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pi! p? An Edge-Based Heuristic for Steiner Routing 
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Abstract- A new approximation heuristic for finding a rectilinear 
Steiner tree of a set of nodes is presented. It starts with a rectilinear 
minimum spanning tree of the nodes and repeatedly connects a node to the 
nearest point on the rectangular layout of an edge, removing the longest 
edge of the loop thus formed. A simple implementation of the heuristic 
using conventional data structures is compared with previously existing 
algorithms. The performance (i.e., quality of the route produced) of our 
algorithm is as good as the hest reported algorithm, while the running 
time is an order of magnitude better than that of this hest algorithm. 
It is also shown that the asymptotic time complexity for the algorithm 
can he improved to O(n log n), where n is the number of points in the 
set. 

I. INTRODUCTION 
Routing is one of the most time-consuming phases in layout of 

VLSI circuits and printed circuit boards. Routing involves connecting 
disjoint sets of points together using metal wires, usually along 
rectangular gridlines. Minimizing the length of the wires reduces the 
interconnect capacitance, cost of metal, and wiring area. A minimum 
rectilinear Steiner tree of a set of points connects the points together 
using the minimum total length of wire. Finding the minimum 
rectilinear Steiner tree is an NP-hard problem [8], however several 
heuristics for finding a good approximation exist [lo], [14], [15], [5 ] ,  
[41, [31, [171. 

The cost (i.e., the total rectilinear length of all the edges) of 
the minimum rectilinear spanning tree (MST) is at most 1.5 times 
more than that of the minimum rectilinear Steiner tree [ I l l .  There- 
fore, any reasonable approach starting with a minimum rectilinear 
spanning tree will produce a Steiner tree no costlier than this 
bound. Many heuristics for Steiner tree approximations start with 
an MST. Ho, Vijayan, and Wong [lo] proposed algorithms for 
finding optimal L-shaped and Z-shaped embeddings of rectangular 
layouts of a separable MST. Chao and Hsu [5] start with the MST 
and introduce Steiner points to the tree based on local and global 
refinements. Lee, Bose, and Hwang [ 151 modified Prim’s algorithm 
to expand the current subtree by adding a point nearest to either 
an existing vertex on the tree or any point on the rectangular 
layout of some edge on the existing tree. Hwang [13] improved 
the above heuristic to make use of the MST to guide the search, 
which resulted in a faster algorithm. Bern and Carvalho [4] de- 
veloped algorithms based on Kruskal’s MST algorithm. Recently, 
Lim et al. [17] formulated another Steiner tree problem based 
on critical path delay reduction in the circuit. They also gave 
a heuristic that is similar in form to the Prim’s MST heuristic 
with constraints on the edges to include the shortest path for the 
critical nets. Sarrafzadeh and Wong [20] took a hierarchical approach 
to the problem and developed a recursive algorithm that divides 
the tree into two fairly equal subtrees at each step until subtrees 
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Fig. 1. Example of the edge-based update. 

of sufficiently smaller size are reached, which are then solved 
explicitly. They also formulated another version of Steiner tree with 
the maximum weight edge minimized that they used on their global 
router [6] .  

All of the above methods are based on the MST. However, there 
are other heuristics that approach the problem differently. Kahng 
and Robins’ [I41 1-Steiner heuristic starts with the set of nodes and 
iteratively adds a new Steiner point to the set such that the MST for 
the new set is minimized among all such sets with one extra node. 
It has been shown with detailed comparisons in [14], [I91 that the 
1-Steiner heuristic has the best empirical performance in terms of 
reduction in cost of the Steiner tree with respect to the MST for the 
original set of points. 

Our edge-based heuristic also starts with an MST and incremen- 
tally improves the cost by connecting a node to the rectangular 
layOut of a neighboring edge and removing the longest edge in the 
loop thus formed. A simple O ( n 2 )  implementation (n-the number 
of points in the set) of the algorithm using conventional data 
structures was tested and compared with the batched 1-Steiner 
algorithm of [14]. The results show that the average percent re- 
duction produced over the MST by our algorithm is the same 
as that of the batched I-Steiner algorithm, while our algorithm 
is an order of magnitude faster than the batched I-Steiner al- 
gorithm. Moreover, we also show that our edge-based algorithm 
has O(n log n) asymptotic time complexity using sophisticated data 
structures, which matches the lower bound on computing the MST of 
a set of points and thus matches the lower bound on any MST-based 
heuristic [12]. 

Lewis et al. [ 161 also independently developed a somewhat similar 
heuristic for computing the Steiner tree based on local improvements. 
They iteratively migrate to the best ‘neighbor’ of the existing tree 
that is obtained by removing an edge from the tree and connecting 
the two subtrees using another edge. Though the two heuristics are 
similar, their algorithm has a complexity of O(n4)  and therefore is 
not suitable for real applications. 

The rest of this paper is organized as follows. We describe our 
heuristic in Section 11. A simple implementation of the algorithm is 
also described in Section 11. Results of the test and comparison are 
given in Section 111. Section IV describes an improvement on the 
asymptotic time complexity to O(n log n). Conclusions are drawn 
with remarks in Section V. 
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Algorithm Edge-based-Steiner() 

Begin 
1.Compute the rectilinear minimum spanning tree of the set of nodes 
2.Compute all possible <node, edge> pairs that give positive gain 
3.Sort all the pairs in descending order of gain 
4.While (there are pairs with positive gain) do 

If (the two edges to be replaced exist in the tree) then 
Replace the pair of edges with three new edges and a new node. 

End-if 
End- while 

End 
Fig. 2. The basic edge-based algorithm. 

11. THE EDGE-BASED HEURISTIC 
Our edge-based algorithm is based on connecting a node to the 

nearest point on the rectangular layout of an edge in the tree and 
removing the longest edge in the loop thus formed. Consider the tree’ 
fragment in Fig. l(a). Here and in the rest of the paper, the edges are 
shown in euclidian only for clarity sake. All the distance measures 
are in rectilinear metric. If we connect the node p1 to the nearest 
point p on the rectangular layout of the edge e l ,  then it forms a loop 
in the tree. Suppose e2 is the longest edge in the path between p l  
and p2 in the tree. We can make the following modification to the 
tree (Fig. l(b)): 
I)  Addnodep 
2) Remove edge el 
3) Remove edge e2 

4) 
5) 
6) 

The above procedure adds a new node to the tree (Steiner point) 
and replaces a pair of existing edges with three new edges. After 
this modification, the resulting graph becomes a spanning tree for a 
new set with one extra node. Observe that the total cost of the two 
edges @ , p a )  and @ . p 3 )  together is equal to the cost of the edge 
el. Therefore, the reduction in the cost of the tree (gain) due to this 
operation is given by 

(1) 

Our algorithm computes all such possible (node, edge) pairs that 
produce a positive gain and applies as many such edge-pair replace- 
ments as possible to the existing tree. The main block of the algorithm 
is given in Fig. 2. The total number of (node,edge) pairs possible 
for the whole tree is O(n2).  However, each edge can be replaced 
only once in a single pass; i.e., the edge no longer exists after it has 
participated in an update. For example, in Fig. l(a), e l  may have more 
than one node (apart from p 1 )  that would result in a positive gain 
when connected to e l .  We can apply only one of these cases, since 
after the update is done (Fig. I(b)) el no longer exists. Therefore, 
we need to compute only the pair with maximum gain for any given 
edge, reporting only the ‘best’ pair for each edge. Observe that since 
our algorithm works in a ‘batched mode’ (i.e., in one pass it first 
computes all the possible tuples with positive gain before applying 
any of the updates), the tree is fixed for this phase of computing the 
tuples for the entire tree. Hence, the total number of pairs considered 
for steps 3 and 4 are linear. However, while applying the updates to 
the tree in step 4, we check to see that both the edges participating 
in the update exist in the tree. 

The degree of any vertex in a rectilinear minimum spanning tree 
is bounded by six [IO]. Therefore, the edge-pair replacement of Fig. 

Add edge connecting p to 111 
Add edge connecting p to p2 

Add edge connecting p to p ~ .  

gain = length( e2 ) - length(p. PI ) 

1 can be done in O(1) time. A very simple O ( n 2 )  implementation 
of the algorithm is possible with conventional data structures, such 
as adjacency lists, as illustrated below. 

1) The minimum spanning tree of the set of points (step 1) is 
computed in O ( n Z )  time using Prim’s algorithm [7]. 

2) We use a recursive routine similar to depthfirst search for each 
edge to compute the (node, edge) pair giving maximum gain 
involving that edge. (Start with the given edge as root and pass 
the maximum edge seen until now as parameter to the recursive 
calls.) It takes O ( n )  time for each edge, thus this step takes 
O(n2)  time. 

3) Sorting the O ( n )  pairs (one pair for each edge) in step 3 
requires O ( n 2 )  worst case time using Quicksort. 

4) Finally, applying the O( n )  updates to the tree (step 4) requires 
only O ( n )  time. 

Repeating the algorithm more than once, each time on the updated 
tree of the previous pass, usually produces further improvements. 
However, it is found from experimental results based on about 5000 
examples of each size (Table I) that three iterations are sufficient 
in most cases and the need for more than four iterations is rare. 
MoreLver, on the average the improvement obtained in the fourth 
pass is at most 0.01% (for netsize 50) and the maximum improvement 
obtained on the fourth pass, considering all netsizes is 0.188, which 
is negligible. Thus, we can use only three iterations without much 
loss in performance. 

111. COMPARISON m OTHER EXISTING ALGORITHMS 
The algorithm has been implemented and tested on a large number 

of random samples ranging in size (i.e., number of points) from 
4 to 1OOO. Since there is no absolute measure of the quality of 
the route produced by a Steiner routing heuristic or algorithm, the 
average percent improvement over the cost of the minimum rectilinear 
spanning tree (also called performance) is commonly used to compare 
different algorithms [19]. Using this metric, the 1-Steiner heuristic has 
been shown to produce the best average percent improvement among 
the previously reported heuristics with proven time bounds. Recently, 
it is also claimed, based on empirical results, that on the average the 
1-Steiner algorithm is only 0.25% away from optimal for up to 8 node 
sets and less than 0.50% away from optimal for 20 nodes [l]. We 
compared our algorithm directly with the batched I-Steiner algorithm 
on the same set of examples. The points were drawn at random from 
an uniform grid of size 10000 x 10000. The percent improvement 
obtained by our edge-based algorithm and the batched 1-Steiner 
algorithm for problems varying in size between 4 and 200 are shown 
in Table 11. This result is based on the average of about 5000 random 
examples of each size. The comparison shows that our edge-based 
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9.15 
9.08 
9.28 
9.48 
9.46 

- - 
size 

6 
10 
50 
100 
200 
500 

- 

- 

.97 .01 
1.31 .06 
1.40 .07 
1.36 .07 
1.41 .05 

TABLE I 
IMPROVEMENTS OBTAINED ON DIFFERENT PASSES OF THE ALGORITHM 

4.65 
2.87 
3.12 
2.24 
1.79 

Passes Required 
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10.88% 

Avg. improv./pass (%) 

9.54% 
10.02% 
10.33% 
10.40% 
10.71% 
10.84% 
10.88% 
10.94% 
11.04% 

j 2;; 3;; I 4;h 

0 
.01 

.002 

.001 

.002 

Max. improv./pass (%) 
1st I 2nd I 3rd I 4th 

19.69 I 11.21 1 5.19 1 0 
15.04 
12.69 
11.26 
11.05 
10.39 

I I I 

0 5 10 15 20 25 30 
BlSteiner improvement (percent) 

Fig. 3. Batched 1-Steiner algorithm versus edge-based algorithm on 6OOO rando? samples. 

algorithm performs as well as the batched 1-Steiner algorithm. The 
last two lines of Table I1 show the percent improvement obtained 
by our edge-based algorithm for 500 samples each of sizes 500 
and 1000. The batched I-Steiner algorithm takes too long for sizes 
500 and 1000 to collect enough data. Fig. 3 shows a scatter plot of 
the percent improvements obtained by the two algorithms on 6000 
random samples of various sizes. The Y-axis represents the percent 
improvements obtained by our edge-based algorithm and the X-axis 
represents the same produced by the batched 1-Steiner algorithm. 
It can be easily observed that the two algorithms produce about 
the same improvement in cost in most of the cases. While in a 
few cases batched 1-Steiner is better than the edge-based algorithm, 
there are about the same number of other examples where the edge- 
based algorithm produces better routes than the batched 1-Steiner 
algorithm. 

Next, we looked at the time taken by the two algorithms to compute 
the above results. We ran our implementation of the edge-based 
algorithm and the batched 1-Steiner code obtained from the authors 
of [14] together on the same sets of data on a Sun4 machine and 
measured the average CPU time taken for about 5000 samples of each 
size. Table I11 shows the results of the execution time comparisons 
for samples varying in size from 5 to 200. The average execution 
times taken by our edge-based algorithm for net sizes 500 and 1000 
based on about 500 runs for each size are also shown in the last two 
rows of Table 111. 

TABLE I1 
AVERAGE PERFORMANCE COMPARISON OF THE W O  ALGORITHMS 

Size of net 
4 
5 
6 
10 
20 
50 
100 
200 
500 
1000 

Batched 1-Steiner I Edge-based 
8.63% 1 8.63% 

1565 

Based on experimental results, our edge-based algorithm is 5 times 
faster than the batched 1-Steiner algorithm for problems of size as 
small as 5 nodes and about 70 times faster than the batched 1-  
Steiner algorithm for problems of size 200. Moreover, our algorithm 
computes the route for a problem with 1000 nodes in less than 3 
minutes. 

In CAD systems for VLSI layout generation, routing represents 
a major portion of the running time. Since our algorithm has the 
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Fig. 4. Visible nodes and blocking. 

Algorithm Horizontal-sweep() 
Input: The Sorted list of vertical segments 
Output: The <visible-node, edge> pairs to the left or right 
Major data-structures: A balanced tree for maintaining ‘active’ intervals 

If 

End. 

Begin 
For (each vertical edge segment) do 

If (‘left’ vertical segment) then 
Report all the nodes of the ‘active’ segments overlapped by this 

segment as visible from the incoming edge 
Mark the reported nodes as ‘blocked’ 
If (any active segment is partially overlapped) then 

Report the appropriate node of the incoming segment as 
visible from the overlapped edge 

If (both nodes of a segment are blocked) then 

‘right’ vertical segment) then 
Remove the corresponding left segment from ‘active’ set, if exists 
Insert the segment into the set of active segments 

Delete that segment from the,set of active segments. 

Fig. 5. The horizontal sweep of the sweeping algorithm. 

advantage of producing very close to optimal Steiner trees and 
running an order of magnitude faster than the best existing algorithm, 
it stands as the best candidate for use in such layout generators. 
Moreover, the implementation of the algorithm requires the use of 
only simple and conventional data structures, which makes it easy to 
interface with other tools in the system. 

IV. IMPROVING THE A S Y M ~ ~ O T I C  TIME COMPLEXITY 
In [12] Hwang gave an O(n log n )  algorithm to find the rectilinear 

minimum spanning tree of a set of nodes by first constructing a 
voronoi diagram of the points in O( n log n )  time and thus trans- 
forming the problem into a planar graph problem that can easily be 
solved in O( n log n) time. Computing all possible (node, edge) pairs 
with positive gain can be done in O( n log n )  time. This is based on 
the following simple observations. 

A .  Visible Nodes and Blocking 
Consider the tree in Fig. 4(a). Nodes p l  and p3 may be connected 

to edge e2 resulting in a modification similar to Fig. 1. But the node 

TABLE III 
COMPARlSlON OF THE AVERAGE CPU TIME REQUIRED BY THE TWO ALGORITHMS 

S u e  of net 
5 
6 
8 
l o  
20 
50 
100 
200 
500 
1000 

Batched 1-Steiner 
7.1 msec 
13.3 msec 
32.1 msec 
59.6 msec 
456 msec 
6.53 sec 
52 sec 
395 sec 
>1.5 hrs 

Edge- based 
1.4 msec 
2.5 msec 
4.5 msec 
6.4 msec 
35 msec 
0.26 sec 
1.17 sec 
5.6 sec 
40 sec 

2 a f c h e d l - S t e i n e r  
Edqe-based  

5 
5.3 
7 

9 .3  
13 
25 
44 
70 

173 sec 

p z  cannot be connected to e2 in the same way. (In fact, p2 should 
probably be connected to e l . )  In a sense, el is ‘blocking’ p~ from 
connecting to (’2 in the tree. We will say node p l  and p3 are visible to 
edge e2 and node p z  is blocked from e 2  by edge el. In this example, 
the nodes p l  and p~ are visible from the edge e z ,  while p s  is visible 
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Algorithm Edge-based-Steiner() 
Begin 

Compute the MST of the set of nodes. 
Sort the vertical segments of the edges in ascending x-coordinates 

Sort the horizontal segments of the edges in ascending y-coordinates 

Use sweepline algorithm to report all the <visible-node, edge> pairs 
Use Tree compression and NCA algorithms to compute the gain for each pair 
Sort all the pairs in descending order of gain 
Apply as many updates as possible from the sorted list. 

Also mark left and right vertical segments. 

Also mark top and bottom horizontal segments. 

End. 
Fig. 6. The main algorithm for the O(n1ogn) version. 

Fig. 7. Artist11 layout for ‘ a h ’  using edge-based steiner algorithm. 

from c1. From the above example, it is clear that: A node may be 
connected to an edge for edge-pair replacement only if the node is  
visible from the edge. 

In Fig. 4(b), the edge cl has pz and p3 visible to its left, p7 and pg 
to its right, p1 and p6 above it and p~ below. The edges e2, e3, .  . ., e8 

are the ‘neighbor edges’ of e l .  Any other point outside the neighbor 
edges (like 114 or p 1 0 )  are blocked by these neighbors and not visible 
to e l .  This situation is true for any of the other edges in the tree. 
The visible nodes for an edge are the nodes of its neighbor edges. 
Therefore, we can report all the pairs of (visible-node, longest-edge) 
using a variation of the sweepline algorithm used to report overlaps of 
rectangles [ 2 2 ] .  A top-level description of this sweepline algorithm 
is given in Fig. 5. 

We represent an edge by the four rectilinear segments (left, right, 
top and boftom) of its rectangular layout. Degenerate edges (i.e., 
edges that are along the gridlines) are considered as special cases. 
For simplicity, the sweepline algorithm is split into two phases, a 
horizontal or left to right sweep using the vertical segments and 
reporting pairs with the visible nodes to the left or right of edges 
and a vertical or bottom to top sweep using the horizontal segments 

and reporting visible nodes above or below. We describe only the 
horizontal sweep here; the vertical sweep is similar. For the horizontal 
sweep, the vertical segments are sorted in ascending order on their 
x-coordinates. There are at most 2n such segments. An interval tree 
is used to maintain ‘active’ edge segments at any time of the left 
to right sweep. The tree is searched to report the visible nodes 
and blocking edges. When a left vertical segment of an edge is 
encountered, the tree is queried to report all the visible nodes to 
the left of the edge. These are exactly the active segments that this 
edge overlaps in the tree. The edges to which the two nodes of the 
incoming edge are visible to the right are the partially overlapped 
segments, and are also reported. When a right vertical segment 
is encountered, it is inserted into the tree. Since the interval tree 
data structure is balanced, operations like insertion and deletion take 
O(1ogn) time, while queries take O(1ogn + k) time where k is 
the number of nodes reported. Each edge segment in the sweepline 
algorithm is encountered only once, and only a linear number of nodes 
are reported. Thus, the sweepline algorithm requires O(n log n) 
time. 

After all the (node,edge) pairs are found using the sweepline 
algdrithm, the maximum length edges for each of the pairs need to 
be computed before the gain can be calculated. Since all the pairs are 
already available and the tree does not change during computation of 
the gain, we can use an off-line algorithm for this. Tarjan, in [21], 
gives an O ( ( n  + m)a(rn + n ,  n)) time algorithm for computing 
m such queries on a n node tree. Here a ( )  is the inverse of the 
Ackerman’s function and is very slow-growing. Tarjan’s algorithm 
uses path compression along with the nearest common ancestor 
(NCA or LCA) algorithm to compute this. Note that efficient O ( n )  
preprocessing time and O ( m )  query time algorithms for the nearest 
common ancestor problem exists [9]. Since m is O(n)  in this case, 
the queries can be computed in O( n log n)  time. Now, computing 
the gain information for the O ( n )  pairs takes only O ( n )  time. Step 4 
of sorting the O ( n )  queries take O(n  log n)  time followed by O ( n )  
time for the updates to the tree. Hence, the algorithm has O(n  log n) 
complexity. Our overall improved algorithm is given as pseudocode 
in Fig. 6. 

Though this algorithm is asymptotically faster than the version 
of our algorithm described in Section 11, an implementation of this 
algorithm would require the use of complex data structures (e.g., splay 
trees) and sophisticated programming techniques. Thus, we expect 
the constant involved in the asymptotic time to be large and that this 
algorithm may be empirically faster than the simpler version only for 
large problems (say, > I O 0  nodes). We have not tested this version 
of the algorithm for running time comparisons, although we expect 
to see a drastic improvement in the running time for large-sized 
problems. 
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V. CONCLUSION 
Our edge-based algorithm is used in artist11 [18], which produces 

good layouts quickly. Fig. 7 shows a layout produced by artistll for 
the ‘ ah ’  benchmark circuit [2] using our edge-based algorithm. This 
implementation is very simple to understand and easy to use, since 
it uses conventional data structures like adjacency lists and arrays. 
The running time of the implemented algorithm is based on a naive 
O ( n 2 )  implementation. and further improvement on the running time 
is possible by applying better programming techniques. The approach 
taken in our algorithm is greedy, i.e., only edge-pair updates that 
results in a positive gain are considered. Our experiments show that 
by allowing a certain number of updates with negative gains in each 
iteration, only marginally better improvements can be obtained at the 
cost of a significant increase in the running time. 
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