual 1 = human scorer 1, Visual 2 = human scor-
er 2, ECG = ECG algorithm). Point estimates and 95% confidence 
bounds are shown.
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ECG algorithm, without detecting more arousals in the control 
condition. Pair-wise comparisons (Table 4) confirmed that both 
visual scorings were more sensitive than the ECG-algorithm, but 
only visual scoring 2 was also more specific. A detailed analysis 
showed that the higher sensitivity of visual scorings most likely 
resulted from detections of shorter EEG arousals missed by the 
ECG algorithm. On the one hand, this indicates that most of the 
important longer arousals, associated with strong increases in 
sympathetic activity, seem to be well captured by the ECG al-
gorithm. On the other hand, it shows that efforts on improving 
the ECG algorithm should be focused on the detection of shorter 
events in the future. This is also corroborated by the fact that sen-
sitivity for the detection of consensus arousals decreased with in-
creasing arousal duration in the development data set.

Pillar et al.17 introduced an autonomic arousal index (AAI), 
which is based on pulse rate rises and peripheral arterial to-
nometry (PAT) amplitude decreases. Similar to our approach, 
they compared the AAI to visually scored AASM EEG arousal 
indexes. The reported correlation between the autonomic arous-
al index and the EEG arousal index was higher than ours (r = 
0.82 vs. r = 0.19). At the same time, the variance observed in 
the Bland-Altman plot was considerably larger. Both phenomena 
may be explained by the fact that the AAI was based on data of 
85 OSA patients and 11 healthy controls, whereas our algorithm is 
based on healthy subjects only. Some of the sleep apnea subjects 
showed very high arousal indexes, which may be the reason for 
the reported high correlation. If the analysis of Pillar et al.17 was 
repeated and restricted to the range of arousal indexes observed in 
our population, i.e. up to 35 arousals per h sleep, the correlation 
would probably be very similar to ours (see Figure 1 in Pillar et 
al.17). The same may hold for the Bland-Altman plot.

Overall, with 0.88 the AUC of the ROC plot generated by 
Pillar et al.17 for the AAI was lower compared to our method 
(AUC=0.91), indicating a higher accuracy of our method. At the 
same time, our method is based on the ECG signal only, whereas 
the method of Pillar et al. was based on heart rate and PAT ampli-
tude, the latter not being routinely recorded in sleep laboratories.

The low interobserver agreement in EEG arousal scorings from 
2 human scorers6,7 was confirmed in this investigation. If agree-
ment is defined as any overlap in arousal scorings, visual scorers 
agreed in only 49.0% (development data set) and 51.8% (valida-
tion data set) of arousal scorings. Hence, only arousals meeting 
strict criteria were considered as consensus arousals, a surrogate 
for a “true EEG arousal,” and used for the development of the 
ECG algorithm. The 2 scorers were deliberately chosen from 2 
different laboratories. If scorers would have been recruited from 
a single institution, agreement between scorers might have been 
higher, but transferability of results would decrease.

Both EEG and ECG arousals were poorly and nonsignifi-
cantly correlated with a VAS score with the anchors “alert” 
and “tired,” replicating the findings of many previous studies 
on EEG arousal frequency and subjective evaluations of fatigue 
and sleepiness.17,30,31

LRs were calculated for 5 consecutive heartbeats and 10 heart-
beat intervals each. Alternatively, it would have been possible 
to calculate both mean and variance of the distribution of heart 
rate differences (compared to the moving median) for the EEG 
arousal as well as the non-EEG arousal condition. With this ap-
proach, each heartbeat difference could have been translated into 
a LR on a continuous scale. We decided against this parametric 

approach for 2 reasons: First, the assumption of normally dis-
tributed differences may not hold, which would lead to biased 
estimates of LRs. Second, the raw data were not corrected for 
ectopic heartbeats and movement artifacts in order to increase the 
practicability of the method and to keep expenditure of human 
labor low. Heart frequency differences derived from ectopic heart 
beats and movement artifacts are usually very high or very low, 
i.e. falling in the highest or lowest of the 10 categories. Hence, 
LRs in the first category were always a little smaller than LRs in 
the second category (see Table 1). In that way, the small increase 
in LRs in category 1 compared to category 2 can be regarded as a 
self-correcting mechanism of the procedure. We did not use more 
than 10 categories because we wanted the sample size in each of 
the categories to be high enough to exclude chance as a possible 
mechanism for explaining the LRs.

Limitations

As information on sleep stages will likely not be available in 
some of the possible future applications of the algorithm, wake 
epochs were not excluded from the analysis. Therefore, prolonged 
periods of wakefulness could lead to biased results: After all, 
6.9% (development) and 18.1% (validation) of arousals exclu-
sively scored by the ECG algorithm occurred during prolonged 
periods of wakefulness. However, it would be easy to exclude 
periods of wakefulness from the analysis, if sleep stage informa-
tion is available and this is desired.

Here, the ECG algorithm was trained and validated with SPT 
data only. If it is to be used without the simultaneous recording of 
EEG, EMG, and EOG in the future, some method will be needed 
to reliably determine the beginning and end of SPT. For this pur-
pose, other domains of the ECG signal, e.g., changes in heart rate 
variability, could be facilitated as well.

We emphasize that this is a first approach for the develop-
ment of an ECG algorithm for the automatic identification of au-
tonomic activations associated with cortical arousal; it is open 
for discussion and suggestions. Most probably, the accuracy of 
the algorithm could be improved by accounting for age, gender, 
BMI, or other individual variables of the investigated subject.12 
Also, incorporating information on the magnitude of the median 
heart rate might improve predictions. More than 5 or less than 
5 consecutive beats could be used for the calculation of arousal 
probabilities. The time window of ± 90 seconds for the moving 
median could be optimized. Dropping the assumption that the 
tests are conditionally independent given the arousal status may 
improve algorithm accuracy. Also, the sensitivity of the algo-
rithm increased with the duration of the EEG arousal. Therefore, 
it might be possible to improve predictions if separate criteria are 
developed for different lengths of EEG arousals.

As every subject contributed several data points, data were 
clustered, but this within-subject correlation of data was not taken 
into account in this first approach. Again, accuracy could possibly 
be improved if the correlated nature of the data was considered. 
Those cases where the ECG algorithm underestimated or overes-
timated “true” arousal frequency relevantly should be inspected 
more closely in order to learn more about the causes of these bi-
ased estimates. So far, the application of the ECG algorithm is 
restricted to nonclinical populations. Further studies are needed 
to evaluate the applicability of the ECG-based algorithm in popu-
lations different from the one studied in this investigation.
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CONCLUSIONS

The ECG algorithm was designed to differentiate between EEG 
arousal and non-EEG arousal conditions, as defined by the 1992 
AASM criteria.1 This study demonstrated that it is possible to detect 
visually scored EEG arousals with an algorithm based on the ECG 
signal alone. However, the accuracy of the ECG algorithm would 
have to be improved before recommending it as an alternative to 
visual EEG arousal scoring. It has to be borne in mind that although 
close association of cortical and autonomic arousals has been re-
peatedly shown in the past,8,10,13 they are still distinct events that 
may occur independently (i.e., cortical arousal without autonomic 
arousal and vice versa). At least some of the disagreement between 
visual EEG arousal scoring and ECG algorithm scoring may be at-
tributed to these independently occurring events. Therefore, it is 
questionable whether it will at all be possible to perfectly identify 
EEG arousals and hence to replace visual EEG arousal scoring 
with algorithms based on the ECG alone. Regardless, it may still be 
valuable to supplement visual EEG arousal scoring with this auto-
matic, reproducible, objective, and time-saving method. In screen-
ing devices that sample ECG but do not sample EEG, EOG. and 
EMG, arousal indexes generated by the ECG algorithm could be 
used as estimates of EEG arousal indexes, thus improving the ex-
planatory power of the screening devices. In terms of studies on the 
effects of traffic noise on sleep, large-scale field studies could be 
performed with lower methodological expense but still sufficient 
explanatory power compared with polysomnographic studies. Fi-
nally, apart from its ability to predict EEG arousal indexes, the ECG 
arousal index itself may be a useful measure of subcortical arousals, 
which may play a role in nonrestorative sleep28 and cardiovascu-
lar disease.32 Future versions of the algorithm need to address the 
low sensitivity for detecting <10-s arousals, and the algorithm still 
needs to be validated in nonclinical populations.
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