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We have developed and evaluated an edge detection scheme usingdiaearLaplace
operatorand the Marr-Hildreth model of edge detection. The techniqueis extremely
effective and flexible in detecting one-pixel thick edgesnimgeswhosesignal-to-noise

ratios (SNR) range from 40 dB down todB. We have comparedour resultswith those

in the literature. For the test images we considered, our configuration performs at least as
well - and in most cases far better - than other edge deteEwmrshesecomparisonsve

have used Pratt's figure-of-merit as a quantitative performancemeasure.At very low
signal-to-noiseratios (<10 dB), our detectoris superiorto all the others tested and
produces closed contours.

Specific characterizations of the non-linear Laplacéae its adaptive orientationto the
direction of the gradient, its inherent masks which permit the development of
approximately circular (isotropic) filters, and its easy and fast implementation in
software.

1. INTRODUCTION

Edge detection is one of the most important tasks in inpageessingand sceneanalysissystems.
It is frequentlyusedin scenesegmentationwhere bordersbetweenadjacent regions have to be
extracted. During the past two decades edge detection has been a major tegeacthproviding

many algorithms that perform well in a given applicatibnt poorly in most others.The objective
of our researchis, therefore,to develop an edge detectionschemerobustenoughto performwell

over a wide range of signal-to-noise ratios in various types of images.

We define an edge as:

edge - a simply-connected contour, one pixbick, at the center of the slope betweentwo
adjacent regions with a considerable difference in grey level.

A detector, based on the detection of zero-crossings in the output of a "Laplace" filteredcanage
produce such edges. At the position of true edges there is a peak in the first derivative
perpendicular to théocal edge direction. These peakscorrespondo zero-crossingsn the second
derivative along the gradient. The Marr-Hildreth edge detection model, which is based on
neurophysiological studies, combines a Laplétter with a Gaussiansmoothingfilter (Marr [1]).
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The size, standard deviation, of the Gaussian fatdectsa size scale at which possiblechanges
in grey level are detected.The frequencybandto be chosenstrongly dependson the noise level
and type of input image. The necessityof this combinationis confirmed by the revival of the
Laplace operator, which had fallen into disuse [2] before Marr's publication.

A non-linear Laplace-like operator in a 3x@&ighborhoodproposedby Beckers[3] showedto be a
less noise-sensitive alternative to the classic Laplace operator. In our research we have
incorporated the non-linear Laplace operator in an extended veskitie Marr-Hildreth model for
edge detection. The next section describesthe different functions of the edge detection scheme.
The scheme consists of parallel algorithms, thersealgorithmsin which the detectionof a pixel
as an edge elemeig independentof the resultselsewherein the image. Section 3 describesthe
evaluation procedurg¢hat is usedto locally optimize the detectorover a wide range of signal-to-
noise ratios. Sectiod showssome experimentalresultsachievedwith this detector.In section5,
we present a comparative studf/this techniquewith those of othersusing Pratt'sfigure of merit
as a quantitative performancemeasure (Pratt [4]). At the end conclusions might be drawn
concerning the applicability of the approached technique.

2. EDGE DETECTION SCHEME

The Marr-Hildreth model for edge detection consists of a combination of a band pass filter
(Gaussianfilter) and a high passfilter (Laplace filter) followed by a zero-crossingletector. The
resulting Laplacianof a Gaussian(DZGo(x,y)) is often called the 'Mexican-Hat' operator,due to
its characteristicshape.The mask can be decomposednto separaterow and column filters to
increase computational speed on general purgosgputers.In our schemewe split the '"Mexican
hat' in a smoothingfilter and a Laplace filter. Apart from the zero-crossingsedge strengthsare
computed.Finally, theseresultsare combinedinto one image of which the pixels have a grey
value representing the likelihood that they belong to an edge in the origiagé. In the casethe
image contains objects and background wvétkignificant differencein grey level, thresholdingat
a proper level produces closed contoacgordingto our definition of an edge.A flow diagram of
the described model is presented by figure 1.
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Figure 1: The edge detection model.
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b d f

Figure 2: Pictures showing the intermediate results during the various stddbe edge detection
process.The charactercode correspondgo the marked placesin the flow diagram of the edge
detection model of fig. 1.

2.1. Smoothing Filter

A Smoothing filter is appliedo a 'noisy' input image in orderto suppresghe noise level using a
form of averagingA uniform filter of size n (n2 samples)reducesthe noise varianceby a factor
n2, thus increasingthe signal-to-noiseratio. Another smoothingfilter is a Gaussiarfilter. Evenif
the noise suppressingfactor of these two filters are the same, the frequencyresponsesemain
completely different. Gaussiansmoothingis superiorto uniform smoothingwhich can be shown
both analytically (Marr [1]; Canny[5]) and experimentally(Van Vliet [6]). The smoothingfilter
should, however, be as small as possible because averaging blurs the image and decreases
resolution.

2.2. Non-linear Laplace Operator

Laplace filters used in image processingare digital approximations of their mathematical
equivalent;a variety of suchfilters can be constructed A 3x3 filter which is frequently usedis
given in eq.(1).

DZI(X,y) = I(X+1vy) + |(X'1,y) + |(X,y+1) + I(le'l) - 4I(le) (l)

The Laplacian is rotation invariant which meansthat spatial frequenciesin all directions are
equally enhancedUnfortunately,it cannotdistinguishsignal and noise which makesit a useless
tool in images with medium and low signal-to-noisios (Ballard [2]). Directional informationis

not available as well.
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A possible solution to these disadvantages of the linear Lafilemeis the designof a non-linear
Laplace filter,a non-linearcombinationof neighborhoodpixels. Our non-linearLaplace filter has
two filter parameterssize and shape.For a more detailed description of the non-linear Laplace
operator of eq.(2) we refer to Van Vliet et. al.[6].

NLLAP(x,y) = gradmax(x,y) + gradmin(x,y) (2a)
where

gradmax(x,y) =max{ Cn(xy") [I(x"y’) - 1)1 | (X.y") _ di(x.y) } (2b)

gradmin(x,y) =min{ Cn(x,y") [I(xy") - I(x,y)] | (X.y") _ dy(x,y) } (2¢)

where gh(x,y) is an nxnsquare centered at (x,y) an€n(x',y") is a multiplication mask consisting
of scale coefficients dependent on the filter size and the desired filter shape, i.e. circular or square.
For Ga(x\y) = {1 | (xX\¥y) DO dn(x,y) } eq.(2) can be simplified to:

MAX{ 1(x.y) } - 1(x.y) (3a)

gradmax(x,y)

gradmin(x,y) MIN{ 1(X,y) } - I(x,y) (3b)

where MAX n and MINR, are two simple non-linear filters, the local maximum and the local
minimum filter with an nxn square window as structuring element.

Non-square filters can bleuilt in one of two ways. Circular filter shapescan be approximatedby
chosingthe propermultiplication masksCn(x',y'). Thesemaskscan be constructedby rescaling
the mask coefficients lying outside an imaginary circle with radius (n-1)/2 (n represersizetaf
the non-linearLaplace operator).Examplesof those masksfor n = 3, 5, and 7 are given by Van
Vliet [6]. In addition, mask coefficients which originate completely from outside this anelg be
set to zero. Alternatively, arbitrary filter shapescan be constructedby taking maximum and
minimum filters of such shapes.The impact of several shapes: square, diamond, circular,
circular/hollow on edge detectionis presentedby Verbeek et al. [7]. Fast algorithms for these
filters on general purpose computers are given as well.

Concluding, the non-linear Laplace operator has the following potential advantages:
< adaptive orientation perpendicular to the local edge direction;
e decreased sensitivity to noise;
« simple implementation.

2.3. Zero Crossing Detector

A zero-crossing detector assigns a label 'edge' to these locatimrs the Laplace filtered image
changessign. It will be very unlikely that zero-crossingscoincide with our spatial coordinates
called pixels. The detection of those zero-crossingscan be done very accurately by subpixel
interpolation techniques. Subpixel precisioan also be achievedby parametricmethods.A least
square estimator is used to compute locally jheametersof a set of discrete polynomialswhich
describe the underlying grey valués.precisionless than 0.5 pixel can be achievedby a nearest
neighbor approach.A disadvantageof the above mentionedtechniquesis a required boundary
condition to guarantee the connectedness of the edge pixels.cBudhionsslow down the speed
of those algorithms.

Our fast zero-crossing detector solves these problems in excfangenaximum displacementof

1 pixel (fig. 3). After an initial segmentationinto three regions:positive, zero, and negative,the
zero value pixels are assignedto the nearestadjacentregion using two distance transformations
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(Borgefors [8]). This guarantees a good performance vaeating with blurred imageswhere long

ramp edgesoften occur. From the resulting binary image (positive, negative) the 8-connected
contour is extracted. This is a very important step becauseclosed contoursare found without

additional computational effort.

Laplace
Filtered
Image
Distance
Transformation
of Positive Regions ‘
Segmentatior): Assign Zero Value 8-Connected
positive Pixels to the Closest_,] Contour
zero (pos/neg) Region Extraction
negative
Distance
L »| Transformation Detected
of Negative Regior|s Zero

Crossings

Figure 3: The zero-crossing detection scheme.

2.4. Edge Strength Detector

The edge strength at an arbitrary location is a measure for the steepness of antleglgecstion

in the input image. Gradient-like filters are able to provide edge strengthimages. Comparative
studies by Abdou [9] and Peli [10] have pointed out, however, that common gradient opsuators
as Roberts [11], Prewitt [12], and Sobel [13] perform poorly in images with medium amsidoai-
to-noise ratios.

Lee's [14] morphologicedge detectoris less noise sensitive and performs optimal on
blurredimages(fig. 4). A step edge can only be detected after the image has been smoothed.
Figure 4 shows that the ridges in Lee's edge strength image coincidéh&itbro-crossing®f our
non-linear Laplace operator. In this detector we notice a strong parallel with the non:lamdace
operator. Lee's definition can be rewritten in terms of gradmax and gradmin as follows:

|Edge-Strengtfx,y) = min{ gradmax(x,y), -gradmin(x,y) } (4)

The above given equationimplies a reductionin computational effort. Namely, gradmax and
gradmin have to be computed only once and are used twice.

3. EVALUATION PROCEDURE
The model describedin the precedingsection has parametersassociatedwith it: the standard
deviation of the Gaussiarfilter; and the size and effective shapeof both the non-linear Laplace

operatorand the edge strengthfilter. In orderto take advantageof the parallel betweenthe last
two, the size and shape of both filters are chosen equal.
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Figure 4: Lee's blur minimum morphologic edge detector is very effective on a blurred edge
profile.

In our researchwe studiedthe relation betweenthe SNR of the input image and the parameter
choices of the edge detection model, in particular the Gaussianfilter size and the non-linear
Laplace filter size versus the SNR. The SNR is defined as:

2
NR=L (5)
Gn

where g is the grey level difference betweenthe two sides of an edge, and op the standard
deviation of the additive independentGaussiannoise with zero mean. Within a small range of
SNR, the optimum configuration of our edge detector ought to be thevibmehe smallestsupport
in the spatial domain. As an objective quantitative performancemeasurewe have chosenPratt's
figure of merit (Pratt [4]).

FOM =

|
1 Z 1
2
ma>(ID,I,);1+adi ()
where b is the number of detected edge pointghe numberof ideal edge points (groundtruth),
a (>0, often 1/9) a scaling factoand dj the edge deviation or error distancefor the ith detected
edge pixel.

Pratt's figure-of-merit has often been used in edge detection evaluation which allowsonspt@are
our resultswith those of othersin casethe testimagesare the same. However, Pratt's figure-of-
merit strongly depends on the threshold level usedbtain a binary edgeimage. In the literature
(Peli [10]) the threshold level waset to achieve the maximum figure-of-merit. We choseinstead
for thresholds that provided closed contours and took our chavitteshe resulting figure-of-merit.
We did so, becausethe edge results with maximum figure-of-merit consist of many small
disconnectedpieces from which hardly any information can be derived. Unfortunately, Pratt's
figure-of-merit gives no bonusfor finding closed contoursand small eroneousfragmentsfar from
the true contour are heavily penalized.
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4. EXPERIMENTAL RESULTS

In orderto estimatethe optimal parameterchoice for a wide range of SNRs (1<SNR<100) we
divide the SNR interval in two parts: 1<SNR<10 and 10<SNR<100. This is done for display
purposes. In our model we used a Gaussmoothingfilter, a non-linearLaplace filter, and Lee's
edge strength filter, all with a pseudo circular shape and of diffsizas.We useda circular test
image with additive independentGaussiannoise with zero mean (fig. 2a). Figure 5 showsthe
figure-of-merit for several values of (standard deviation of &aussianfilter) and n (filter size of
a non-linear Laplace filter) over the entire range of SNRs.
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Figure 5: The obtainedfigure-of-meritsof severalconfigurationof the edge detection model as
function of the signal-to-noiseratio. A synthetic image containing a circle with additive
independent Gaussian noise with zero mean is usechohlllinearLaplace filters as well as edge
strength operators have a circular support.
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From figure 5 we may deduce that there is a lob@undfor the amountof smoothingsomewhere
betweeno = 0.8and o = 1.0. As the SNR decreasesve observea monotonic increasein the

standarddeviation of the Gaussianfilter requiredto achieve a respectablefigure-of-merit. The

optimum size of the non-linear Laplace filter increases as well. Figure 6 showsglaestimate of

the locally optimal valuesfor ¢ and n as a function of the SNR. The grey region indicates the

uncertainty associated with these parameter values.

Examining the above results we should not forget thatebtobject is relatively large in relation
to the total filter size. If the complexity of thmage is greaterwith more spatial details, the size
of the filters used can interfere with the estimatiorthef true edge positions.This is illustrated in
the roundedcornersof the detectededgesin the highly structuredshawl of figure 7b. Very fine
spatial details embedded in a high noise level cannot be detected or are only partially be detected.
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Figure 6: Locally optimal standard deviation of the Gaussian smoothing filter and locally optimal
size of the non-linear Laplace filter as function of the signal-to-noise ratio.

5. COMPARISONS

In the previoussectionwe have examinedthe influence of the parameterssc and n on our edge
detectionscheme.This hasresultedin a locally optimal configurationas function of the SNR in
the input image. This was done for a circular test image adiitive independentGaussiannoise.
Peli(1982) reported an extensive evaluation of well known efigectorson a similar testimage.
His resultsare shownin Peli [10] figure 11b. He concludesthat the Roberts'gradientis a useful
edgedetectorin imageswith high SNR due to its computationalsimplicity while the Rosenfeld
[15-17] algorithmperformsbetter in noisy images.The idea behindthe latter techniqueis that of
computing differences betweeaveragesof non-overlappingneighborhoodghat meet at the same
point. However, our figure Bomparedwith Peli (fig. 11b) showsthat the model proposedhere is
superior to these other techniques for the entire range of SNR.
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6. CONCLUSIONS

An edge detection scheme inspired by the Marr-Hildreth eligjection model has beendescribed
and evaluated.The schemereservesa central role for the non-linear Laplace operatorand is,
therefore,extremely effective and flexible in the detection of one pixel thick edges.We have
empirically determined the relation between the SNR of the input image anmhtametersof the
edge detection model, resulting in a locally optimal configurationfor a wide range of SNRs
(1<SNR<100).

Comparisonswith other edge detectors based on Pratt's figure-of-merit shows that our model
performat least as well, and in most casesfar better, than all other techniques(Peli [10], Van
Vliet [6]).

Finally we presentin figure 7 the edgeresultsachievedby applying our detectorto some "real
world" images.

Figure 7: Presentation of the edgesultsachievedby applying our edge detectorto "real world"
images. In the shawl of bottom-Idfgure we notice a displacementof the detectededge position
at sharpcorners,causedby interferencebetweenthese small spatial details and the size of the
edge detector.
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