
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 12, DECEMBER 1994 1563

Short Papers

pi! p? An Edge-Based Heuristic for Steiner Routing

Manjit Borah, Robert Michael Owens,
and Mary Jane Irwin, Fellow, ZEEE

Abstract- A new approximation heuristic for finding a rectilinear
Steiner tree of a set of nodes is presented. It starts with a rectilinear
minimum spanning tree of the nodes and repeatedly connects a node to the
nearest point on the rectangular layout of an edge, removing the longest
edge of the loop thus formed. A simple implementation of the heuristic
using conventional data structures is compared with previously existing
algorithms. The performance (i.e., quality of the route produced) of our
algorithm is as good as the hest reported algorithm, while the running
time is an order of magnitude better than that of this hest algorithm.
It is also shown that the asymptotic time complexity for the algorithm
can he improved to O(n log n), where n is the number of points in the
set.

I. INTRODUCTION
Routing is one of the most time-consuming phases in layout of

VLSI circuits and printed circuit boards. Routing involves connecting
disjoint sets of points together using metal wires, usually along
rectangular gridlines. Minimizing the length of the wires reduces the
interconnect capacitance, cost of metal, and wiring area. A minimum
rectilinear Steiner tree of a set of points connects the points together
using the minimum total length of wire. Finding the minimum
rectilinear Steiner tree is an NP-hard problem [8], however several
heuristics for finding a good approximation exist [lo], [14], [15], [5] ,
[41, [31, [171.

The cost (i.e., the total rectilinear length of all the edges) of
the minimum rectilinear spanning tree (MST) is at most 1.5 times
more than that of the minimum rectilinear Steiner tree [I l l . There-
fore, any reasonable approach starting with a minimum rectilinear
spanning tree will produce a Steiner tree no costlier than this
bound. Many heuristics for Steiner tree approximations start with
an MST. Ho, Vijayan, and Wong [lo] proposed algorithms for
finding optimal L-shaped and Z-shaped embeddings of rectangular
layouts of a separable MST. Chao and Hsu [5] start with the MST
and introduce Steiner points to the tree based on local and global
refinements. Lee, Bose, and Hwang [151 modified Prim’s algorithm
to expand the current subtree by adding a point nearest to either
an existing vertex on the tree or any point on the rectangular
layout of some edge on the existing tree. Hwang [13] improved
the above heuristic to make use of the MST to guide the search,
which resulted in a faster algorithm. Bern and Carvalho [4] de-
veloped algorithms based on Kruskal’s MST algorithm. Recently,
Lim et al. [17] formulated another Steiner tree problem based
on critical path delay reduction in the circuit. They also gave
a heuristic that is similar in form to the Prim’s MST heuristic
with constraints on the edges to include the shortest path for the
critical nets. Sarrafzadeh and Wong [20] took a hierarchical approach
to the problem and developed a recursive algorithm that divides
the tree into two fairly equal subtrees at each step until subtrees

Manuscript received August 4, 1993; revised August 12, 1994. This paper
was recommended by Associate Editor M. Sarrafzadeh.

The authors are with the Department of Computer Science and Engineering,
The Pennsylvania State University, University Park, PA 16802 USA.

lEEE Log Number 9405723.

I _ _ . r-p$

e

(a)
Fig. 1. Example of the edge-based update.

of sufficiently smaller size are reached, which are then solved
explicitly. They also formulated another version of Steiner tree with
the maximum weight edge minimized that they used on their global
router [6] .

All of the above methods are based on the MST. However, there
are other heuristics that approach the problem differently. Kahng
and Robins’ [I41 1-Steiner heuristic starts with the set of nodes and
iteratively adds a new Steiner point to the set such that the MST for
the new set is minimized among all such sets with one extra node.
It has been shown with detailed comparisons in [14], [I91 that the
1-Steiner heuristic has the best empirical performance in terms of
reduction in cost of the Steiner tree with respect to the MST for the
original set of points.

Our edge-based heuristic also starts with an MST and incremen-
tally improves the cost by connecting a node to the rectangular
layOut of a neighboring edge and removing the longest edge in the
loop thus formed. A simple O (n 2) implementation (n-the number
of points in the set) of the algorithm using conventional data
structures was tested and compared with the batched 1-Steiner
algorithm of [14]. The results show that the average percent re-
duction produced over the MST by our algorithm is the same
as that of the batched I-Steiner algorithm, while our algorithm
is an order of magnitude faster than the batched I-Steiner al-
gorithm. Moreover, we also show that our edge-based algorithm
has O(n log n) asymptotic time complexity using sophisticated data
structures, which matches the lower bound on computing the MST of
a set of points and thus matches the lower bound on any MST-based
heuristic [12].

Lewis et al. [161 also independently developed a somewhat similar
heuristic for computing the Steiner tree based on local improvements.
They iteratively migrate to the best ‘neighbor’ of the existing tree
that is obtained by removing an edge from the tree and connecting
the two subtrees using another edge. Though the two heuristics are
similar, their algorithm has a complexity of O(n4) and therefore is
not suitable for real applications.

The rest of this paper is organized as follows. We describe our
heuristic in Section 11. A simple implementation of the algorithm is
also described in Section 11. Results of the test and comparison are
given in Section 111. Section IV describes an improvement on the
asymptotic time complexity to O(n log n). Conclusions are drawn
with remarks in Section V.

02784070/94$04.00 0 1994 IEEE

1564 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 12, DECEMBER 1994

Algorithm Edge-based-Steiner()

Begin
1.Compute the rectilinear minimum spanning tree of the set of nodes
2.Compute all possible <node, edge> pairs that give positive gain
3.Sort all the pairs in descending order of gain
4.While (there are pairs with positive gain) do

If (the two edges to be replaced exist in the tree) then
Replace the pair of edges with three new edges and a new node.

End-if
End- while

End
Fig. 2. The basic edge-based algorithm.

11. THE EDGE-BASED HEURISTIC
Our edge-based algorithm is based on connecting a node to the

nearest point on the rectangular layout of an edge in the tree and
removing the longest edge in the loop thus formed. Consider the tree’
fragment in Fig. l(a). Here and in the rest of the paper, the edges are
shown in euclidian only for clarity sake. All the distance measures
are in rectilinear metric. If we connect the node p1 to the nearest
point p on the rectangular layout of the edge e l , then it forms a loop
in the tree. Suppose e2 is the longest edge in the path between p l
and p2 in the tree. We can make the following modification to the
tree (Fig. l(b)):
I) Addnodep
2) Remove edge el
3) Remove edge e2

4)
5)
6)

The above procedure adds a new node to the tree (Steiner point)
and replaces a pair of existing edges with three new edges. After
this modification, the resulting graph becomes a spanning tree for a
new set with one extra node. Observe that the total cost of the two
edges @ , p a) and @ . p 3) together is equal to the cost of the edge
el. Therefore, the reduction in the cost of the tree (gain) due to this
operation is given by

(1)

Our algorithm computes all such possible (node, edge) pairs that
produce a positive gain and applies as many such edge-pair replace-
ments as possible to the existing tree. The main block of the algorithm
is given in Fig. 2. The total number of (node,edge) pairs possible
for the whole tree is O(n2). However, each edge can be replaced
only once in a single pass; i.e., the edge no longer exists after it has
participated in an update. For example, in Fig. l(a), e l may have more
than one node (apart from p 1) that would result in a positive gain
when connected to e l . We can apply only one of these cases, since
after the update is done (Fig. I(b)) el no longer exists. Therefore,
we need to compute only the pair with maximum gain for any given
edge, reporting only the ‘best’ pair for each edge. Observe that since
our algorithm works in a ‘batched mode’ (i.e., in one pass it first
computes all the possible tuples with positive gain before applying
any of the updates), the tree is fixed for this phase of computing the
tuples for the entire tree. Hence, the total number of pairs considered
for steps 3 and 4 are linear. However, while applying the updates to
the tree in step 4, we check to see that both the edges participating
in the update exist in the tree.

The degree of any vertex in a rectilinear minimum spanning tree
is bounded by six [IO]. Therefore, the edge-pair replacement of Fig.

Add edge connecting p to 111
Add edge connecting p to p2

Add edge connecting p to p ~ .

gain = length(e2) - length(p. PI)

1 can be done in O(1) time. A very simple O (n 2) implementation
of the algorithm is possible with conventional data structures, such
as adjacency lists, as illustrated below.

1) The minimum spanning tree of the set of points (step 1) is
computed in O (n Z) time using Prim’s algorithm [7].

2) We use a recursive routine similar to depthfirst search for each
edge to compute the (node, edge) pair giving maximum gain
involving that edge. (Start with the given edge as root and pass
the maximum edge seen until now as parameter to the recursive
calls.) It takes O (n) time for each edge, thus this step takes
O(n2) time.

3) Sorting the O (n) pairs (one pair for each edge) in step 3
requires O (n 2) worst case time using Quicksort.

4) Finally, applying the O(n) updates to the tree (step 4) requires
only O (n) time.

Repeating the algorithm more than once, each time on the updated
tree of the previous pass, usually produces further improvements.
However, it is found from experimental results based on about 5000
examples of each size (Table I) that three iterations are sufficient
in most cases and the need for more than four iterations is rare.
MoreLver, on the average the improvement obtained in the fourth
pass is at most 0.01% (for netsize 50) and the maximum improvement
obtained on the fourth pass, considering all netsizes is 0.188, which
is negligible. Thus, we can use only three iterations without much
loss in performance.

111. COMPARISON m OTHER EXISTING ALGORITHMS
The algorithm has been implemented and tested on a large number

of random samples ranging in size (i.e., number of points) from
4 to 1OOO. Since there is no absolute measure of the quality of
the route produced by a Steiner routing heuristic or algorithm, the
average percent improvement over the cost of the minimum rectilinear
spanning tree (also called performance) is commonly used to compare
different algorithms [19]. Using this metric, the 1-Steiner heuristic has
been shown to produce the best average percent improvement among
the previously reported heuristics with proven time bounds. Recently,
it is also claimed, based on empirical results, that on the average the
1-Steiner algorithm is only 0.25% away from optimal for up to 8 node
sets and less than 0.50% away from optimal for 20 nodes [l]. We
compared our algorithm directly with the batched I-Steiner algorithm
on the same set of examples. The points were drawn at random from
an uniform grid of size 10000 x 10000. The percent improvement
obtained by our edge-based algorithm and the batched 1-Steiner
algorithm for problems varying in size between 4 and 200 are shown
in Table 11. This result is based on the average of about 5000 random
examples of each size. The comparison shows that our edge-based

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 12, DECEMBER 1994

9.15
9.08
9.28
9.48
9.46

- -
size

6
10
50
100
200
500

-

-

.97 .01
1.31 .06
1.40 .07
1.36 .07
1.41 .05

TABLE I
IMPROVEMENTS OBTAINED ON DIFFERENT PASSES OF THE ALGORITHM

4.65
2.87
3.12
2.24
1.79

Passes Required

.47 0

.61 .07

.49 .18

.37 .04

.15 .02

30

25
U

8
1.I

20 -
U

0)

2 15
5

-4 k!
a : 10
9
aw tn

0

9.54%
10.03%
10.36%
10.44%
10.71%
10.89%
10.88%

Avg. improv./pass (%)

9.54%
10.02%
10.33%
10.40%
10.71%
10.84%
10.88%
10.94%
11.04%

j 2;; 3;; I 4;h

0
.01

.002

.001

.002

Max. improv./pass (%)
1st I 2nd I 3rd I 4th

19.69 I 11.21 1 5.19 1 0
15.04
12.69
11.26
11.05
10.39

I I I

0 5 10 15 20 25 30
BlSteiner improvement (percent)

Fig. 3. Batched 1-Steiner algorithm versus edge-based algorithm on 6OOO rando? samples.

algorithm performs as well as the batched 1-Steiner algorithm. The
last two lines of Table I1 show the percent improvement obtained
by our edge-based algorithm for 500 samples each of sizes 500
and 1000. The batched I-Steiner algorithm takes too long for sizes
500 and 1000 to collect enough data. Fig. 3 shows a scatter plot of
the percent improvements obtained by the two algorithms on 6000
random samples of various sizes. The Y-axis represents the percent
improvements obtained by our edge-based algorithm and the X-axis
represents the same produced by the batched 1-Steiner algorithm.
It can be easily observed that the two algorithms produce about
the same improvement in cost in most of the cases. While in a
few cases batched 1-Steiner is better than the edge-based algorithm,
there are about the same number of other examples where the edge-
based algorithm produces better routes than the batched 1-Steiner
algorithm.

Next, we looked at the time taken by the two algorithms to compute
the above results. We ran our implementation of the edge-based
algorithm and the batched 1-Steiner code obtained from the authors
of [14] together on the same sets of data on a Sun4 machine and
measured the average CPU time taken for about 5000 samples of each
size. Table I11 shows the results of the execution time comparisons
for samples varying in size from 5 to 200. The average execution
times taken by our edge-based algorithm for net sizes 500 and 1000
based on about 500 runs for each size are also shown in the last two
rows of Table 111.

TABLE I1
AVERAGE PERFORMANCE COMPARISON OF THE W O ALGORITHMS

Size of net
4
5
6
10
20
50
100
200
500
1000

Batched 1-Steiner I Edge-based
8.63% 1 8.63%

1565

Based on experimental results, our edge-based algorithm is 5 times
faster than the batched 1-Steiner algorithm for problems of size as
small as 5 nodes and about 70 times faster than the batched 1-
Steiner algorithm for problems of size 200. Moreover, our algorithm
computes the route for a problem with 1000 nodes in less than 3
minutes.

In CAD systems for VLSI layout generation, routing represents
a major portion of the running time. Since our algorithm has the

I566 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 12, DECEMBER 1994

Fig. 4. Visible nodes and blocking.

Algorithm Horizontal-sweep()
Input: The Sorted list of vertical segments
Output: The <visible-node, edge> pairs to the left or right
Major data-structures: A balanced tree for maintaining ‘active’ intervals

If

End.

Begin
For (each vertical edge segment) do

If (‘left’ vertical segment) then
Report all the nodes of the ‘active’ segments overlapped by this

segment as visible from the incoming edge
Mark the reported nodes as ‘blocked’
If (any active segment is partially overlapped) then

Report the appropriate node of the incoming segment as
visible from the overlapped edge

If (both nodes of a segment are blocked) then

‘right’ vertical segment) then
Remove the corresponding left segment from ‘active’ set, if exists
Insert the segment into the set of active segments

Delete that segment from the,set of active segments.

Fig. 5. The horizontal sweep of the sweeping algorithm.

advantage of producing very close to optimal Steiner trees and
running an order of magnitude faster than the best existing algorithm,
it stands as the best candidate for use in such layout generators.
Moreover, the implementation of the algorithm requires the use of
only simple and conventional data structures, which makes it easy to
interface with other tools in the system.

IV. IMPROVING THE A S Y M ~ ~ O T I C TIME COMPLEXITY
In [12] Hwang gave an O(n log n) algorithm to find the rectilinear

minimum spanning tree of a set of nodes by first constructing a
voronoi diagram of the points in O(n log n) time and thus trans-
forming the problem into a planar graph problem that can easily be
solved in O(n log n) time. Computing all possible (node, edge) pairs
with positive gain can be done in O(n log n) time. This is based on
the following simple observations.

A . Visible Nodes and Blocking
Consider the tree in Fig. 4(a). Nodes p l and p3 may be connected

to edge e2 resulting in a modification similar to Fig. 1. But the node

TABLE III
COMPARlSlON OF THE AVERAGE CPU TIME REQUIRED BY THE TWO ALGORITHMS

S u e of net
5
6
8
l o
20
50
100
200
500
1000

Batched 1-Steiner
7.1 msec
13.3 msec
32.1 msec
59.6 msec
456 msec
6.53 sec
52 sec
395 sec
>1.5 hrs

Edge- based
1.4 msec
2.5 msec
4.5 msec
6.4 msec
35 msec
0.26 sec
1.17 sec
5.6 sec
40 sec

2 a f c h e d l - S t e i n e r
Edqe-based

5
5.3
7

9 .3
13
25
44
70

173 sec

p z cannot be connected to e2 in the same way. (In fact, p2 should
probably be connected to e l .) In a sense, el is ‘blocking’ p~ from
connecting to (’2 in the tree. We will say node p l and p3 are visible to
edge e2 and node p z is blocked from e 2 by edge el. In this example,
the nodes p l and p~ are visible from the edge e z , while p s is visible

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 12, DECEMBER 1994 1561

Algorithm Edge-based-Steiner()
Begin

Compute the MST of the set of nodes.
Sort the vertical segments of the edges in ascending x-coordinates

Sort the horizontal segments of the edges in ascending y-coordinates

Use sweepline algorithm to report all the <visible-node, edge> pairs
Use Tree compression and NCA algorithms to compute the gain for each pair
Sort all the pairs in descending order of gain
Apply as many updates as possible from the sorted list.

Also mark left and right vertical segments.

Also mark top and bottom horizontal segments.

End.
Fig. 6. The main algorithm for the O(n1ogn) version.

Fig. 7. Artist11 layout for ‘ a h ’ using edge-based steiner algorithm.

from c1. From the above example, it is clear that: A node may be
connected to an edge for edge-pair replacement only if the node is
visible from the edge.

In Fig. 4(b), the edge cl has pz and p3 visible to its left, p7 and pg
to its right, p1 and p6 above it and p~ below. The edges e2, e3, . . ., e8

are the ‘neighbor edges’ of e l . Any other point outside the neighbor
edges (like 114 or p 1 0) are blocked by these neighbors and not visible
to e l . This situation is true for any of the other edges in the tree.
The visible nodes for an edge are the nodes of its neighbor edges.
Therefore, we can report all the pairs of (visible-node, longest-edge)
using a variation of the sweepline algorithm used to report overlaps of
rectangles [2 2] . A top-level description of this sweepline algorithm
is given in Fig. 5.

We represent an edge by the four rectilinear segments (left, right,
top and boftom) of its rectangular layout. Degenerate edges (i.e.,
edges that are along the gridlines) are considered as special cases.
For simplicity, the sweepline algorithm is split into two phases, a
horizontal or left to right sweep using the vertical segments and
reporting pairs with the visible nodes to the left or right of edges
and a vertical or bottom to top sweep using the horizontal segments

and reporting visible nodes above or below. We describe only the
horizontal sweep here; the vertical sweep is similar. For the horizontal
sweep, the vertical segments are sorted in ascending order on their
x-coordinates. There are at most 2n such segments. An interval tree
is used to maintain ‘active’ edge segments at any time of the left
to right sweep. The tree is searched to report the visible nodes
and blocking edges. When a left vertical segment of an edge is
encountered, the tree is queried to report all the visible nodes to
the left of the edge. These are exactly the active segments that this
edge overlaps in the tree. The edges to which the two nodes of the
incoming edge are visible to the right are the partially overlapped
segments, and are also reported. When a right vertical segment
is encountered, it is inserted into the tree. Since the interval tree
data structure is balanced, operations like insertion and deletion take
O(1ogn) time, while queries take O(1ogn + k) time where k is
the number of nodes reported. Each edge segment in the sweepline
algorithm is encountered only once, and only a linear number of nodes
are reported. Thus, the sweepline algorithm requires O(n log n)
time.

After all the (node,edge) pairs are found using the sweepline
algdrithm, the maximum length edges for each of the pairs need to
be computed before the gain can be calculated. Since all the pairs are
already available and the tree does not change during computation of
the gain, we can use an off-line algorithm for this. Tarjan, in [21],
gives an O ((n + m)a(rn + n , n)) time algorithm for computing
m such queries on a n node tree. Here a () is the inverse of the
Ackerman’s function and is very slow-growing. Tarjan’s algorithm
uses path compression along with the nearest common ancestor
(NCA or LCA) algorithm to compute this. Note that efficient O (n)
preprocessing time and O (m) query time algorithms for the nearest
common ancestor problem exists [9]. Since m is O(n) in this case,
the queries can be computed in O(n log n) time. Now, computing
the gain information for the O (n) pairs takes only O (n) time. Step 4
of sorting the O (n) queries take O(n log n) time followed by O (n)
time for the updates to the tree. Hence, the algorithm has O(n log n)
complexity. Our overall improved algorithm is given as pseudocode
in Fig. 6.

Though this algorithm is asymptotically faster than the version
of our algorithm described in Section 11, an implementation of this
algorithm would require the use of complex data structures (e.g., splay
trees) and sophisticated programming techniques. Thus, we expect
the constant involved in the asymptotic time to be large and that this
algorithm may be empirically faster than the simpler version only for
large problems (say, > I O 0 nodes). We have not tested this version
of the algorithm for running time comparisons, although we expect
to see a drastic improvement in the running time for large-sized
problems.

1568 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 12, DECEMBER 1994

V. CONCLUSION
Our edge-based algorithm is used in artist11 [18], which produces

good layouts quickly. Fig. 7 shows a layout produced by artistll for
the ‘ ah ’ benchmark circuit [2] using our edge-based algorithm. This
implementation is very simple to understand and easy to use, since
it uses conventional data structures like adjacency lists and arrays.
The running time of the implemented algorithm is based on a naive
O (n 2) implementation. and further improvement on the running time
is possible by applying better programming techniques. The approach
taken in our algorithm is greedy, i.e., only edge-pair updates that
results in a positive gain are considered. Our experiments show that
by allowing a certain number of updates with negative gains in each
iteration, only marginally better improvements can be obtained at the
cost of a significant increase in the running time.

ACKNOWLEDGMENT

The authors thank Prof. Piotr Berman of Penn State University
for his hints and advice regarding the asymptotic complexity. They
also thank A. B. Kahng, G. Robins, and T. Zhang for providing their
batched 1-Steiner program.

REFERENCES

T. Barrera, J. Griffith, G. Robins, and T. Zhang, “Narrowing the
GAP: near-optimal steiner trees in polynomial time,’’ Univ. of Virginia,
Computer Science Dept., Tech. Rep. CS-93-31, June 1993.
MCNC benchmark. Physical Design Workshop, 1989.
Piotr Berman and Viswanathan Ramaiyer, “Improved approximations
for the steiner tree problem,” in Proc. Symp. Discrete Algorithms, Jan.
1992.
M . W. Bern and M. de Cawalho, “A greedy heuristic for rectilinear
steiner tree problem,” Univ. California-Berkely, Tech. Rep., 1986.
T. H. Chao and Y. C. Hsu, “Rectilinear steiner tree construction by
local and global refinement,” IEEE Trans. Compurer-Aided Design, vol
13. no. 3, pp. 303-309, Mar. 1994.

C. Chiang, M. Sarrafzadeh, and C. K. Wong, “Global routing based on
steiner min-max trees,” IEEE Trans. Computer-Aided Design, vol. 9,
no. 12, pp. 1318-1325, 1990.
T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms. New York: McGraw-Hill, ch. 24, 1990.
M. Garey and D. S . Johnson, “The rectilinear steiner problem is NP-
complete,” SIAM J. Appl. Math., vol. 32, no. 4, pp. 826-834, 1977.
Dov Hare1 and R. E. Tarjan, “Fast algorithms for finding nearest common
ancestors,” SIAM J. Computing, vol. 13, no. 2, pp. 338-355. May 1984.
J. M. Ho, G. Vijayan, and C. K. Wong, “New algorithms for the
rectilinear steiner tree problem,” IEEE Trans. Computer-Aided Design,
vol. 9, no. 2, pp. 185-193, 1990.
F. K. Hwang, “On steiner minimal trees with rectilinear distance,” SIAM
J. Appl. Math., vol. 30, no. 1, pp. 104-114, 1976.
F. K. Hwang, “An O(n,log 78) algorithm for rectilinear minimal span-
ning trees,’’ J. Assn. for Computing Machinery, vol. 26. no. 2, pp.
177-182, Apr. 1979.
F. K. Hwang, “An O(n1ogn) algorithm for suboptimal rectilinear
steiner trees,’’ IEEE Trans. Circuits Syst., vol. 26, pp. 75-77, 1979.
A. B. Kahng and G. Robins, “A new class of iterative steiner tree heuris-
tics with good performance,” IEEE Trans. Computer-Aided Design, vol.
11, no. 7, pp. 893-902, July 1992.
J. H. Lee, N. K. Bose, and F. K. Hwang, “Use of steiner’s problem
in suboptimal routing in rectilinear metric,” IEEE Trans. Circuits Syst.,
vol. 23, pp. 470-476, 1976.
F. D. Lewis, W. C. Pong, and N. Van-Cleave, ‘‘Local improvements
on Steiner trees,” in Proc. 3rd Great Lakes Symp. on VLSI, 1993, pp.
470-476.
A. Lim, S. W. Cheng, and C. T. Wu, “Performance oriented rectilinear
steiner trees,’’ Pruc. DAC, June 1993, pp. 171-176.
M. J. Irwin and R. M. Owens, “An overview of the penn state design
system,” in Proc. DAC, July 1987, pp, 516522.
D. Richards, F. K. Hwang, and W. Winter, Steiner Tree Problems. New
York: North Holland, ch. 2, 1992.
M. Sarrafzadeh and C. K. Wong, “Hierarchical Steiner tree construction
in uniform orientations,” IEEE Trans. Computer-Aided Design, vol. 1 1,
no. 9, pp. 1095-1103, Sept. 1992.
Robert E. Tarjan, “Applications of path compression on balanced trees,’’
J. Assn. for Computing Machinery, vol. 26, no. 4, pp. 69C-705, Oct.
1979.
Jeffery D. Ullman, Compurational Aspects of VLSI. Computer Science
Press, Inc., ch. 9, 1984.

a

