
An Eddy Current Transducer Model
for Image Restoration

Bennett R. Groshong
Griff L. Bilbro

Wesley E. Snyder

Center for Communications and Signal Processing
Department Electrical and Computer Engineering

North Carolina State University

TR-90/10
September 1990



Abstract

We describe in this short paper a new imaging model for the spatial magnitude re­

sponse of an absolute eddy current transducer to a flaw. This model is appropriate for

image restoration purposes in that it captures the transducer response with sufficient

accuracy for image restoration, yet is simple enough to be computationally practical.

The model described in this paper is based on a simple resistive loop approximation

to the transducer impedance changes induced by a flaw, and is efficiently implemented

as layers of linear blurring functions and nonlinear point operations. The model is

shown to accurately reflect the magnitude response of an absolute transducer to an

EDM slot in a non-ferrous alloy. Furthermore, the model is shown to produce good

restoration results for synthetic images of flaws. The model may be adapted to a par­

ticular combination of absolute transducer and surface flaw type by optimizing the

model parameters, either by forming the partial derivatives with respect to the pa­

rameters and minimizing by gradient descent, or by a straightforward implementation

of a neural net back-propagation algorithm. Other types of eddy current transducers

may be modeled by simply modifying the spatial layers to combine the local terms

appropriately for the geometry of the transducer.
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1 Introduction

We describe in this short paper a new imaging model for the spatial magnitude

response of an absolute eddy current transducer to a flaw. The transducer used in

this work is an annular coil with a mean radius of approximately 34 mils wound on

a ferrite core and enclosed in a ferrite shield bead. The transducer is operated at a

frequency of two megahertz and is used to inspect metal surfaces for stress cracks

with lengths in the 10 to 100 mil range. A nonlinearly distorted image of the the flaw

is generated by sampling the response of the transducer on a four mil grid as it is

scanned over the surface. We are interested in geometrically characterizing the flaw

by restoring the distorted image.

Direct characterization of flaws from an eddy current image is complicated by

the fact that the eddy current transducer has a nonlinear, large-radius point spread

function (PSF) relative to the size of flaws of interest [6]. Linear image restoration

methods such as the Wiener filter fail to model the nonlinear response of the sensor

to flaws, which varies with the size of the flaw and its relative position [2]. The true

response of an absolute eddy current transducer to a flawed surface is a complex

phenomenon.

Modeling this response is an open research area, as indicated by the range of

techniques discussed in recent journal articles. Iterative techniques such as Beissner's

boundary element model [3] and the finite difference method of Auld et al [1] are

useful for understanding the forward problem of simulating the sensor response, but

their computational complexity makes them less than ideal for image restoration
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purposes. Integral methods [7, 10] are similar in that they seek to accurately model

the electromagnetic fields and are also computationally complex, requiring solution

over a large number of cells for a flawed surface.

What is needed for image restoration purposes is a model which captures the trans­

ducer response with sufficient accuracy for image restoration, yet is simple enough to

be computationally practical. The model described in this paper accurately reflects

the response of the sensor to a flaw, as indicated by the comparative images and

plots in Section 4. It is based on a simple resistive loop approximation [8, 9] to the

transducer impedance changes induced by a flaw, and is efficiently implemented as

layers of linear blurring functions and nonlinear point operations.
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2 Eddy Current Transducer Model

The transducer forward model we have developed for flaw characterization is based

on a simple model for the magnitude of the change in the impedance of the coil due

to the presence of a flaw. The transducer coil induces a region of eddy current flow

in the surface of the object to be inspected. This region mirrors the geometry of the

coil, and may be approximated by an annular ring of current filaments flowing on the

surface of the part [4, 8, 9]. The effect of each of these filaments on the transducer

is modeled by considering the transducer coil as the primary and the filament as the

secondary of a transformer [8, 9]. A flaw in the surface changes the length of the

circular path of the current filament, changing the resistance of the secondary and

creating a voltage change in the primary [8, page 38].

The response 9 of the model at a point (x, y) to a flaw ! is then a weighted sum

of the path lengths of these current filaments, which may be written as

rr: r: 2 (8!(X+TCOSfJ,Y+TsinfJ))2
dfJ dg{x,y) = 1..=0 w{r) 1

6
= 0 r + 80 r.

The weight

(1)

(2)w.. = K exp {_ (T - ro)2 }
.J2;up 2u~

models the radial sensitivity profile of the transducer. This model is simple, analytic,

and produces images that mimic those of the true transducer. However, it is not

particularly amenable to iterative gradient descent image restoration, due to the large

number of operations required for each point of response. One method of reducing

this number is to approximate the derivative of ! in (1) by computing it for some
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fixed number of angles, then computing the local path length for each angle, and

finally combining the intermediate results to get the complete response.

3 Layered Nonlinear Representation

Posing the transducer model as the composition of a number of layers of linear spatial

operations and nonlinear point functions is a powerful technique, permitting efficient

implementation of both the transducer model and its partial derivatives.

Nonlinear models written in layered form

(3)

where the hL terms represent linear spatial operations (two dimensional convolutions),

and are composed with the 8
L terms, which are nonlinear functions applied pointwise.

Functions written in this way have a number of attractive features:

1. They may be implemented on a computer more efficiently than functions of the

form of (1). The functions represented by the lower layers may be performed

once, with their output combined appropriately by higher layers in a hierarchical

manner, rather than repeating the complete set of calculations at each point.

2. The gradient of this form may be evaluated using the chain rule, and also written

in layered form. Additional computational savings may be realized by re-using

intermediate terms from the forward model when computing the gradient.

3. It has been shown [5] that the layered form is general in that a very wide range

of functions may be represented.
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We write the transducer model (1) in this form by breaking the response into three

layers.

The first layer computes the approximate change in the path the eddy current

filaments take for a particular direction at a point. We model this directional response

to a flaw for current filaments flowing at an arbitrary angle (J (See Figure 1) with

respect to the (x, y) axes by forming an anisotropically blurred Gaussian derivative

function:

D(x,y,O)

x

(4)

The term dB = x cos 8 + y sin 0 is the projection of the point (x, y) onto a unit vector in

the direction 0, and dl- = -xsin()+ycos8 is the projection of the point (x,y) onto a

unit vector perpendicular to O. The first term models the local change in the current

filament path at the point (x, y), and is the first derivative of a Gaussian with spread

U d parallel to o. The second models the radial sensitivity profile of the transducer,

and is a Gaussian with spread U g perpendicular to O. This function is illustrated for

a single 0 in Figure 2.

The second layer transforms the directional derivative by the nonlinear point func-

tion

(5)

providing a local approximation to the filament path length per unit distance traveled

in the plane in the direction (J.
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The third layer linearly combines the local path length terms over an annulus,

forming a weighted sum of the directional point path length terms at the appropriate

angle and completing the point spread function of the model. The directional terms

are combined using a set of polar Gaussian blurring functions

R(T, <p) ==

+

(6)

one for each term. One of these terms is illustrated in Figure 3. Note that the blurring

function sums directional local path length terms from the regions on both sides of

the annulus where the direction () (See Figure 1) is approximately tangent.

The transducer model is implemented by calculating a set of convolution kernels

for (4) and (6), one for each desired () and <p. The result is a transducer model written

in the form of (3):
N

gij == L kgn * s(kdn * lij).
n=O

(7)

where kdn is the kernel for the directional first derivative of a Gaussian (4) at angle

On == n7r/N, and kgn is the Gaussian blurring function (6) at angle <Pn == 8n+7f/2.

N is chosen to be the minimum number of angles producing a smooth transducer

response. N == 8 was found to be sufficient.
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4 Results

The results given In this section illustrate the performance of the forward trans­

ducer model. Figure 4 is a magnitude image formed by combining the in-phase and

quadrature components of the output of a General Electric Corporate Research and

Development eddy current transducer in the usual way.

The imaging parameters were as follows:

• The transducer type was "sge9" This transducer is an absolute sensor with a

single annular coil wound on a ferrite core and enclosed in a ferrite shield bead.

The probe has a mean coil radius of 34 mils, and is operated at 2 megahertz.

• The imaged surface was a block of Rene-95 high nickel alloy, with a rectangular

EDM slot 30 mils long by 3 mils wide by 15 mils deep.

• The image row and column sample spacing was 4 mils.

• The values displayed are the magnitude of the data samples.

• The image shown is 64 rows by 64 columns, with the image data videoscaled

to 0 to 255. The data is displayed using a linear gray scale map, with white

representing 255 and black o.

Figure 5 is a synthetic flaw image generated by the layered transducer model (7),

using smooth derivative functions. The imaging parameters are:

• The original flaw image was 7 pixels long by 1 pixel wide by 15 units on a zero

background in the center of the image.
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• The derivative kernels kdn were generated by numerically sampling the Gaussian

derivative function (4) for all image points more than 1 percent of the peak

magnitude. The deviations were ug == 1.7 and Ud == 1.0 pixels.

• The radial kernel kg n was generated in the same manner as the derivative kernel,

with TO == 6.25, <Po == (J + 7r/2, a; == 0.5, and uq, == 7rTo/V2N, where N == 8 is

the number of angles.

• The image size and map are identical to Figure 4

A plot made by vertically slicing the two images in Figures 4 and 5 is shown in

Figure 6
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5 Discussion

The absolute eddy current transducer model accurately reflects the response of a real

transducer to a flaw, as shown in Figure 5. Furthermore, the layered model (7) is

relatively efficient, requiring approximately 103 multiplies per output image point,

versus 104 for the direct model (1). The number required for the layered model is not

unreasonable, given that the point spread function of the transducer encompasses at

least 700 pixels.

In addition to accurate forward modeling, the layered forward model has proven

appropriate for image restoration. We have restored synthetic flaw images by forming

the squared residual between the observed image and an estimate image distorted by

the layered model, computing the gradient of the squared residual with respect to the

estimate, and minimizing the residual by constrained gradient descent. An example

restoration of the image shown in Figure 5 is shown in Figure 7. The smooth Gaus­

sians and their derivatives used in the layered model have yielded stable restoration

algorithms, giving us confidence that further work in this area will be fruitful.

The model may be adapted to a particular combination of absolute transducer and

surface flaw by optimizing the model parameters U g, Ud, TO, U r, Ut/J, and N by forming

the partial derivatives with respect to the pa.rameters and minimizing by gradient

descent. An equivalent minimization could be performed by a straightforward imple­

mentation of a neural net back-propagation algorithm.

Other types of eddy current transducers may be modeled by simply modifying

the spatial functions kgn to combine the local terms appropriately for the geometry
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of the transducer. For instance, the spatial terms for a typical differential transducer

would be similar to those in Figure 3, but the two lobes would have opposite sign and

would vary in magnitude with the angle fJ.
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Figure 1: Illustration of (J and <P for transducer model.

Figure 2: Blurred Gaussian derivative function.
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Figure 1: Illustration of (J and <P for transducer model.



Figure 3: Gaussian blurring function.

Figure 4: "edrn15" magnitude image of EDM slot 30 mils long by 3 mils wide by 15

mils deep.



Figure 5: Image of synthetic flaw using layered model with smooth derivative kernels.
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Figure 6: Vertical cross section of original absolute transducer image and forward

model image of identical flaw.
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Figure 7: Image of restored synthetic flaw using layered model with smooth derivative

kernels.


