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Introduction

Forecasting exchange rates using models which condition on economically meaningful variables has
long been at the top of the research agenda in international �nance, and yet empirical success
remains elusive. Starting with the seminal contribution of Meese and Rogo¤ (1983), a vast body of
empirical research �nds that models which condition on economic fundamentals cannot outperform a
naive random walk model. Even though there is some evidence that exchange rates and fundamentals
comove over long horizons (e.g. Mark, 1995; Mark and Sul, 2001), the prevailing view in international
�nance research is that exchange rates are not predictable, especially at short horizons.

A separate yet related literature �nds that forward exchange rates contain valuable information
for predicting spot exchange rates. In theory, the relation between spot and forward exchange
rates is governed by the Uncovered Interest Parity (UIP) condition, which suggests that the forward
premium must be perfectly positively related to future exchange rate changes. In practice, however,
this is not the case as we empirically observe a negative relation.1 The result of the empirical failure
of UIP is that conditioning on the forward premium often generates exchange rate predictability.
For example, Backus, Gregory and Telmer (1993) and Backus, Foresi and Telmer (2001) explore
this further and �nd evidence of predictability using the lagged forward premium as a predictive
variable. Furthermore, Clarida, Sarno, Taylor and Valente (2003, 2006) and Boudoukh, Richardson
and Whitelaw (2006) show that the term structure of forward exchange (and interest) rates contains
valuable information for forecasting spot exchange rates.

On the methodology side, while there is extensive literature on statistical measures of the accu-
racy of exchange rate forecasts, there is little work assessing the economic value of exchange rate
predictability. Relevant research to date comprises an early study by West, Edison and Cho (1993)
which provides a utility-based evaluation of exchange rate volatility, and more recently, Abhyankar,
Sarno and Valente (2005) who use a similar method for investigating long-horizon exchange rate pre-
dictability. However, in the context of dynamic asset allocation strategies, there is no study assessing
the economic value of the predictive ability of empirical exchange rate models which condition on
economic fundamentals or the forward premium while allowing for volatility timing.

Our empirical investigation attempts to �ll this gap and connect the related literatures which
examine the performance of empirical exchange rate models. On the one hand, we directly investi-
gate whether the statistical rejection of UIP generates economic value to a dynamically optimizing
investor who exploits the UIP violation in order to generate excess returns. On the other hand, our
economic evaluation provides a novel way for con�rming (or not) the underwhelming performance
of exchange rate models conditioning on economic fundamentals that has so far been established
by statistical tests. We do this by employing a range of economic and Bayesian statistical criteria
for performing a comprehensive assessment of the short-horizon, in-sample and out-of-sample, pre-
dictive ability of three sets of models for the conditional mean of monthly nominal exchange rate
returns. These models include the naive random walk model, the monetary fundamentals model (in
three variants), and the spot-forward regression model. Each of the models is studied under three
volatility speci�cations: constant variance (standard linear regression), GARCH(1,1) and stochastic
volatility (SV). In total, we evaluate the performance of 15 speci�cations, which encompass the most
popular empirical exchange rate models studied in prior research. Our analysis employs monthly
returns data ranging from January 1976 to December 2004 for three major US dollar exchange rates:
the UK pound sterling, the Deutsche mark/euro, and the Japanese yen.

An important contribution of our analysis is the use of economic criteria. Statistical evidence

1See, for example, Bilson (1981), Fama (1984), Froot and Thaler (1990) and Backus, Foresi and Telmer (2001). For
a survey of this literature, see Lewis (1995), Engel (1996) and the references therein.
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of exchange rate predictability in itself does not guarantee that an investor can earn pro�ts from
an asset allocation strategy that exploits this predictability. In practice, ranking models is useful
to an investor only if it leads to tangible economic gains. Therefore, we assess the economic value
of exchange rate predictability by evaluating the impact of predictable changes in the conditional
foreign exchange (FX) returns and volatility on the performance of dynamic allocation strategies. We
employ mean-variance analysis as a standard measure of portfolio performance and apply quadratic
utility, which allows us to quantify how risk aversion a¤ects the economic value of predictability,
building on empirical studies of volatility timing in stock returns by Fleming, Kirby and Ostdiek
(2001) and Marquering and Verbeek (2004).2 Ultimately, we measure how much a risk averse investor
is willing to pay for switching from a dynamic portfolio strategy based on the random walk model to
one which conditions on either monetary fundamentals or the forward premium and has a dynamic
volatility speci�cation.

The design of the dynamic allocation strategies is based on the mean-variance setting of West,
Edison and Cho (1993), which adopts quadratic utility and �xes the investor�s degree of relative risk
aversion to a constant value. Quadratic utility allows us to compute in closed form the utility gains
from using the conditional mean and volatility forecasts of one model rather than another. Combined
with the approach of Fleming, Kirby and Ostdiek (2001), it is then straightforward to compute the
performance fees, and hence provide an economically meaningful ranking of competing models for a
given degree of relative risk aversion. Despite the well-known shortcomings a¤ecting quadratic utility,
there are a number of reasons that make it an appealing assumption, which we discuss in detail later
in the paper. For example, quadratic utility is necessary to justify mean-variance optimization for
non-normal return distributions, and therefore allows the economic evaluation of a larger universe
of models within mean-variance. More importantly, there is evidence that quadratic utility provides
a highly satisfactory approximation to a wide range of more sophisticated utility functions (e.g.
Hlawitschka, 1994).

We assess the statistical evidence on exchange rate predictability in a Bayesian framework, which
requires a choice for the prior distribution of the model parameters. For example, in the case of
the simple linear regression model we assume independent Normal-Gamma prior distributions. We
rank the competing model speci�cations by computing the posterior probability of each model.
The posterior probability is based on the marginal likelihood and hence it accounts for parameter
uncertainty, while imposing a penalty for lack of parsimony (higher dimension). In the context of
this Bayesian methodology, an alternative approach to determining the best model available is to
form combined forecasts which exploit information from the entire universe of model speci�cations
under consideration. Speci�cally, we implement the Bayesian Model Averaging (BMA) method,
which weighs all conditional mean and volatility forecasts by the posterior probability of each model.

To preview our key results, we �nd strong economic and statistical evidence against the naive
random walk benchmark with constant variance innovations. In particular, while we con�rm that
conditioning on monetary fundamentals has no economic value either in-sample or out-of-sample, a
key result of the paper is that the predictive ability of forward exchange rate premia has substantial
economic value in a dynamic allocation strategy. Also, stochastic volatility signi�cantly outperforms
the constant variance and GARCH(1,1) models irrespective of the conditional mean speci�cation.
This leads to the conclusion that the best empirical exchange rate model is a model that exploits
the information in the forward market for the prediction of conditional exchange rate returns and
allows for stochastic volatility for the prediction of exchange rate volatility. We also provide evidence

2For studies of asset return predictability following this approach see also Kandell and Stambaugh (1996), Barberis
(2000), Baks, Metrick and Wachter (2001), Bauer (2001), Shanken and Tamayo (2001), Avramov (2002), Cremers
(2002) and Della Corte, Sarno and Thornton (2007). Karolyi and Stulz (2003) provide a survey of asset allocation in
an international context.
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that combined forecasts which are formed using BMA substantially outperform the random walk
benchmark. These results are robust to reasonably high transaction costs and hold for all currencies
both in-sample and out-of-sample. Finally, these �ndings have clear implications for international
asset allocation strategies which are subject to FX risk.

The remainder of the paper is organized as follows. In the next section we brie�y review the
literature on exchange rate predictability conditioning on either fundamentals or forward exchange
premia. Section 2 lays out the competing empirical models for the conditional mean and volatility
of exchange rate returns. In Section 3 we discuss the framework for assessing the economic value of
exchange rate predictability for a risk averse investor with a dynamic portfolio allocation strategy.
Section 4 provides a sketch of the Bayesian estimation tools, discusses the approach to model selection,
and explains the construction of combined forecasts using the BMA method. Our empirical results
are reported in Section 5, followed by robustness checks in Section 6. Finally, Section 7 concludes.

1 Stylized Facts on Exchange Rate Predictability

In this section we brie�y review the theoretical and empirical research that motivates our conditioning
on lagged monetary fundamentals and forward premia in the set of empirical exchange rate models.

1.1 Exchange Rates and Monetary Fundamentals

There is extensive literature in international �nance which studies the relation between nominal
exchange rates and monetary fundamentals and focuses on the following predictive variable, xt:

xt = zt � st (1)

zt = (mt �m�
t )� (yt � y�t ) (2)

where st is the log of the nominal exchange rate (de�ned as the domestic price of foreign currency);
mt is the log of the money supply; yt is the log of national income; and asterisks denote variables
of the foreign country. Note that long-run money neutrality and income homogeneity are imposed,
with the coe¢ cients on mt �m�

t and yt � y�t both set to unity as predicted by conventional theories
of exchange rate determination, and zt represents the relative velocity between the two countries
in question. The relation between exchange rates and fundamentals de�ned in Equations 1 and
2 suggests that a deviation of the nominal exchange rate, st, from its long-run equilibrium level
determined by the fundamentals, zt (i.e. xt 6= 0), requires the exchange rate to move in the future
so as to converge towards its long-run equilibrium. In other words, the deviation xt has predictive
power on future realizations of the exchange rate.3

Despite the appeal of the theoretical relation between exchange rates and fundamentals, the
empirical evidence is mixed. On the one hand, short-run exchange rate variability appears to be
disconnected from the underlying fundamentals (Mark, 1995) in what is commonly referred to as
the �exchange rate disconnect puzzle�. On the other hand, some recent empirical research �nds
that fundamentals and nominal exchange rates move together in the long run (Groen, 2000; Mark
and Sul, 2001; Rapach and Wohar, 2002; Sarno, Valente and Wohar, 2004). Either way, our study
contributes to the empirical literature on the predictive ability of monetary fundamentals on exchange

3The speci�cation of fundamentals in Equation 2 is common in the relevant empirical literature; e.g. see Mark (1995)
and Mark and Sul (2001). Theories of exchange rate determination view zt as the core set of economic fundamentals
that determine the long-run equilibrium exchange rate. These theories include traditional models based on aggregate
demand functions (e.g. Mark, 1995; Engel and West, 2005), and representative-agent general equilibrium models (e.g.
Lucas, 1982; Obstfeld and Rogo¤, 1995).
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rates by providing an economic evaluation of the in-sample and out-of-sample forecasting power of
fundamentals at a short (one-month ahead) horizon.

1.2 The Spot-Forward Exchange Rate Relation

Assuming risk neutrality and rational expectations, Uncovered Interest Parity (UIP) is the cor-
nerstone condition for FX market e¢ ciency. For a one-period horizon, UIP is represented by the
following equation:

Et�1�st = it�1 � i�t�1 (3)

where it�1 and i�t�1 are the one-period domestic and foreign nominal interest rates respectively; and
�st � st � st�1.

In the absence of riskless arbitrage, Covered Interest Parity (CIP) holds and implies:

ft�1 � st�1 = it�1 � i�t�1 (4)

where ft�1 is the log of the one-period forward exchange rate (i.e. the rate agreed now for an exchange
of currencies in one period). Substituting the interest rate di¤erential it�1 � i�t�1 in Equation 3 by
the forward premium (or forward discount) ft�1 � st�1, we can estimate the following regression,
which is commonly referred to as the �Fama regression�(Fama, 1984):

�st = �+ � (ft�1 � st�1) + ut (5)

where ut is a disturbance term.
If UIP holds, we should �nd that � = 0, � = 1, and the disturbance term ut is uncorrelated with

information available at time t�1. Despite the increasing sophistication of the econometric techniques
implemented and the improving quality of the data sets utilized, empirical studies estimating the
Fama regression consistently reject the UIP condition (Hodrick, 1987; Lewis, 1995; Engel, 1996).
As a result, it is now a stylized fact that estimates of � tend to be closer to minus unity than plus
unity (Froot and Thaler, 1990). The negative value of � is the de�ning feature of what is commonly
referred to as the �forward bias puzzle,�namely the tendency of high-interest currencies to appreciate
when UIP would predict them to depreciate.4

Attempts to explain the forward bias puzzle using models of risk premia have met with limited
or mixed success, especially for plausible degrees of risk aversion (e.g. Engel, 1996, and the refer-
ences therein). Moreover, it has proved di¢ cult to explain the rejection of UIP by resorting to a
range of proposed explanations, including learning, peso problems and bubbles (e.g. Lewis, 1995);
consumption-based asset pricing theories, which allow for departures from both time-additive pref-
erences (Backus, Gregory and Telmer, 1993; Bansal, Gallant, Hussey and Tauchen, 1995; Bekaert,
1996) and from expected utility (Bekaert, Hodrick and Marshall, 1997); and using popular models of
the term structure of interest rates adapted to a multi-currency setting (Backus, Foresi and Telmer,
2001). In conclusion, even with the bene�t of twenty years of hindsight, the forward bias has not
been convincingly explained and remains a puzzle in international �nance research.

In this context, the objective of this paper is neither to �nd a novel resolution to the forward bias
puzzle nor to discriminate among competing explanations. Instead, we focus on predicting short-
horizon exchange rate returns when conditioning on the lagged forward premium, thus empirically

4Exceptions to this puzzle include Bansal (1997), who �nds that the forward bias is related to the sign of the interest
rate di¤erential; Bansal and Dahlquist (2000), who document that the forward bias is largely con�ned to developed
economies and countries where the interest rate is lower than the US; Bekaert and Hodrick (2001), who provide a
�partial rehabilitation� of UIP by accounting for small-sample distortions; and Lustig and Verdelhan (2007), who
attempt to explain the forward bias puzzle focusing on the cross-section of foreign currency risk premia.
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exploiting the forward bias reported in the strand of literature stemming from Bilson (1981), Fama
(1984), Bekaert and Hodrick (1993) and Backus, Gregory and Telmer (1993). For example, Bilson
(1981) argues that regressions conditioning on the forward premium can potentially yield substantial
economic returns, whereas arguments based on limits to speculation would suggest otherwise (Lyons,
2001; Sarno, Valente and Leon, 2006). Furthermore, term structure models that exploit departures
from UIP often yield accurate out-of-sample forecasts (e.g. Clarida and Taylor, 1997; Clarida, Sarno,
Taylor and Valente, 2003; Boudoukh, Richardson and Whitelaw, 2006). However, little attention has
been given to the question of whether the statistical rejection of UIP and the forward bias resulting
from the negative estimate of � o¤ers economic value to an international investor facing FX risk.
Our paper �lls this void in the literature by assessing the economic value of the predictive ability of
empirical exchange rate models which condition on the forward premium in the context of dynamic
asset allocation strategies.

2 Modeling FX Returns and Volatility

In this section we present the candidate models applied to monthly exchange rate returns in our
study of short-horizon exchange rate predictability. We use a set of speci�cations for the dynamics
of both the conditional mean and volatility, which are set against the naive random walk benchmark.
In short, we estimate �ve conditional mean and three conditional volatility speci�cations yielding a
total of 15 models for each of the three dollar exchange rates under consideration.

2.1 The Conditional Mean

We examine �ve conditional mean speci�cations in which the dynamics of exchange rate returns are
driven by the following regression:

�st = �+ �xt�1 + ut, ut = vt"t, "t � NID (0; 1) : (6)

Our �rst speci�cation is the naive random walk (RW ) model, which sets � = 0. This model is the
standard benchmark in the literature on exchange rate predictability since the seminal work of Meese
and Rogo¤ (1983).

The next three model speci�cations condition on monetary fundamentals (MF ). Speci�cally,
MF1 uses the canonical version xt = zt � st as de�ned in Equations 1 and 2. This is the most
common formulation of the monetary fundamentals model since Mark (1995). The second variant,
MF2, corrects for the deterministic component in the deviation of the exchange rate from monetary
fundamentals by allowing for an intercept and a slope parameter; in other words, we run the ordinary
least squares (OLS) regression st = �0+�1zt+�t, and set xt = �b�t. The third variant, MF3, further
corrects for the time trend in fundamentals deviations; in this case, we run the OLS regression
st = �0 + �1zt + �2t+ �t, where t is a simple time trend, and again we set xt = �b�t.5

Finally, the �fth conditional mean speci�cation is the forward premium (FP ) model, which sets
xt = ft � st as in Equation 5 resulting in the Fama (1984) regression. The FP model stems directly
from the spot-forward exchange rate relation derived from UIP. Hence it constitutes the empirical
model which exploits the forward bias and allows us to assess the economic value of conditioning
on the forward premium in the context of dynamic asset allocation strategies. The forward bias (a

5The motivation behind the MF2 and MF3 variants derives from empirical evidence that cointegration between st
and zt may be established only by correcting for the deterministic components (either a constant or a constant and
a time trend) in the cointegrating residual (e.g. Rapach and Wohar, 2002). Note, however, that in the out-of-sample
exercise we estimate the deterministic component recursively as we move through the data sample, and hence our
results do not su¤er from �look-ahead bias�.
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negative estimate of the � coe¢ cient in the FP model) implies that the more the foreign currency is at
a premium in the forward market, the less the home currency is expected to depreciate. Equivalently,
the more domestic interest rates exceed foreign interest rates, the more the domestic currency tends
to appreciate over the holding period.

2.2 The Conditional Variance

We model the dynamics of the conditional variance by implementing three models: the simple
linear regression (LR), the GARCH(1,1) model, and the stochastic volatility (SV) model. The
linear regression framework simply assumes that the conditional variance of FX return innovations
is constant over time

�
v2t = v2

�
, and therefore presents the benchmark against which models with

time-varying conditional variance will be evaluated.
The benchmark GARCH(1,1) model of Bollerslev (1986) is de�ned as:

v2t = ! + 1v
2
t�1 + 2u

2
t�1: (7)

Our motivation for studying the simple GARCH(1,1) model is based on the early study of West,
Edison and Cho (1993), which conducts a utility-based evaluation of exchange rate volatility and
�nds that GARCH(1,1) is the best performing model.

Stochastic volatility models are similar to the GARCH process in that they capture the persistent
and hence predictable component of volatility. Unlike GARCH models, however, the assumption of a
stochastic second moment introduces an additional source of risk.6 According to the plain vanilla SV
model, the persistence of the conditional volatility vt is captured by the dynamics of the Gaussian
stochastic log-variance process ht:

vt = exp (ht=2) (8)

ht = �+ � (ht�1 � �) + ��t, �t � NID (0; 1) : (9)

3 Measuring the Economic Value of Exchange Rate Predictability

This section discusses the framework we use in order to evaluate the impact of predictable changes
in both exchange rate returns and volatility on the performance of dynamic allocation strategies.

3.1 FX Models in a Dynamic Mean-Variance Framework

In mean-variance analysis, the maximum expected return strategy leads to a portfolio allocation on
the e¢ cient frontier. Consider an investor who has a one-month horizon and constructs a dynamically
rebalanced portfolio that maximizes the conditional expected return subject to achieving a target
conditional volatility. Computing the time-varying weights of this portfolio requires one-step ahead
forecasts of the conditional mean and the conditional variance-covariance matrix. Let rt+1 denote
the K � 1 vector of risky asset returns; �t+1jt = Et [rt+1] is the conditional expectation of rt+1; and

�t+1jt = Et

��
rt+1 � �t+1jt

��
rt+1 � �t+1jt

�0�
is the conditional variance-covariance matrix of rt+1.

6Market microstructure theories of speculative trading (e.g. Tauchen and Pitts, 1983; Andersen, 1996) provide
rigorous arguments for modeling volatility as stochastic. For details on SV models see Kim, Shephard and Chib (1998)
and Chib, Nardari and Shephard (2002). For an application of SV models to exchange rates, see Harvey, Ruiz and
Shephard (1994). Finally, for a comparison of GARCH and SV models see Fleming and Kirby (2003).
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At each period t, the investor solves the following problem:

max
wt

n
�p;t+1jt = w0t�t+1jt +

�
1� w0t�

�
rf

o
s.t.

�
��p
�2
= w0t�t+1jtwt (10)

where wt is the K � 1 vector of portfolio weights on the risky assets; � is a K � 1 vector of ones;
�p;t+1jt is the conditional expected return of the portfolio; �

�
p is the target conditional volatility of

the portfolio returns; and rf is the return on the riskless asset. The solution to this optimization
problem delivers the risky asset weights:

wt =
��pp
Ct
��1t+1jt

�
�t+1jt � �rf

�
(11)

where Ct =
�
�t+1jt � �rf

�0
��1t+1jt

�
�t+1jt � �rf

�
. The weight on the riskless asset is 1� w0t�.

Constructing the optimal portfolio weights requires estimates of the conditional expected returns,
variances and covariances. We consider �ve conditional mean strategies (RW , MF1, MF2, MF3 and
FP ) and three conditional volatility strategies (LR, GARCH and SV ) for a total of 15 sets of
one-step ahead conditional expected return and volatility forecasts. The conditional covariances are
computed using the constant conditional correlation (CCC) model of Bollerslev (1990), in which
the dynamics of covariances are driven by the time-variation in the conditional volatilities.7 By
design, in this setting the optimal weights will vary across models only to the extent that forecasts of
the conditional mean and volatility will vary, which is precisely what the empirical models provide.
The benchmark against which we compare the model speci�cations is the random walk model with
constant variance (RWLR). In short, our objective is to determine whether there is economic value
in (i) conditioning on monetary fundamentals and, if so, which of the three speci�cations works
best, (ii) conditioning on the forward premium, (iii) using a GARCH volatility speci�cation, and (iv)
implementing an SV process for the monthly FX innovations.

3.2 Quadratic Utility

Mean-variance analysis is a natural framework for assessing the economic value of strategies which
exploit predictability in the mean and variance. In particular, we rank the performance of the
competing FX models using the West, Edison and Cho (1993) methodology, which is based on
mean-variance analysis with quadratic utility. The investor�s realized utility in period t + 1 can be
written as:

U (Wt+1) =Wt+1 �
�

2
W 2
t+1 =WtRp;t+1 �

�W 2
t

2
R2p;t+1 (12)

where Wt+1 is the investor�s wealth at t+ 1, � determines his risk preference, and

Rp;t+1 = 1 + rp;t+1 = 1 +
�
1� w0t�

�
rf + w

0
trt+1 (13)

is the period t+ 1 gross return on his portfolio.
We quantify the economic value of exchange rate predictability by setting the investor�s degree

of relative risk aversion (RRA) �t = �Wt= (1� �Wt) equal to a constant value �. In this case, West,

7 In notation local to this footnote, the CCC model of Bollerslev (1990) speci�es the covariances as follows: �ij;t =
�i;t�j;t�ij , where �i;t and �j;t are the conditional volatilities implied by either the GARCH(1,1) or the SV process, and
�ij is the constant sample correlation coe¢ cient. Note that for the out-of-sample results we use a rolling correlation
estimate updated every time a new observation is added. From a numerical standpoint, implementing the CCC model
is attractive because it eliminates the possibility of �t+1jt not being positive de�nite.
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Edison and Cho (1993) demonstrate that one can use the average realized utility, U (�), to consistently
estimate the expected utility generated by a given level of initial wealth. Speci�cally, the average
utility for an investor with initial wealth W0 is equal to:

U (�) =W0

T�1X
t=0

�
Rp;t+1 �

�

2 (1 + �)
R2p;t+1

�
: (14)

Average utility depends on taste for risk. In the absence of restrictions on �, quadratic utility
exhibits increasing RRA. This is counterintuitive since, for instance, an investor with increasing
RRA becomes more averse to a percentage loss in wealth when his wealth increases. As in West,
Edison and Cho (1993) and Fleming, Kirby and Ostdiek (2001), �xing � implies that expected
utility is linearly homogeneous in wealth: double wealth and expected utility doubles. Hence we can
standardize the investor problem by assuming W0 = $1. Furthermore, by �xing � rather than �, we
are implicitly interpreting quadratic utility as an approximation to a non-quadratic utility function,
with the approximating choice of � dependent on wealth. The estimate of expected quadratic utility
given in Equation 14 is used to implement the Fleming, Kirby and Ostdiek (2001) framework for
assessing the economic value of our FX strategies in the context of dynamic asset allocation.

A critical aspect of mean-variance analysis is that it applies exactly only when the return dis-
tribution is normal or the utility function is quadratic. Hence, the use of quadratic utility is not
necessary to justify mean-variance optimization. For instance, one could instead consider using utility
functions belonging to the constant relative risk aversion (CRRA) class, such as power or log utility.
However, quadratic utility is an attractive assumption because it allows us to consider non-normal
distributions of returns, while remaining within the mean-variance framework as well as providing
a high degree of analytical tractability. Absent Gaussianity, quadratic utility is needed to justify
mean-variance and allows us to use the Fleming, Kirby and Ostdiek (2001) framework (also based
on quadratic utility) for evaluating the performance of fat-tailed volatility speci�cations, such as the
tGARCH model of Bollerslev (1987).

Additionally, quadratic utility may be viewed as a second order Taylor series approximation to
expected utility. In an investigation of the empirical robustness of the quadratic approximation,
Hlawitschka (1994) �nds that a two-moment Taylor series expansion �may provide an excellent ap-
proximation�(p. 713) to expected utility and concludes that the ranking of common stock portfolios
based on two-moment Taylor series is �almost exactly the same�(p. 714) as the ranking based on a
wide range of utility functions.

3.3 Performance Measures

At any point in time, one set of estimates of the conditional mean and variance is better than a
second set if investment decisions based on the �rst set lead to higher average realized utility, U .
Alternatively, the optimal model requires less wealth to yield a given level of U than a subopti-
mal model. Following Fleming, Kirby and Ostdiek (2001) we measure the economic value of our FX
strategies by equating the average utilities for selected pairs of portfolios. Suppose, for example, that
holding a portfolio constructed using the optimal weights based on the Random Walk/Linear Re-
gression (RWLR) model yields the same average utility as holding the Forward Premium/Stochastic
Volatility (FPSV ) optimal portfolio that is subject to monthly expenses �, expressed as a fraction of
wealth invested in the portfolio. Since the investor would be indi¤erent between these two strategies,
we interpret � as the maximum performance fee he will pay to switch from the RWLR to the FPSV

strategy. In other words, this utility-based criterion measures how much a mean-variance investor is
willing to pay for conditioning on the forward premium under stochastic volatility innovations. The
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performance fee will depend on the investor�s degree of risk aversion. To estimate the fee, we �nd
the value of � that satis�es:

T�1X
t=0

��
R�p;t+1 � �

�
� �

2 (1 + �)

�
R�p;t+1 � �

�2�
=

T�1X
t=0

�
Rp;t+1 �

�

2 (1 + �)
R2p;t+1

�
(15)

where R�p;t+1 is the gross portfolio return constructed using the expected return and volatility fore-
casts from the FPSV model, and Rp;t+1 is implied by the benchmark RWLR model.

In the context of mean-variance analysis, a commonly used measure of economic value is the
Sharpe ratio. However, as suggested by Marquering and Verbeek (2004) and Han (2006), the Sharpe
ratio can be misleading because it severely underestimates the performance of dynamic strategies.
Speci�cally, the realized Sharpe ratio is computed using the sample standard deviation of the realized
portfolio returns and hence it overestimates the conditional risk an investor faces at each point in
time. Furthermore, the Sharpe ratio cannot quantify the exact economic gains of the dynamic
strategies over the static random walk strategy in the direct way of the performance fees. Therefore,
our economic analysis of short-horizon exchange rate predictability focuses primarily on performance
fees, while Sharpe ratios of selected models are reported in the robustness section.8

3.4 The Dynamic FX Strategies

In this mean-variance quadratic-utility framework, we design the following global strategy. Consider
a US investor who builds a portfolio by allocating his wealth between four bonds: one domestic (US),
and three foreign bonds (UK, Germany and Japan). At the beginning of each month, the four bonds
yield a riskless return in local currency. Hence the only risk the US investor is exposed to is FX
risk. Each month the investor takes two steps. First, he uses each of the 15 models to forecast the
one-month ahead conditional mean and volatility of the exchange rate returns. Second, conditional
on the forecasts of each model, he dynamically rebalances his portfolio by computing the new optimal
weights for the maximum return strategy. This setup is designed to inform us whether using one
particular conditional mean and volatility speci�cation a¤ects the performance of a short-horizon
allocation strategy in an economically meaningful way. The yields of the riskless bonds are proxied
by monthly Eurodeposit rates.

In the context of this maximum return dynamic strategy we compute both the in-sample and the
out-of-sample performance fee, �, where the out-of-sample period starts in January 1990 and ends in
December 2004. Furthermore, we compare the performance fees for the combinations corresponding
to the following cases: (i) three sets of target annualized portfolio volatilities ��p = f8%; 10%; 12%g;
(ii) all pairs of 15 models (for example FPSV vs: RWLR); and (iii) degrees of RRA � = f2; 6g. We
report the estimates of � as annualized fees in basis points.9

3.5 Transaction Costs

The impact of transaction costs is an essential consideration in assessing the pro�tability of trading
strategies. This is especially true in our case because the trading strategy based on the random walk
benchmark is static (independent of state variables), whereas the remaining empirical models gener-

8The annualized Sharpe ratios reported in Table 10 are adjusted for the serial correlation in the monthly portfolio
returns generated by the dynamic strategies. Speci�cally, following Lo (2002), we multiply the monthly Sharpe ratios
by the adjustment factor 12p

12+2
P11
k=1

(12�k)�k
, where �k is the autocorrelation coe¢ cient of portfolio returns at lag k.

9The in-sample period in our economic value results starts in January 1979 due to lack of data for the Japanese
Eurocurrency interest rate. In contrast, for the statistical analysis the in-sample period starts in January 1976.
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ate dynamic strategies.10 Furthermore, making an accurate determination of the size of transaction
costs is di¢ cult because it involves three factors: (i) the type of investor (e.g. individual vs. institu-
tional investor), (ii) the value of the transaction, and (iii) the nature of the broker (e.g. brokerage
�rm vs. direct internet trading). This di¢ culty is re�ected in the wide range of estimates used in
empirical studies. For example, Marquering and Verbeek (2004) consider three levels of transaction
costs, 0.1%, 0.5% and 1%, to represent low, medium and high costs.

Our approach avoids these concerns by calculating the break-even transaction cost, �BE , that ren-
ders investors indi¤erent between two strategies (e.g. Han, 2006). Hence, we assume that transaction
costs equal a �xed proportion (�) of the value traded in each bond: � jwt�wt�1 1+rt

1+rp;t
j. In comparing

a dynamic strategy with the static (random walk) strategy, an investor who pays transaction costs
lower than �BE will prefer the dynamic strategy. We report �BE in monthly basis points.11

4 Estimation and Forecasting

4.1 Bayesian Markov Chain Monte Carlo Estimation

Stochastic volatility models are generally less popular in empirical applications than GARCH de-
spite their parsimonious structure, intuitive appeal and popularity in theoretical asset pricing. This
is primarily due to the numerical di¢ culty associated with estimating SV models using standard
likelihood-based methods because the likelihood function is not available analytically. Bayesian es-
timation o¤ers a substantial computational advantage over any classical approach because it avoids
tackling di¢ cult numerical optimization procedures. In this context, we estimate all three volatility
frameworks (LR, GARCH and SV) using similar Bayesian Markov Chain Monte Carlo (MCMC)
estimation algorithms. This is a crucial aspect of our econometric analysis because it renders the
posterior mean estimates directly comparable across the three volatility structures. It also allows
us to use the same model risk diagnostics for all model speci�cations. Finally, a distinct advantage
of Bayesian inference is that it provides the posterior distribution of a regression coe¢ cient condi-
tional on the data, which holds for �nite samples and regardless of whether exchange rates (and
fundamentals) are (co)integrated (e.g. Sims, 1988).12

We estimate the parameters of the SV model using the Bayesian MCMC algorithm of Chib, Nar-
dari and Shephard (2002), which builds on the procedures developed by Kim, Shephard and Chib
(1998). The algorithm constructs a Markov chain whose limiting distribution is the target posterior
density of the SV parameters. The Markov chain is a Gibbs sampler in which all parameters are
drawn sequentially from their full conditional posterior distribution. The Gibbs sampler is iterated
5; 000 times and the sampled draws, beyond a burn-in period of 1; 000 iterations, are treated as
variates from the target posterior distribution. We design a similar Bayesian MCMC algorithm for
estimating the GARCH(1,1) parameters, which also draws from the insights of Vrontos, Dellaportas
and Politis (2000). The Bayesian Linear Regression algorithm implements a simple MCMC assum-
ing an independent Normal-Gamma prior distribution (for details see Koop, 2003). The MCMC
algorithm for each of the three volatility models is summarized in the appendix.

The mean of the MCMC parameter draws is an asymptotically e¢ cient estimator of the posterior

10The random walk model (RWLR) is the only empirical model that assumes constant mean and variance. Therefore,
the in-sample optimal weights for the RWLR trading strategy remain constant over time. However, the out-of-sample
optimal weights will vary because every month we re-estimate the drift and variance of the RWLR model.
11 In contrast to �, which is reported in annual basis points, �BE is reported in monthly basis points because �BE is

a proportional cost paid every month when the portfolio is rebalanced.
12This is not the case in classical inference, where the small samples typically employed in the study of exchange

rate predictability combined with the assumption that exchange rates and fundamentals are cointegrated can have a
critical impact in overstating predictability (e.g. Berkowitz and Giorgianni, 2001).
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mean of � (see Geweke, 1989). The Numerical Standard Error (NSE) is the square root of the
asymptotic variance of the MCMC estimator:

NSE =

vuuut1

I

8<:b 0 + 2
BIX
j=1

K (z) b j
9=; (16)

where I = 5; 000 is the number of iterations (beyond the initial burn-in of 1; 000 iterations), j =
1; :::; BI = 500 lags is the set bandwidth, z =

j
BI
, and b j is the sample autocovariance of the MCMC

draws for each estimated parameter cut according to the Parzen kernel K (z).
The likelihood function of the SV models is not available analytically, and hence must be simu-

lated. The log-likelihood function is evaluated under the predictive density as:

log bL = TX
t=1

log bf (�st j Ft�1; �) = TX
t=1

log bft (�st j ht; �) (17)

where � is taken as the posterior mean estimate from the MCMC simulations. The key to this
calculation is simulating the one-step ahead predictive log-variance ht j Ft�1; �, which is a non-
trivial task as it is sampled using the particle �lter of Pitt and Shephard (1999). The particle �lter
is summarized in the appendix.

4.2 Model Risk and Posterior Probability

Model risk arises from the uncertainty over selecting a model speci�cation. Consistent with our
Bayesian approach, a natural statistical criterion for resolving this uncertainty is the posterior prob-
ability of each model. Hence, we rank the competing models using the posterior probability, which
has three important advantages relative to the log-likelihood: (i) it is based on the marginal likeli-
hood and therefore accounts for parameter uncertainty, (ii) it imposes a penalty for lack of parsimony
(higher dimension), and (iii) it forms the basis of the Bayesian Model Averaging strategy discussed
below. Ranking the models using the highest posterior probability is equivalent to choosing the
best model in terms of density forecasts and is a robust model selection criterion in the presence of
misspeci�cation and non-nested models (e.g. Fernandez-Villaverde and Rubio-Ramirez, 2004).

Consider a set of N models M1; :::;MN . We form a prior belief � (Mi) on the probability that
the ith model is the true model, observe the FX returns data �s, and then update our belief that
the ith model is true by computing the posterior probability of each model de�ned as follows:

p (Mi j �s) =
p (�s jMi)� (Mi)PN
j=1 p (�s jMj)� (Mj)

(18)

where p (�s jMi) is the marginal likelihood of the ith model de�ned as follows:

p (�s jMi) =

Z
�
p (�s; � jMi) d� =

Z
�
p (�s j �;Mi)� (� jMi) d� (19)

In Equation 18 above we set our prior belief to be that all models are equally likely, i.e. � (Mi) =
1
N .

Note that the marginal likelihood is an averaged (not a maximized) likelihood. This implies that
the posterior probability is an automatic �Occam�s Razor� in that it integrates out parameter un-
certainty.13 Furthermore, the marginal likelihood is simply the normalizing constant of the posterior

13Occam�s Razor is the principle of parsimony, which states that among two competing theories that make exactly
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density and (suppressing the model index for simplicity) it can be written as:

p (�s) =
f (�s j �)� (�)
� (� j �s) (20)

where f (�s j �) is the likelihood, � (�) the prior density of the parameter vector �, � (� j �s) the
posterior density, and � is evaluated at the posterior mean. Since � is drawn in the context of MCMC
sampling, the posterior density � (� j �s) is computed using the technique of reduced conditional
MCMC runs of Chib (1995) and Chib and Jeliazkov (2001).

4.3 Combined Forecasts

Assessing the predictive ability of empirical exchange rate models primarily involves a pairwise
comparison of the competing models. However, given that we do not know which one of the models
is true, it is important that we assess the performance of combined forecasts proposed by the seminal
work of Bates and Granger (1969). Speci�cally, we design two strategies based on a combination of
forecasts for both the conditional mean and volatility of exchange rate returns: the Bayesian Model
Average (BMA) strategy and the Bayesian Winner (BW ) strategy.14

We assess the economic value of combined forecasts by treating the BMA and BW strategies in
the same way as any of the 15 individual empirical models. For instance, we compute the performance
fee, �, for the BMA one-month ahead forecasts and compare it to the random walk benchmark. We
focus on two distinct universes of models: the restricted universe of the �ve SV models (because the
�ve conditional mean speci�cations with SV innovations have the highest marginal likelihood), and
the unrestricted universe of all 15 empirical exchange rate models.

4.3.1 The BMA Strategy

In the context of our Bayesian approach, it is natural to implement the BMA method originally
discussed in Leamer (1978) and surveyed in Hoeting, Madigan, Raftery and Volinsky (1999). The
BMA strategy accounts directly for uncertainty in model selection, and is in fact easy to implement
once we have the output from the MCMC simulations. De�ne fi;t as the forecast density of each of
the N competing models at time t. Then, the BMA forecast density is given by:

fBMA
t =

NX
i=1

pt (Mi j �st) fi;t (21)

where pt (Mi j �st) is the posterior probability of model Mi given the data �st.
It is important to note that: (i) the BMA weights vary not only across models but also across

time periods as does the marginal likelihood of each model, and (ii) we evaluate the BMA strategy
ex-ante. We do this by lagging the posterior probability of each model for the following reason.
Suppose that we need to compute the period t BMA forecasts of the conditional mean and volatility
for the four bonds we include in the portfolio. Knowing the mean and volatility forecasts implied by
each model for the three exchange rates is not su¢ cient. We also need the realized data point �st in
order to evaluate the predictive density ft (�st j Ft�1; �). Since the realized data point �st is only

the same prediction, the simpler one is best.
14See Diebold and Pauly (1990), Diebold (1998, 2004) and Timmermann (2006) for a review of forecast combinations.

A previous version of the paper also considers a deterministic model average (DMA) method, which involves taking
an equally weighted average of the conditional mean and volatility forecasts from a given universe of available models;
we �nd that the BMA and BW combination methods outperform the DMA method (results available upon request).

12



observed ex post, the only way to form the BMA weights ex ante is to lag the predictive density
and thus use ft�1 (�st�1 j Ft�2; �).

4.3.2 The BW Strategy

Under the BW strategy, in each time period we select the set of one-step ahead conditional mean
and volatility from the empirical model that has the highest marginal likelihood up to that period.
In other words, the BW strategy only uses the forecasts of the �winner�model in terms of marginal
predictive density, and hence discards the forecasts of the rest of the models. Clearly, there is no
model averaging in the BW strategy. Similar to the BMA, the BW strategy is evaluated ex ante
using the lagged marginal likelihood.

5 Empirical Results

5.1 FX Data and Descriptive Statistics

The data sample consists of 348 monthly observations ranging from January 1976 to December 2004,
and focuses on three exchange rates relative to the US dollar: the UK pound sterling (USD/GBP),
Deutsche mark/euro (USD/DEM-EURO), and Japanese yen (USD/JPY). The spot and one-month
forward exchange rates are taken from Datastream for the period of January 1985 onwards, whereas
for the period ranging from January 1976 to December 1984 they are taken from Hai, Mark and Wu
(1997). After the introduction of the euro in January 1999, we use the euro exchange rate to replace
the Deutsche mark rate.

Data on money supply and income are from the International Monetary Fund�s International
Financial Statistics database. Speci�cally, we de�ne the money supply as the sum of money (line
code 34) and quasi-money (line code 35) for Germany and Japan, whereas for the UK we use M0
(line code 19). Since German exchange rate data are only available until December 1998, we use the
money and quasi-money data of the Euro Area for the remaining period (January 1999 to December
2004). The US data is obtained from the aggregate M2 of the Board of Governors of the Federal
Reserve System. Furthermore, we use the monthly industrial production index (line code 66) as
a proxy for national income rather than the gross domestic product (GDP), because the latter is
available only at the quarterly frequency.15 We deseasonalize the money and industrial production
indices following the procedure of Gomez and Maravall (2000). Note that we ignore the complication
arising from the fact that the data we use on monetary fundamentals may not be available in real
time and may not su¤er from the measurement errors that characterize real-time macroeconomic
data (Faust, Rogers and Wright, 2003). This issue will not a¤ect our main �ndings on the predictive
ability of the forward premium and stochastic volatility.

We take logarithmic transformations of the raw data to yield time series for st, ft, mt, m�
t , yt

and y�t . The monetary fundamentals series, zt, is constructed as in Equation 2; st is taken as the
natural logarithm of the domestic price of foreign currency, the US being the domestic country; ft
is the natural logarithm of the US dollar price of a one-month forward contract issued at time t for
delivery of one unit of foreign currency at time t + 1. Finally, in our economic evaluation of the
set of candidate exchange rate models, the proxy for the riskless domestic and foreign bonds is the
end-of-month Euromarket interest rate with one month maturity, obtained from Datastream.16

15For all countries, the correlation coe¢ cient between the quarterly industrial production index and GDP over our
sample period is higher than 0.95.
16We use the Eurocurrency deposit rate as a proxy for the riskless rate because these deposits are comparable across

countries in all respects (such as credit risk and maturity) except for currency of denomination; see Levich (1985).
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Table 1 reports the descriptive statistics for the monthly percent FX returns, �st, the three
monetary fundamentals predictors, MF1, MF2 and MF3, also expressed in percent, and the per-
cent forward premium, ft � st. For our sample period, the sample means of the FX returns are
�0:012% for USD/GBP, 0:165% for USD/DEM-EURO and 0:309% for USD/JPY. The FX return
standard deviations are similar across the three exchange rates at about 3% per month. Finally, the
exchange rate return sample autocorrelations are approximately 0.10 but decay rapidly.

The three speci�cations of monetary fundamentals predictors display high volatility and persis-
tence. For instance, the standard deviation of MF1 is about 20% for the UK, 30% for Germany
and 40% for Japan. However, the standard deviation of MF3 (which is corrected for both the in-
tercept and the time trend component) is approximately half the value of the canonical monetary
fundamentals MF1. The three monetary fundamentals predictors exhibit low skewness, low excess
kurtosis and high serial correlation. Finally, the average forward premium is negative for the UK,
but positive for Germany and Japan. The standard deviation of ft � st is low across all exchange
rates (in fact, about 100 times smaller than MF1), but the forward premium exhibits high kurtosis
and its sample autocorrelation is high and decreasing slowly.

5.2 Estimation of Exchange Rate Models

We begin our statistical and economic evaluation of short-horizon exchange rate predictability by
performing Bayesian estimation of the parameters of our 15 candidate models: the �ve conditional
mean speci�cations (RW , MF1, MF2, MF3 and FP ) under the three volatility frameworks (LR,
GARCH and SV ). The posterior mean estimates for the model parameters are presented in Tables 2,
3 and 4. We particularly focus on the size, sign and statistical signi�cance of the � estimate because it
captures the e¤ect of either monetary fundamentals or the forward premium in the conditional mean
of exchange rate returns. In our Bayesian MCMC framework we assess statistical signi�cance using
two diagnostics. First, we report the highest posterior density (HPD) region for each parameter
estimate. For example, the 95% HPD region is the shortest interval that contains 95% of the
posterior distribution. We check whether the 90%, 95% and 99% HPD regions contain zero, which
is equivalent to two-sided hypothesis testing at the 10%, 5% and 1% level respectively. Second, we
compute the Numerical Standard Error (NSE) as de�ned in Equation 16.

Tables 2 through 4 illustrate that for the three monetary fundamentals speci�cations (MF1,MF2
and MF3) the in-sample � estimate tends to be a low positive number, which increases in size as
we move from MF1 to MF3. This suggests that when st is below (above) its fundamental value zt,
it is expected to slowly rise (decrease) over time. In contrast, the in-sample � estimate for the FP
model has a large negative value. The tables also report the estimates of the conditional variance
parameters. For the Linear Regression model, the monthly variance of FX returns remains largely
unchanged across the �ve conditional mean speci�cations and is around 10 (i.e. � � 3%) for all three
currencies. For the GARCH(1; 1) models, the conditional monthly variance is highly persistent
since the sum 1 + 2 revolves around 0.96 for all speci�cations. The SV models exhibit (i) high
persistence (�) in the conditional monthly log-variance, and (ii) a sizeable stochastic component
in the conditional monthly log-variance. Finally, all parameters in both the conditional mean and
volatility exhibit very low NSE values and therefore a high degree of statistical signi�cance.

5.3 Evaluating Forecasts Using Statistical Criteria

We assess the statistical evidence on short-horizon exchange rate predictability by ranking our set
of 15 candidate models according to their log-likelihood and posterior probability. The conditional
performance of the models is evaluated in-sample as well as out-of-sample. The in-sample period for
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the three monthly exchange rates covers 29 years ranging from January 1976 to December 2004. The
out-of-sample exercise involves two steps: (i) initial parameter estimation for the 14-year period of
January 1976 to December 1989, and (ii) sequential monthly updating of the parameter estimates for
the out-of-sample 15-year period of January 1990 to December 2004. In other words, the forecasts
at any given month are constructed according to a recursive procedure that is conditional only upon
information up to the date of the forecast. The model is then successively re-estimated as the date on
which forecasts are conditioned moves through the data set. Hence the design of the out-of-sample
exercise is computationally intensive.

Our analysis of the statistical evidence begins with Table 5, which presents the log-likelihood
values and shows that across volatility models, the SV model always has higher log-likelihood than
both LR and GARCH. This result is robust as it holds for all currencies both in-sample and out-of-
sample. Similarly, the GARCH(1; 1) model always beats the constant variance LR models in terms
of log-likelihood. Across conditional mean speci�cations, the RW model is always worse in-sample.
Finally, the out-of-sample log-likelihood values lead to the following conclusions: FP is the best
model for the yen, but the RW model is best for the pound sterling and the Deutsche mark/euro.

In Table 6 we rank the in-sample and out-of-sample performance of our set of candidate models
according to their posterior probability. The key input to this statistical criterion is the calculation of
the marginal likelihood. Therefore, Table 6 gives us a distinct statistical perspective on performance
because the marginal likelihood is computed in a way that integrates out parameter uncertainty and
imposes a penalty for lack of parsimony (higher dimension). The results in Table 6 indicate two
clear patterns in ranking the models. The �rst pattern con�rms one of our most robust results: the
best models for all three currencies both in-sample and out-of-sample have SV innovations. The
second pattern is slightly di¤erent from the log-likelihood �ndings: for all three exchange rates, both
in-sample and out-of-sample, the best model is FPSV , the second best is RWSV , and third best is
one of the threeMFSV speci�cations. The single exception is the pound sterling for which RWSV is
the best out-of-sample model. Hence, in contrast to the likelihood evidence, the MF speci�cations
lose to RW even in-sample. In other words, the penalty the posterior probability imposes on the
three monetary fundamentals models for lack of parsimony o¤sets their log-likelihood advantage.

5.4 Evaluating Forecasts Using Economic Criteria

We assess the economic value of short-horizon exchange rate predictability by analyzing the perfor-
mance of the dynamically rebalanced portfolios constructed using our set of 15 candidate models.
Our analysis focuses on the performance fee, �, a US investor is willing to pay for switching from
one FX strategy to another. The fees are reported in Table 7, which displays the economic value of
each mean and volatility speci�cation relative to the benchmark random walk model with constant
variance (RWLR ). We present the fees for the degrees of RRA � = 2 and � = 6.

Panel A of Table 7 presents the in-sample performance fees and demonstrates that the three
monetary fundamentals speci�cations generally have no economic value as indicated by the negative
� values. In contrast, the forward premium model (FP ) exhibits high economic value, especially
under stochastic volatility. For example, at the target portfolio volatility of ��p = 10% and for
� = 2, a US investor is willing to pay a substantial 248 annual basis points (bps) for switching
from the RWLR model to FPSV . Consistent with our statistical evidence, for all conditional mean
speci�cations there tends to be high economic value associated with stochastic volatility. However,
contrary to our statistical evidence, the performance of the GARCH(1; 1) model is surprisingly poor
relative to the constant variance Linear Regression model. For ��p = 10% and � = 2, the in-sample
fee for switching from RWLR to RWGARCH is �24 bps, whereas the fee for switching from RWLR to
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RWSV is 42 bps.17 Finally, as investors become less risk averse, the fees tend to increase in absolute
value, strengthening the evidence against RWLR and in favor of the FPSV speci�cation.

The out-of-sample performance fees are displayed in Panel B of Table 7 and suggest that even
out-of-sample there is still high economic value in both the forward premium and stochastic volatility.
This is a new and important result, which adds to the existing literature that is anchored around the
seminal contribution of Meese and Rogo¤ (1983). Speci�cally, at ��p = 10% and � = 2, the annual
performance fees for switching from RWLR to another model are 127 bps for RWSV and 266 bps
for FPSV . We can therefore conclude that there is substantial economic value both in-sample and
out-of-sample against the naive random walk model and in favour of conditioning on the forward
premium with stochastic volatility. This �nding is in fact consistent with the large pro�ts made
by �nancial institutions that engage in sophisticated multi-currency forward bias strategies. For
example, Galati and Melvin (2004) show that simple carry trades aiming at exploiting the forward
bias constitute a signi�cant source of the surge in FX trading in recent years.

In addition to the results associated with individual models, even stronger economic evidence is
found for the combined forecasts reported in Table 8, which compares BMA and BW to the RWLR

benchmark for two cases: (i) the restricted universe of the �ve SV models (because the SV models
generally perform better), and (ii) the unrestricted universe of all 15 models. A purely agnostic
approach to forecast combination would use the full set of 15 models (case ii). The results in Table
8 provide robust evidence against the naive random walk model as all performance fees based on
the BMA and BW are positive and high, both in-sample and out-of-sample. For example, when
selecting among the SV models and setting ��p = 10% and � = 2, the annual in-sample performance
fee for switching away from the benchmark RWLR is 255 bps for BMA and 235 bps for BW . The
out-of-sample fees are even higher at 317 bps for BMA and 340 bps for BW . In short, therefore,
there is clear in-sample and out-of-sample economic evidence on the superiority of combined forecasts
relative to the naive random walk benchmark.

In conclusion, Figure 1 o¤ers a visual description of the time variation in the weights investing in
the three risky assets: the UK, German and Japanese bonds. The �gure displays the weights for four
cases: the benchmark RWLR model, the best performing individual model FPSV , the BMA and the
BW combined forecast strategies. As expected, the weights are very smooth over time for RWLR,
and remain reasonably smooth for the FPSV model and the two combined forecast strategies.18

5.5 Transaction Costs

If transaction costs are su¢ ciently high, the period-by-period �uctuations in the dynamic weights of
an optimal strategy will render the strategy too costly to implement relative to the static random
walk model. We address this concern by computing the break-even transaction cost, �BE , as the
minimum monthly proportional cost which cancels out the utility advantage (and hence positive
performance fee) of a given strategy. In comparing a dynamic strategy with the static random walk
strategy, an investor who pays a transaction cost lower than �BE will prefer the dynamic strategy.
The �BE values are expressed in monthly basis points and are reported only when � is positive.

The in-sample break-even transaction costs are reported in Panel A of Table 7, which demon-

17At �rst sight, the poor performance of the GARCH model in terms of economic value appears rather surprising.
For instance, Fleming and Kirby (2003) �nd that SV models only marginally outperform GARCH models. However,
there is no study to date which assesses the economic value of GARCH and SV models, especially when applied to
exchange rates. Furthermore, the negative in-sample and out-of-sample performance fees of RWGARCH are not far
from zero.
18However, the dynamic weights appear to be more volatile in the beginning of the sample before they stabilize. We

believe that the initial instability in the weights is due to the high exchange rate volatility around the 1992 crisis of
the Exchange Rate Mechanism that forced the UK to abandon the target zone system.
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strates that for the forward premium and stochastic volatility the values of �BE are positive and
high; they tend to be higher than 100 bps and can be as high as 556 bps. For instance, at ��p = 10%
and � = 2, a US investor will switch back to the RWLR model if he is subject to a proportional
transaction cost of at least 120 bps for FPLR, 101 bps for FPGARCH , 132 bps for FPSV , and 471
bps for RWSV . In other words, at the reasonably high transaction cost of 50 bps (e.g. Marquering
and Verbeek, 2004), there is still signi�cant in-sample economic value in empirical models which
condition on the forward premium, especially under stochastic volatility.

Determining the out-of-sample robustness to transaction costs is one of the most important
considerations in assessing the forecasting performance of empirical exchange rate models. Panel
B of Table 7 shows that conditioning on the forward premium and stochastic volatility leads to
reasonably high �BE values. Speci�cally, at ��p = 10% and � = 2, the break-even transaction cost
which would eliminate the performance fee of 266 bps of the FPSV model relative to the RWLR

benchmark is 90 bps. Furthermore, the �BE for RWSV versus RWLR is a very large 321 bps.
The evidence on the �BE of combined forecasts displayed in Table 8 is even stronger. Compared

to the benchmark RWLR, a combined forecast of all 15 models exhibits an in-sample �BE of 141
bps for BMA and 114 bps for BW . Panel B of Table 8 shows that the out-of-sample �BE values
for combined forecasts are generally as high as in sample. In short, as the �BE values are generally
positive and reasonably high, we conclude that the in-sample and out-of-sample economic value we
have reported is robust to reasonably high transaction costs for empirical exchange rate models
conditioning on the forward premium, for models with SV innovations, and for combined forecasts.

5.6 Summary of Results

The statistical and economic evidence on short-horizon exchange rate predictability supports the
following four results: (i) the forward premium model unequivocally beats the random walk; (ii)
conditioning on monetary fundamentals has no economic value; (iii) the stochastic volatility process
always leads to superior portfolio performance; and (iv) the combined forecasts consistently out-
perform the constant variance random walk benchmark. All these results hold both in-sample and
out-of-sample and are robust to reasonably high transaction costs.

6 Robustness and Extensions

This section discusses directions in which one can possibly extend the analysis of the paper. First, we
perform an additional robustness test by evaluating the out-of-sample performance of the empirical
models in three 5-year subsamples. Recall that the full sample period at our disposal covers 29 years
ranging from January 1976 to December 2004. We use data from January 1976 to December 1989
for in-sample estimation, whereas the out-of-sample period contains 15 years ranging from January
1990 to December 2004. The out-of-sample results we report in Tables 5 through 8 are for the entire
15-year out-of-sample period. In addition, Panel A of Table 9 presents the performance fees for
selected models and for three subsamples: 1990-1994, 1995-1999 and 2000-2004. We �nd that the
economic value of conditioning on the forward premium and stochastic volatility is positive in all
periods but is substantially higher in the last two subsamples. This is consistent with the well-known
fact in the literature that the forward bias is small in the early 1990s (e.g. Flood and Rose, 2002).19

For all models, the best subsample period is 1995-1999. Furthermore, it is important to note that

19 In a separate experiment we start the out-of-sample exercise in 1985 and �nd signi�cant economic value in the
forward premium and stochastic volatility for the 1985-1989 period. However, starting the out-of-sample period in 1985
leaves too few in-sample observations for initial parameter estimation. Therefore, the tables present the out-of-sample
results for the period starting in 1990.
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the combined forecast strategies substantially outperform the random walk benchmark in all three
subsamples and display similar performance fees to FPSV for the last two subsamples. However,
for the �rst subsample when the forward bias is small, the BMA and BW strategies signi�cantly
outperform FPSV by optimally using predictive information from the entire universe of models,
including monetary fundamentals.

Second, our analysis of the conditional variance of exchange rate returns includes theGARCH(1; 1)
speci�cation because this is the benchmark model in the seminal study of West, Edison and Cho
(1993). As a further robustness check, we examine the out-of-sample performance of the tGARCH(1; 1)
model of Bollerslev (1987) in order to determine whether departing from the assumption of condi-
tional normality improves the performance of the GARCH model.20 The results from this exercise
(a subset of which is reported in Panel B of Table 9) reveal that using a Student-t distribution leads
to substantial performance gains in the GARCH framework.21 In particular, we �nd that the out-
of-sample performance fees of the tGARCH(1; 1) model are much higher than for GARCH(1; 1),
especially for the forward premium and random walk conditional mean speci�cations. For instance,
setting ��p = 10% and � = 2 and comparing the results in Tables 7 and 9 indicates that the out-
of-sample fees for switching from the RWLR model to the forward premium models are as follows:
76 bps for FPLR, 70 bps for FPGARCH , 140 bps for FP tGARCH , and 266 bps for FPSV . Similarly,
when switching from the random walk with constant variance, RWLR, to a random walk with time-
varying volatility the fees are: �32 bps for RWGARCH , 28 bps for RW tGARCH , and 127 bps for
RWSV . Therefore, we can conclude that in terms of economic value the tGARCH model performs
better than GARCH, although the SV model outperforms both normal and Student-t GARCH
speci�cations. Hence, our main conclusions remain qualitatively the same.

Third, Table 10 presents the in-sample and out-of-sample annualized Sharpe ratios for selected
models. The Sharpe ratio values are generally in agreement with the performance fees and hence
con�rm our conclusions. Speci�cally, FPSV , BMA and BW consistently outperform RWLR both
in-sample and out-of-sample. For example, at ��p = 10%, the out-of-sample Sharpe ratios are: 0.76
for RWLR, 0.98 for FPSV , 1.06 for BMA, and 1.12 for BW .

Fourth, this paper explores the predictability in exchange rates by focusing on the frequency and
horizon of one month. On the one hand, adopting the monthly frequency is a natural choice because
this is the highest frequency at which monetary fundamentals are observed. On the other hand,
our motivation for investigating predictability at the one-month horizon is founded on the prevailing
view in this literature that exchange rates are not predictable at short horizons. It is clear, therefore,
that one possible direction in extending the analysis of this paper is to study the predictability of
the forward premium, stochastic volatility and combined forecasts for higher frequencies and longer
horizons. We leave this for future research.

Finally, we study short-horizon exchange rate predictability by estimating a set of univariate
conditional mean and volatility models. However, in assessing the economic value of exchange rate
predictability we build multivariate dynamic asset allocation strategies. Speci�cally, the optimal
weights of the dynamically rebalanced portfolios are computed using the conditional mean forecasts,
the conditional volatility forecasts and the dynamic covariances implied by the constant conditional
correlation (CCC) model of Bollerslev (1990). In the CCC model, the dynamics of covariances are
driven by the time-variation in the conditional volatilities. By design, therefore, the advantage of this
setting is that the optimal weights will vary across models only to the extent that forecasts of the con-

20 In estimating the tGARCH model, we implement an algorithm similar to the GARCH case as described in
Appendix A.3, with an additional Metropolis-Hastings step for sampling the degrees of freedom parameter �.
21Note that the degrees of freedom parameter estimate revolves around � = 10 for the UK pound, � = 25 for the

Deutsche mark/euro, and � = 7 for the Japanese yen (not reported). This indicates that the unconditional distribution
of exchange rate returns is not normal, especially for the UK pound and the Japanese yen.
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ditional mean and volatility will vary, which is precisely what the empirical models provide. Indeed,
introducing multivariate stochastic volatility models for capturing the dynamic heteroskedasticity
of the covariances of exchange rate returns remains an important extension to this line of research.
Multivariate stochastic volatility models are high dimensional and their estimation is computation-
ally challenging (e.g. Chib, Nardari and Shephard, 2006). Additionally the dynamic conditional
correlation (DCC) model of Engle (2002) has yet to be examined in a Bayesian framework. We will
revisit this issue in future research.

7 Conclusion

This paper draws from three separate, yet related strands of international �nance literature. A large
body of empirical research �nds that models which condition on monetary fundamentals cannot
outperform the naive random walk model in out-of-sample forecasting of exchange rates. Despite the
increasing sophistication of the econometric techniques implemented and the improving quality of
the data sets utilized, evidence of exchange rate predictability remains elusive. A second and related
research strand indicates that the rejection of the risk-neutral FX e¢ cient market hypothesis implies
that exchange rate movements can be predicted using information contained in forward premia.
Finally, �nancial economists agree that exchange rate volatility is predictable by specifying either
GARCH or stochastic volatility innovations.

Prior research in this area has largely relied on standard statistical measures of forecast accuracy.
In this paper, we complement this approach in two critical aspects. First, in assessing the predictive
performance of the set of empirical exchange rate models, we implement a Bayesian methodology
which explicitly accounts for parameter and model uncertainty. Second, we provide a comprehensive
economic evaluation of the models in the context of dynamic asset allocation strategies. In doing
so, our study contributes to the growing empirical literature on exchange rate predictability in the
following manner. We assess the economic value of exchange rate forecasts derived from empirical
models which condition on information contained in either monetary fundamentals or forward premia.
This is done in a framework that allows for time-varying volatility. The empirical exchange rate
models are set against the naive random walk benchmark. Finally, we evaluate the performance of
combined forecasts based on Bayesian Model Averaging.

Our results provide robust evidence against the random walk (no predictability) benchmark, and
therefore our empirical �ndings reinforce the notion that exchange rates are predictable. Speci�-
cally, we �nd that the predictive ability of the forward premium has substantial economic value in
a dynamic portfolio allocation context and that stochastic volatility signi�cantly outperforms the
constant variance and GARCH(1,1) models irrespective of the conditional mean speci�cation. Com-
bined forecasts formed using Bayesian Model Averaging also substantially outperform the random
walk. These results are robust to reasonably high transaction costs and hold for all currencies both
in-sample and out-of-sample. In short, these �ndings suggest that the random walk hypothesis as
applied to exchange rates might have been overstated, while at the same time they justify the wide-
spread use of forward bias and volatility timing strategies in the practice of currency management.
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A APPENDIX: Bayesian MCMC Estimation

We perform Bayesian MCMC estimation of the parameters of the empirical exchange rate models by
constructing a Markov chain whose limiting distribution is the target posterior density. This Markov
chain is a Gibbs sampler in which all parameters are drawn sequentially from their full conditional
posterior distribution. The chain is then iterated and the sampled draws, beyond a burn-in period,
are treated as variates from the target posterior distribution.

A.1 The Linear Regression Algorithm

In the Bayesian Linear Regression (LR) model, we need to estimate � = f�1; �2g, where �1 = f�; �g
is the set of the conditional mean parameters, and �2 = fv�2g is the constant precision de�ned as
the inverse of the variance. We de�ne the following priors: for �1 = f�; �g we assume a Normal
prior N(�1; V ), where �1 = 02 and V = I2; for �2 = fv�2g we assume a prior Gamma

�
�
2 ;
2s�2

�

�
with mean s�2 = 1, and degrees of freedom � = 2. The posterior distributions are summarized in
the following simple Gibbs algorithm (for more details see Koop, 2003):

1. Initialize �2:

2. Sample �1 from �1 j �s; �2 � N
�
�1; V

�
, where V =

�
V �1 + �2X 0X

��1
and �1 = V

�
V �1�1 + �2X

0�s
�
.

3. Sample �2 from �2 j �s; �1 � Gamma
�
�
2 ;
2s�2

�

�
, where � = T+� and s2 = (�s�X�1)0(�s�X�1)+�s2

� .

4. Go to step 2 and iterate 100; 000 times beyond a burn-in of 20; 000 iterations.

A.2 The GARCH(1,1) Algorithm

In the Bayesian GARCH(1,1) model, we need to estimate � = f�1; �2g, where �1 = f�; �g is the set of
the conditional mean parameters, and �2 = f!; 1; 2g are the conditional variance parameters. We
ensure that the conditional variance is covariance stationary by specifying ! as a lognormal prior:
! � LogN (w;W ), with w = �1 and W = 2. The prior speci�cation is completed by assuming

1 � Beta
�
g
1
; G1

�
and 2 � Beta

�
g
2
; G2

�
, where g

1
= 40, G1 = 5, g

2
= 2, and G2 = 40.

These hyperparameters imply a mean of 0:89 and 0:05 for 1 and 2, respectively. The algorithm is
summarized below:

1. Initialize �1 and transform the data into �s�t = (�st � �� �xt�1) :

2. Sample the variance parameters �2 from their full conditional posterior density: �2 j �s�; �1: This
posterior density is not available analytically. We compute the log-likelihood of the trans-
formed data �s�t as function of �2 (conditional on �1) and then we optimize the conditional
log-posterior. We generate a proposal from a t-distribution t (m;V; �) ; where m is the mode, V
is the inverse of the negative Hessian, and � a tuning parameter. The proposal is then accepted
according to the independence chain Metropolis-Hasting algorithm (e.g. Chib and Greenberg,
1995).

3. Sample all the conditional mean coe¢ cients �1 j �s; �2 using a precision-weighted average of a
set of normal priors and the normal likelihood conditional on �2:

4. Update the data �s�t = (�st � �� �xt�1) :

5. Go to step 2 and iterate 5; 000 times beyond a burn-in of 1; 000 iterations.
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A.3 The Stochastic Volatility Algorithm

In the Bayesian SV model, we need to estimate � = f�1; �2g, where �1 = f�; �g is the set of the
conditional mean parameters, and �2 = f�; �; �2g are the conditional log-variance parameters. The
prior for � is N (m;M) with m = 1 and M = 25. Following Kim, Shephard and Chib (1998), we
formulate the prior for � in terms of � = 2�� � 1, where �� is distributed as Beta(f; F ). This
implies that the prior on � 2 (�1; 1) is p(�) = �f0:5(1 + �gf�1f0:5(1 � �gF�1; f ; F > 0:5, where

� = 0:5
�(f+F )

�(f)+�(F ) . Specifying f = 20 and F = 1:5 yields a mean of 0:86 with a variance of 0:01. For

�, the prior is inverse gamma IG (s; S) with s = 3 and S = 2:5 so that the distribution has a mean
of 0:20 with a variance of 0:006. The parameters of the SV model are estimated using the Bayesian
MCMC algorithm of Chib, Nardari and Shephard (2002), which builds on the procedures developed
by Kim, Shephard and Chib (1998), and is summarized below:

1. Initialize �;mx; and transform the data into �s�t = ln
�
(�st � �� �xt�1)2 + c

�
, c = 0:001 to

put the model in state-space form. The �o¤set�constant c eliminates the inlier problem.

2. Sample the log-variance parameters �2 from their full conditional posterior density: �2 j
�s�;mx. This posterior density is not available analytically. We use the Kalman �lter to com-
pute the log-likelihood of the transformed data �s�t as a function of �2 (conditional on mxt)
and then optimize the conditional log-posterior. We generate a proposal from a t-distribution
t (m;V; �), where m is the mode, V is the inverse of the negative Hessian, and � a tuning para-
meter. The proposal is then accepted according to the independence chain Metropolis-Hastings
algorithm (e.g. Chib and Greenberg, 1995).

3. Sample the log-variance vector fhtg in one block from the posterior distribution: h j �s�;mx; �2.
This step uses the de Jong and Shephard (1995) simulation smoother, which is an algorithm
designed for e¢ cient sampling of the state vector in a state-space model. See also Carter and
Kohn (1994).

4. Sample all the conditional mean coe¢ cients �1 from �1 j �s; h using a precision-weighted
average of a set of normal priors and the normal likelihood conditional on h. Then update the

transformed data �s�t = ln
�
(�st � �� �xt�1)2 + c

�
, c = 0:001.

5. Finally, sample the mixture indicator variable mx j �s�; h; � directly from its posterior:

Pr (mxt j �s�t ; ht) _ Pr (mxt) fN
�
�s�t j ht +mmxt ; �

2
mxt

�
, t � T

where
�
mmxt ; �

2
mxt

	
are the means and variances of the seven-component mixture of normal

densities which are used to approximate the log�2 (1) distribution (see Kim, Shephard and
Chib, 1998).

6. Go to step 2 and iterate 5; 000 times beyond a burn-in of 1; 000 iterations.

A.4 The Particle Filter

The particle �lter of Pitt and Shephard (1999) generates a sample from the density ht j Ft; �. This is
a non-trivial task performed by an Auxiliary Sampling-Importance Resampling algorithm. The SV
application of the algorithm is detailed in Chib, Nardari and Shephard (2002) and sketched below:
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1. Given a sample
�
h1t�1; :::; h

M
t�1
	
from (ht�1 j Ft�1; �) calculate: bh�jt = � + �

�
hjt�1 � �

�
,

!j = N
�
�st j �+ �xt�1; exp(bh�jt )�, for j = 1; :::M . Sample R = 10; 000 times the inte-

gers 1; 2; :::;M = 2; 000 with probability proportional to f!jg. Let the sampled indices be
k1; :::; kR and associate these with h

�k1
t ; :::; h�kRt .

2. For each value of kj from Step 1, simulate the values
�
h1t ; :::; h

R
t

	
from the volatility process

as: h�jt = �+ �
�
h
kj
t�1 � �

�
+ ��jt , j = 1; :::; R, where �

j
t � N (0; 1).

3. Resample the values
�
h�1t ; :::; h

�R
t

	
M times with replacement using probabilities propor-

tional to:
N(�stj�+�1xt�1;exp(h

�j
t ))

N

�
�stj�+�1xt�1;exp

�
h
�kj
t

�� , for j = 1; :::; R, to produce the desired �ltered sample�
h1t ; :::; h

M
t

	
from (ht j Ft; �).
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Table 1
Descriptive Statistics for Monthly FX Returns and Fundamentals

Panel A: Percent Returns

UK (USD/GBP ) Germany (USD/DEM −EURO) Japan (USD/JPY )

∆st MF1 MF2 MF3 FP ∆st MF1 MF2 MF3 FP ∆st MF1 MF2 MF3 FP

Mean −0.012 0.000 0.000 0.000 −0.159 0.165 0.000 0.000 0.000 0.131 0.309 0.000 0.000 0.000 0.267

Std Dev 2.95 21.52 13.50 11.57 0.266 3.05 33.43 17.56 16.82 0.300 3.32 42.00 29.61 16.88 0.300

Min −10.53 −50.02 −37.41 −24.56 −0.736 −9.71 −56.90 −34.87 −29.02 −0.779 −10.08 −72.24 −45.68 −43.25 −2.12
Max 11.69 52.89 41.86 44.00 1.35 9.21 75.85 45.75 46.78 1.59 11.89 72.29 70.28 30.85 1.31

Skewness −0.101 −0.137 −0.372 0.474 1.49 0.156 0.164 0.240 0.473 −0.162 0.619 0.234 0.575 −0.247 −1.05
Kurtosis 4.04 2.41 3.60 4.24 9.19 3.12 2.05 2.17 2.39 4.46 4.06 1.63 2.20 2.00 13.94

Corr (∆st,∆st−1) 0.106 0.988 0.976 0.965 0.786 0.115 0.994 0.983 0.983 0.641 0.147 0.996 0.987 0.980 0.558

Corr (∆st,∆st−3) 0.013 0.960 0.920 0.888 0.480 0.040 0.982 0.945 0.943 0.600 0.108 0.989 0.969 0.933 0.510

Corr (∆st,∆st−6) 0.037 0.911 0.838 0.780 0.208 0.025 0.959 0.886 0.880 0.593 −0.057 0.973 0.938 0.856 0.403

Corr (∆st,∆st−12) 0.025 0.793 0.674 0.569 0.334 0.030 0.897 0.734 0.719 0.538 0.078 0.935 0.882 0.704 0.267

Panel B: Absolute Percent Returns

Mean 2.25 17.92 10.46 8.57 0.237 2.43 28.14 15.07 14.18 0.271 2.48 37.17 25.65 14.60 0.315

Std Dev 1.90 11.87 8.51 7.76 0.200 1.84 17.99 8.98 9.01 0.184 2.22 19.46 14.71 8.43 0.248

Min 0.000 0.023 0.041 0.050 0.000 0.006 0.320 0.007 0.039 0.000 0.000 0.028 0.477 0.009 0.000

Max 11.69 52.89 41.86 44.00 1.35 9.71 75.85 45.75 46.78 1.59 11.89 72.29 70.28 43.25 2.12

Skewness 1.48 0.687 1.37 1.46 1.55 1.12 0.238 0.547 0.711 1.64 1.52 −0.281 0.729 0.312 1.95

Kurtosis 6.04 2.89 4.64 5.67 6.93 4.38 2.21 3.11 3.40 10.40 5.76 2.11 3.46 2.82 11.33

Corr (|∆st|, |∆st−1|) 0.065 0.960 0.944 0.933 0.878 0.135 0.981 0.939 0.944 0.647 0.129 0.983 0.950 0.927 0.746

Corr (|∆st|, |∆st−3|) 0.149 0.876 0.832 0.797 0.731 0.085 0.943 0.807 0.818 0.466 0.051 0.950 0.884 0.761 0.590

Corr (|∆st|, |∆st−6|) 0.093 0.724 0.690 0.606 0.577 0.051 0.876 0.633 0.641 0.410 0.010 0.882 0.786 0.541 0.500

Corr (|∆st|, |∆st−12|) 0.030 0.431 0.414 0.248 0.385 −0.046 0.685 0.305 0.271 0.212 −0.035 0.703 0.659 0.280 0.330

The table summarizes the descriptive statistics for the spot exchange rate percent returns (∆st), the three demeaned percent monetary fundamentals specifications (MF 1,
MF 2, MF 3), and the percent forward premium (FP). The data sample ranges from January 1976 through December 2004 for a sample size of 348 monthly observations.
The exchange rates are defined as US dollars per unit of foreign currency. For a detailed definition of the three monetary fundamentals specifications see Section 3.1.
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Table 2
Posterior Means for the UK Pound Sterling (USD/GBP)

Panel A: Bayesian Linear Regression

Parameter RW MF1 MF2 MF3 FP

� �0:012
(0:0005)

�0:012
(0:0005)

�0:012
(0:0005)

�0:012
(0:0005)

�0:110
(0:0005)

� � 0:0079
(2:4e�05)

0:0254��
(3:7e�05)

0:0254�
(4:4e�05)

�0:629
(0:0016)

v2 8:72���
(0:0021)

10:12���
(0:0021)

8:63���
(0:0021)

10:06���
(0:0021)

8:69���
(0:0021)

Panel B: Bayesian GARCH(1,1)

� 0:018
(0:0022)

0:027
(0:0021)

0:005
(0:0021)

0:017
(0:0020)

�0:101
(0:0022)

� � 0:0042
(0:0001)

0:0215
(0:0002)

0:0193
(0:0002)

�0:816
(0:0078)

! 0:331���
(0:0015)

0:346���
(0:0026)

0:324���
(0:0017)

0:329���
(0:0017)

0:387���
(0:0064)

1 0:905���
(0:0003)

0:902���
(0:0004)

0:903���
(0:0003)

0:902���
(0:0003)

0:897���
(0:0009)

2 0:055���
(0:0002)

0:056���
(0:0002)

0:0572���
(0:0002)

0:058���
(0:0002)

0:056���
(0:0004)

Panel C: Bayesian Stochastic Volatility

� 0:048
(0:0026)

0:046
(0:0028)

0:022
(0:0032)

0:022
(0:0027)

�0:045
(0:0034)

� � 0:0028
(0:0001)

0:0211
(0:0002)

0:0226
(0:0004)

�0:653
(0:0107)

� 2:01���
(0:0037)

2:02���
(0:0033)

2:01���
(0:0035)

2:01���
(0:0036)

2:00���
(0:0033)

� 0:882���
(0:0012)

0:878���
(0:0014)

0:885���
(0:0014)

0:884���
(0:0013)

0:871���
(0:0015)

�2 0:093���
(0:0010)

0:092���
(0:0010)

0:086���
(0:0009)

0:090���
(0:0010)

0:097���
(0:0011)

The table presents the Bayesian MCMC estimates of the posterior means of the Linear Regression, GARCH(1,1)

and SV model parameters for the USD/GBP monthly percent returns. The MCMC chain run for 5,000 iterations after

an initial burn-in of 1,000 iterations. The numbers in parenthesis indicate the Numerical Standard Error (NSE). The

superscripts *, ** and *** indicate that the 90%, 95% and 99% highest posterior density (HPD) regions, respectively,

do not contain zero. The HPD region for each MCMC parameter estimate is the shortest interval that contains 95%

of the posterior distribution.
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Table 3
Posterior Means for the Deutsche Mark/Euro (USD/DEM-EURO)

Panel A: Bayesian Linear Regression

Parameter RW MF1 MF2 MF3 FP

� 0:160
(0:0005)

0:160
(0:0005)

0:160
(0:0005)

0:160
(0:0005)

0:206
(0:0005)

� � 0:0077
(1:6e�0:5)

0:0104
(3:0e�05)

0:0148
(3:1e�05)

�0:355
(0:0015)

v2 9:30���
(0:0023)

9:26���
(0:0022)

9:30���
(0:0022)

9:27���
(0:0022)

10:81���
(0:0022)

Panel B: Bayesian GARCH(1,1)

� 0:153
(0:0024)

0:164
(0:0022)

0:154
(0:0023)

0:159
(0:0023)

0:216
(0:0023)

� � 0:0068
(7:6e�05)

0:0097
(0:0001)

0:0134
(0:0001)

�0:463
(0:0072)

! 0:405���
(0:0019)

0:404���
(0:0026)

0:400���
(0:0028)

0:399���
(0:0027)

0:409���
(0:0023)

1 0:930���
(0:0003)

0:929���
(0:0003)

0:928���
(0:0003)

0:928���
(0:0003)

0:929���
(0:0003)

2 0:028���
(0:0002)

0:029���
(0:0002)

0:030���
(0:0002)

0:030���
(0:002)

0:028���
(0:0002)

Panel C: Bayesian Stochastic Volatility

� 0:163
(0:0031)

0:176
(0:0010)

0:165
(0:0028)

0:173
(0:0028)

0:219
(0:0030)

� � 0:0074
(9:4e�05)

0:0091
(0:0002)

0:0136
(0:0002)

�0:440
(0:0084)

� 2:17���
(0:0030)

2:16���
(0:0028)

2:17���
(0:0028)

2:16���
(0:0030)

2:17���
(0:0029)

� 0:746���
(0:0032)

0:751���
(0:0036)

0:757���
(0:0033)

0:755���
(0:0036)

0:751���
(0:0033)

�2 0:068���
(0:0005)

0:069���
(0:0006)

0:068���
(0:0005)

0:067���
(0:0005)

0:069���
(0:0005)

The table presents the Bayesian MCMC estimates of the posterior means of the Linear Regression, GARCH(1,1)

and SV model parameters for the USD/DEM-EURO monthly percent returns. The MCMC chain run for 5,000

iterations after an initial burn-in of 1,000 iterations. The numbers in parenthesis indicate the Numerical Standard

Error (NSE). The superscripts *, ** and *** indicate that the 90%, 95% and 99% highest posterior density (HPD)

regions, respectively, do not contain zero. The HPD region for each MCMC parameter estimate is the shortest interval

that contains 95% of the posterior distribution.
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Table 4
Posterior Means for the Japanese Yen (USD/JPY )

Panel A: Bayesian Linear Regression

Parameter RW MF1 MF2 MF3 FP

� 0:299�
(0:0006)

0:299�
(0:0005)

0:299�
(0:0005)

0:299�
(0:0005)

0:615���
(0:0007)

� � 0:0070
(1:3e�0:5)

0:0075
(1:9e�05)

0:0189�
(3:4e�05)

�1:224��
(0:0016)

v2 11:0���
(0:0027)

10:96���
(0:0026)

10:99���
(0:0026)

10:94���
(0:0026)

10:79���
(0:0026)

Panel B: Bayesian GARCH(1,1)

� 0:343�
(0:0027)

0:344�
(0:0023)

0:342�
(0:0024)

0:333�
(0:0024)

0:623���
(0:0027)

� � 0:0065
(6:4e�05)

0:0077
(8:6e�05)

0:0164
(0:0002)

�1:170��
(0:0069)

! 0:595���
(0:0028)

0:593���
(0:0034)

0:599���
(0:0043)

0:594���
(0:0042)

0:676���
(0:0076)

1 0:911���
(0:0004)

0:911���
(0:0004)

0:909���
(0:0005)

0:911���
(0:0005)

0:898���
(0:0011)

2 0:037���
(0:0003)

0:036���
(0:0003)

0:038���
(0:0003)

0:036���
(0:0003)

0:041���
(0:0007)

Panel C: Bayesian Stochastic Volatility

� 0:166
(0:0039)

0:166
(0:0039)

0:161
(0:0041)

0:138
(0:0040)

0:532���
(0:0038)

� � 0:0055
(8:1e�05)

0:0059
(0:0001)

0:0155
(0:0002)

�1:763���
(0:0109)

� 2:16���
(0:0040)

2:16���
(0:0042)

2:16���
(0:0037)

2:15���
(0:0036)

2:06���
(0:0040)

� 0:814���
(0:0017)

0:818���
(0:0020)

0:818���
(0:0018)

0:816���
(0:0019)

0:801���
(0:0019)

�2 0:149���
(0:0025)

0:147���
(0:0021)

0:146���
(0:0022)

0:150���
(0:0020)

0:230���
(0:0043)

The table presents the Bayesian MCMC estimates of the posterior means of the Linear Regression, GARCH(1,1)

and SV model parameters for the USD/JPY monthly percent returns. The MCMC chain run for 5,000 iterations after

an initial burn-in of 1,000 iterations. The numbers in parenthesis indicate the Numerical Standard Error (NSE). The

superscripts *, ** and *** indicate that the 90%, 95% and 99% highest posterior density (HPD) regions, respectively,

do not contain zero. The HPD region for each MCMC parameter estimate is the shortest interval that contains 95%

of the posterior distribution.
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Table 5
The Likelihood of the Models

Panel A: In-Sample log-Likelihood

USD/GBP
Model RW MF1 MF2 MF3 FP

LR �867:47 �866:90 �865:12 �865:76 �866:50
GARCH(1; 1) �860:94 �860:51 �858:00 �858:67 �860:28

SV �801:80 �804:07 �802:25 �801:15 �801:33
USD/DEM-EURO

LR �878:71 �877:47 �878:09 �877:55 �878:49
GARCH(1; 1) �878:26 �876:96 �877:45 �876:91 �877:97

SV �847:84 �846:23 �846:52 �846:72 �846:64
USD/JPY

LR �907:95 �906:60 �907:17 �906:34 �904:08
GARCH(1; 1) �906:97 �905:60 �905:93 �905:37 �903:05

SV �828:49 �827:76 �828:66 �827:61 �791:47
Panel B: Out-of-Sample log-Likelihood

USD/GBP
Model RW MF1 MF2 MF3 FP

LR �439:52 �440:173 �438:97 �439:25 �439:91
GARCH(1; 1) �427:58 �427:69 �426:27 �426:31 �428:25

SV �412:08 �412:91 �412:24 �412:63 �412:18
USD/DEM-EURO

LR �451:91 �452:37 �452:50 �453:06 �452:76
GARCH(1; 1) �448:47 �448:68 �449:00 �449:36 �449:03

SV �427:120 �433:68 �433:91 �434:69 �434:58
USD/JPY

LR �465:04 �465:58 �465:47 �466:99 �464:84
GARCH(1; 1) �458:33 �458:68 �458:68 �460:14 �458:05

SV �433:814 �426:40 �425:50 �425:68 �413:52

The table reports the in-sample and out-of-sample log-likelihood values for the three FX rates (USD/GBP,

USD/DEM-EURO and USD/JPY), �ve conditional mean speci�cations (RW, MF 1, MF 2, MF 3 and FP ) and three

volatility frameworks (Linear Regression, GARCH and Stochastic Volatility). The out-of-sample data runs from Jan-

uary 1990 through December 2004.
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Table 6
The Models with the Highest Posterior Probability

Panel A: The Best In-Sample Models

Best Model Second Best Model Third Best Model
USD=GBP FPSV RWSV MFSV3

USD=DEM � EURO FPSV RWSV MFSV2
USD=JPY FPSV RWSV MFSV3

Panel B: The Best Out-of-Sample Models

Best Model Second Best Model Third Best Model
USD=GBP RWSV FPSV MFSV2

USD=DEM � EURO FPSV RWSV MFSV2
USD=JPY FPSV RWSV MFSV3

The table shows the three best models according to the highest in-sample and out-of-sample posterior probability

for the three FX rates (USD/GBP, USD/DEM-EURO and USD/JPY). The out-of-sample data runs from January

1990 through December 2004. Ranking the models using the highest posterior probability is equivalent to choosing the

best model in terms of density forecasts and is a robust model selection criterion in the presence of misspeci�cation

and non-nested models.
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Table 7
The Economic Value of the Empirical Exchange Rate Models

Panel A: In-Sample Performance for Models vs. RWLR

MFLR
1 MFLR

2 MFLR
3 FPLR

σ∗p Φ2 τBE2 Φ6 τBE6 Φ2 τBE2 Φ6 τBE6 Φ2 τBE2 Φ6 τBE6 Φ2 τBE2 Φ6 τBE6
8% −26 − −58 − −129 − −144 − −127 − −167 − 144 120 145 118

10% −37 − −90 − −164 − −190 − −165 − −228 − 180 120 181 117

12% −51 − −129 − −200 − −239 − −205 − −299 − 217 120 218 117

MFGARCH
1 MFGARCH

2 MFGARCH
3 FPGARCH

σ∗p Φ2 τBE2 Φ6 τBE6 Φ2 τBE2 Φ6 τBE6 Φ2 τBE2 Φ6 τBE6 Φ2 τBE2 Φ6 τBE6
8% 3 14 −13 − −120 − −128 − −128 − −151 − 132 101 131 98

10% 1 9 −25 − −152 − −165 − −164 − −202 − 165 101 163 96

12% −3 − −41 − −184 − −205 − −201 − −257 − 198 101 195 96

MFSV
1 MFSV

2 MFSV
3 FPSV

σ∗p Φ2 τBE2 Φ6 τBE6 Φ2 τBE2 Φ6 τBE6 Φ2 τBE2 Φ6 τBE6 Φ2 τBE2 Φ6 τBE6
8% 102 166 38 59 −55 − −91 − −79 − −144 − 203 136 166 108

10% 118 151 15 18 −74 − −132 − −108 − −213 − 248 132 190 97

12% 130 137 −21 − −95 − −180 − −142 − −296 − 291 129 206 87

RWGARCH RWSV

σ∗p Φ2 τBE2 Φ6 τBE6 Φ2 τBE2 Φ6 τBE6
8% −19 − −19 − 36 556 9 51

10% −24 − −24 − 42 471 16 150

12% −28 − −29 − 48 404 19 267

continued
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Table 7 (continued)

Panel B: Out-of-Sample Performance for Models vs. RWLR

MFLR
1 MFLR

2 MFLR
3 FPLR

σ∗p Φ2 τBE2 Φ6 τBE6 Φ2 τBE2 Φ6 τBE6 Φ2 τBE2 Φ6 τBE6 Φ2 τBE2 Φ6 τBE6
8% −173 − −178 − 23 26 11 9 −154 − −149 − 61 34 56 31

10% −217 − −224 − 27 23 9 2 −192 − −184 − 76 34 68 30

12% −261 − −271 − 30 21 4 1 −229 − −218 − 90 34 79 29

MFGARCH
1 MFGARCH

2 MFGARCH
3 FPGARCH

σ∗p Φ2 τBE2 Φ6 τBE6 Φ2 τBE2 Φ6 τBE6 Φ2 τBE2 Φ6 τBE6 Φ2 τBE2 Φ6 τBE6
8% −124 − −120 − −1 − −2 − −195 − −185 − 55 28 63 32

10% −154 − −147 − −1 − −2 − −242 − −227 − 70 29 82 34

12% −184 − −172 − −1 − −3 − −289 − −267 − 86 29 103 36

MFSV
1 MFSV

2 MFSV
3 FPSV

σ∗p Φ2 τBE2 Φ6 τBE6 Φ2 τBE2 Φ6 τBE6 Φ2 τBE2 Φ6 τBE6 Φ2 τBE2 Φ6 τBE6
8% −18 − −68 − 14 −3 −33 − 55 40 26 19 218 92 174 73

10% −30 − −108 − 10 −11 −64 − 65 37 19 10 266 90 197 65

12% −45 − −158 − 4 −19 −105 − 73 34 6 2 311 87 212 58

RWGARCH RWSV

σ∗p Φ2 τBE2 Φ6 τBE6 Φ2 τBE2 Φ6 τBE6
8% −27 − −17 − 105 342 76 246

10% −32 − −16 − 127 321 82 205

12% −37 − −13 − 147 304 82 166

The table presents the in-sample and out-of-sample performance fees (Φ) and break-even transaction costs (τBE) for selected models against the RWLR benchmark

for three target portfolio volatilities (8%, 10% and 12%). Each maximum return strategy builds an efficient portfolio by investing in the monthly return of four bonds from

the US, UK, Germany and Japan and using the three exchange rates to convert the portfolio return in US dollars. The fees denote the amount an investor with quadratic

utility and a degree of relative risk aversion equal to either 2 or 6 is willing to pay for switching from RWLR to another model (such as FPSV ). The performance fee

Φ is expressed in annual basis points. The transaction cost τBE is defined as the minimum monthly proportional cost which cancels out the utility advantage (and hence

positive performance fee) of a given strategy. The τBE values are expressed in monthly basis points and are reported only when Φ is positive. The in-sample period starts

in January 1979 and the out-of-sample data runs from January 1990 through December 2004.
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Table 8
The Economic Value of Combined Forecasts

Panel A: In-Sample Performance

All Models (vs: RWLR)
BMA BW

��p �2 �BE2 �6 �BE6 �2 �BE2 �6 �BE6
8% 207 145 156 120 192 117 156 93

10% 254 141 172 109 235 114 177 83

12% 299 138 178 100 276 111 191 74

Stochastic Volatility Models (vs: RWLR)
BMA BW

��p �2 �BE2 �6 �BE6 �2 �BE2 �6 �BE6
8% 208 146 157 120 192 117 156 93

10% 255 142 173 110 235 114 178 83

12% 300 139 179 100 276 111 191 74

Panel B: Out-of-Sample Performance

All Models (vs: RWLR)
BMA BW

��p �2 �BE2 �6 �BE6 �2 �BE2 �6 �BE6
8% 250 130 206 108 268 128 222 107

10% 306 127 237 100 329 125 255 99

12% 360 124 259 91 386 122 279 90

Stochastic Volatility Models (vs: RWLR)
BMA BW

��p �2 �BE2 �6 �BE6 �2 �BE2 �6 �BE6
8% 259 134 215 112 277 131 231 111

10% 317 131 249 104 340 129 267 103

12% 373 128 273 95 400 126 294 94

The table reports the in-sample and out-of-sample performance fees (�) and break-even transaction costs (�BE)

for all maximum return strategies based on combined forecasts for three target portfolio volatilities (8%, 10% and 12%).

BMA denotes Bayesian Model Average and BW is Bayesian Winner. The combined forecasts are shown for two cases:

(i) the unrestricted universe of all 15 models, and (ii) the restricted universe of only the �ve stochastic volatility models.

The fees denote the amount an investor with quadratic utility and a degree of relative risk aversion equal to either 2

or 6 is willing to pay for switching from the RW LR benchmark to the BMA or BW strategy. �BE is de�ned as the

minimum monthly proportional cost which cancels out the utility advantage (and hence positive performance fee) of

a given strategy. The transaction costs are only reported when � is positive. The performance fees are expressed in

annual basis points, and the transaction costs in monthly basis points. The in-sample period starts in January 1979

and the out-of-sample data runs from January 1990 through December 2004.
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Table 9
Out-of-Sample Robustness

Panel A: Subsample Analysis for Selected Models vs: RWLR

(��p = 10%, � = 2)

FPSV BMA BW

Subsample �2 �BE2 �2 �BE2 �2 �BE2
1990� 1994 40 12 196 50 260 56

1995� 1999 539 347 519 346 523 357

2000� 2004 229 83 227 93 224 96

1995� 2004 381 193 363 208 364 281

1990� 2004 266 90 306 127 329 125

Panel B: The Performance of tGARCH Models vs: RWLR

(� = 2)

MF tGARCH1 MF tGARCH2 MF tGARCH3 FP tGARCH RW tGARCH

��p �2 �BE2 �2 �BE2 �2 �BE2 �2 �BE2 �2 �BE2
8% �34 � �32 � �29 � 110 49 21 78

10% �43 � �40 � �36 � 140 50 28 82

12% �50 � �48 � �42 � 169 51 35 88

The table provides an analysis of out-of-sample robustness for the performance fees (�) and break-even transaction

costs (�BE) of selected models against the RWLR benchmark. Panel A conducts a subsample analysis and Panel

B examines the performance of the tGARCH(1,1) model with Student-t innovations. BMA denotes Bayesian Model

Average and BW is Bayesian Winner. All maximum return strategies build an e¢ cient portfolio by investing in the

monthly return of four bonds from the US, UK, Germany and Japan and using the three exchange rates to convert the

portfolio return in US dollars. The fees denote the amount an investor with quadratic utility and a degree of relative

risk aversion equal to 2 is willing to pay for switching from RWLR to (say) FPSV . The target portfolio volatility

in Panel A is set at 10%. �BE is de�ned as the minimum monthly proportional cost which cancels out the utility

advantage (and hence positive performance fee) of a given strategy. The transaction costs are only reported when

� is positive. The performance fees are expressed in annual basis points, and the transaction costs in monthly basis

points. The combined forecasts are for the universe of all 15 models. The out-of-sample period runs from January 1990

through December 2004.
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Table 10
Sharpe Ratios for Selected Models

Panel A: In-Sample

��p RWLR FPSV BMA BW

8% 0:88 1:09 1:11 1:13

10% 0:91 1:14 1:15 1:17

12% 0:94 1:17 1:19 1:21

Panel B: Out-of-Sample

��p RWLR FPSV BMA BW

8% 0:76 0:98 1:06 1:11

10% 0:76 0:98 1:06 1:12

12% 0:76 0:98 1:06 1:12

The table presents the in-sample and out-of-sample annualized Sharpe ratios for selected models. BMA denotes

Bayesian Model Average and BW is Bayesian Winner. The Sharpe ratios are adjusted for the serial correlation in the

monthly portfolio returns generated by the dynamic strategies (e.g. Lo, 2002). All maximum return strategies build

an e¢ cient portfolio by investing in the monthly return of four bonds from the US, UK, Germany and Japan and using

the three exchange rates to convert the portfolio return in US dollars. The maximum return strategies are evaluated

at three target portfolio return volatilities: 8%, 10%, and 12%. The in-sample period starts in January 1979 and the

out-of-sample data runs from January 1990 through December 2004.
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Figure 1: The Out-of-Sample Dynamic Weights for Selected Models: This is the out-of-sample time
variation in the weights investing in the three risky assets (the UK, Japanese and German bonds) at
a target portfolio volatility of 10% and a degree of relative risk aversion of 2. The figure presents four
cases: the benchmark random walk model with constant variance (upper left), the forward premium
model with stochastic volatility (upper right), the Bayesian Model Average strategy (lower left), and
the Bayesian Winner strategy (lower right).
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