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We have developed and evaluated an edge detection scheme using a non-linear Laplace
operator and the Marr-Hildreth model of edge detection. The technique is extremely
effective and flexible in detecting one-pixel thick edges in images whose signal-to-noise
ratios (SNR) range from 40 dB down to 0 dB. We have compared our results with those
in the literature. For the test images we considered, our configuration performs at least as
well - and in most cases far better - than other edge detectors. For these comparisons we
have used Pratt's figure-of-merit as a quantitative performance measure. At very low
signal-to-noise ratios (<10 dB), our detector is superior to all the others tested and
produces closed contours.

Specific characterizations of the non-linear Laplacian are its adaptive orientation to the
direction of the gradient, its inherent masks which permit the development of
approximately circular (isotropic) filters, and its easy and fast implementation in
software.

1. INTRODUCTION

Edge detection is one of the most important tasks in image processing and scene analysis systems.
It is frequently used in scene segmentation, where borders between adjacent regions have to be
extracted. During the past two decades edge detection has been a major topic of research providing
many algorithms that perform well in a given application, but poorly in most others. The objective
of our research is, therefore, to develop an edge detection scheme robust enough to perform well
over a wide range of signal-to-noise ratios in various types of images.

We define an edge as:

edge - a simply-connected contour, one pixel thick, at the center of the slope between two
adjacent regions with a considerable difference in grey level.

A detector, based on the detection of zero-crossings in the output of a "Laplace" filtered image can
produce such edges. At the position of true edges there is a peak in the first derivative
perpendicular to the local edge direction. These peaks correspond to zero-crossings in the second
derivative along the gradient. The Marr-Hildreth edge detection model, which is based on
neurophysiological studies, combines a Laplace filter with a Gaussian smoothing filter (Marr [1]).
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The size, standard deviation, of the Gaussian filter selects a size scale at which possible changes
in grey level are detected. The frequency band to be chosen strongly depends on the noise level
and type of input image. The necessity of this combination is confirmed by the revival of the
Laplace operator, which had fallen into disuse [2] before Marr's publication.

A non-linear Laplace-like operator in a 3x3 neighborhood proposed by Beckers [3] showed to be a
less noise-sensitive alternative to the classic Laplace operator. In our research we have
incorporated the non-linear Laplace operator in an extended version of the Marr-Hildreth model for
edge detection. The next section describes the different functions of the edge detection scheme.
The scheme consists of parallel algorithms, these are algorithms in which the detection of a pixel
as an edge element is independent of the results elsewhere in the image. Section 3 describes the
evaluation procedure that is used to locally optimize the detector over a wide range of signal-to-
noise ratios. Section 4 shows some experimental results achieved with this detector. In section 5,
we present a comparative study of this technique with those of others using Pratt's figure of merit
as a quantitative performance measure (Pratt [4]). At the end conclusions might be drawn
concerning the applicability of the approached technique.

2. EDGE DETECTION SCHEME

The Marr-Hildreth model for edge detection consists of a combination of a band pass filter
(Gaussian filter) and a high pass filter (Laplace filter) followed by a zero-crossing detector. The
resulting Laplacian of a Gaussian (∇2Gσ(x,y)) is often called the 'Mexican-Hat' operator, due to
its characteristic shape. The mask can be decomposed into separate row and column filters to
increase computational speed on general purpose computers. In our scheme we split the 'Mexican
hat' in a smoothing filter and a Laplace filter. Apart from the zero-crossings edge strengths are
computed. Finally, these results are combined into one image of which the pixels have a grey
value representing the likelihood that they belong to an edge in the original image. In the case the
image contains objects and background with a significant difference in grey level, thresholding at
a proper level produces closed contours according to our definition of an edge. A flow diagram of
the described model is presented by figure 1.
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Figure 1: The edge detection model.
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Figure 2: Pictures showing the intermediate results during the various stages of the edge detection
process. The character code corresponds to the marked places in the flow diagram of the edge
detection model of fig. 1.

2.1. Smoothing Filter
A Smoothing filter is applied to a 'noisy' input image in order to suppress the noise level using a
form of averaging. A uniform filter of size n (n2 samples) reduces the noise variance by a factor
n2, thus increasing the signal-to-noise ratio. Another smoothing filter is a Gaussian filter. Even if
the noise suppressing factor of these two filters are the same, the frequency responses remain
completely different. Gaussian smoothing is superior to uniform smoothing which can be shown
both analytically (Marr [1]; Canny [5]) and experimentally (Van Vliet [6]). The smoothing filter
should, however, be as small as possible because averaging blurs the image and decreases
resolution.

2.2. Non-linear Laplace Operator
Laplace filters used in image processing are digital approximations of their mathematical
equivalent; a variety of such filters can be constructed. A 3x3 filter which is frequently used is
given in eq.(1).

∇2I(x,y) ≈ I(x+1,y) + I(x-1,y) + I(x,y+1) + I(x,y-1) - 4I(x,y) (1)

The Laplacian is rotation invariant which means that spatial frequencies in all directions are
equally enhanced. Unfortunately, it cannot distinguish signal and noise which makes it a useless
tool in images with medium and low signal-to-noise ratios (Ballard [2]). Directional information is
not available as well.
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A possible solution to these disadvantages of the linear Laplace filter is the design of a non-linear
Laplace filter, a non-linear combination of neighborhood pixels. Our non-linear Laplace filter has
two filter parameters: size and shape. For a more detailed description of the non-linear Laplace
operator of eq.(2) we refer to Van Vliet et. al.[6].

NLLAP(x,y) = gradmax(x,y) + gradmin(x,y) (2a)

where

gradmax(x,y) = max{ Cn(x',y') [I(x',y') - I(x,y)] | (x',y') _ dn(x,y) } (2b)

gradmin(x,y) = min{ Cn(x',y') [I(x',y') - I(x,y)] | (x',y') _ dn(x,y) } (2c)

where dn(x,y) is an nxn square centered at (x,y) and Cn(x',y') is a multiplication mask consisting
of scale coefficients dependent on the filter size and the desired filter shape, i.e. circular or square.
For Cn(x',y') = {1 | (x',y') ∈ dn(x,y) } eq.(2) can be simplified to:

gradmax(x,y) = MAXn{ I(x,y) } - I(x,y) (3a)

gradmin(x,y)  = MINn{ I(x,y) } - I(x,y) (3b)

where MAX n and MINn are two simple non-linear filters, the local maximum and the local
minimum filter with an nxn square window as structuring element.

Non-square filters can be built in one of two ways. Circular filter shapes can be approximated by
chosing the proper multiplication masks Cn(x',y'). These masks can be constructed by rescaling
the mask coefficients lying outside an imaginary circle with radius (n-1)/2 (n represents the size of
the non-linear Laplace operator). Examples of those masks for n = 3, 5, and 7 are given by Van
Vliet [6]. In addition, mask coefficients which originate completely from outside this circle may be
set to zero. Alternatively, arbitrary filter shapes can be constructed by taking maximum and
minimum filters of such shapes. The impact of several shapes: square, diamond, circular,
circular/hollow on edge detection is presented by Verbeek et al. [7]. Fast algorithms for these
filters on general purpose computers are given as well.

Concluding, the non-linear Laplace operator has the following potential advantages:
• adaptive orientation perpendicular to the local edge direction;
• decreased sensitivity to noise;
• simple implementation.

2.3. Zero Crossing Detector
A zero-crossing detector assigns a label 'edge' to these locations where the Laplace filtered image
changes sign. It will be very unlikely that zero-crossings coincide with our spatial coordinates
called pixels. The detection of those zero-crossings can be done very accurately by subpixel
interpolation techniques. Subpixel precision can also be achieved by parametric methods. A least
square estimator is used to compute locally the parameters of a set of discrete polynomials which
describe the underlying grey values. A precision less than 0.5 pixel can be achieved by a nearest
neighbor approach. A disadvantage of the above mentioned techniques is a required boundary
condition to guarantee the connectedness of the edge pixels. Such conditions slow down the speed
of those algorithms.

Our fast zero-crossing detector solves these problems in exchange for a maximum displacement of
1 pixel (fig. 3). After an initial segmentation into three regions: positive, zero, and negative, the
zero value pixels are assigned to the nearest adjacent region using two distance transformations
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(Borgefors [8]). This guarantees a good performance when dealing with blurred images where long
ramp edges often occur. From the resulting binary image (positive, negative) the 8-connected
contour is extracted. This is a very important step because closed contours are found without
additional computational effort.
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Figure 3: The zero-crossing detection scheme.

2.4. Edge Strength Detector
The edge strength at an arbitrary location is a measure for the steepness of an edge at that location
in the input image. Gradient-like filters are able to provide edge strength images. Comparative
studies by Abdou [9] and Peli [10] have pointed out, however, that common gradient operators such
as Roberts [11], Prewitt [12], and Sobel [13] perform poorly in images with medium and low signal-
to-noise ratios.

Lee's [14] morphologic edge detector is less noise sensitive and performs optimal on
blurred images (fig. 4). A step edge can only be detected after the image has been smoothed.
Figure 4 shows that the ridges in Lee's edge strength image coincide with the zero-crossings of our
non-linear Laplace operator. In this detector we notice a strong parallel with the non-linear Laplace
operator. Lee's definition can be rewritten in terms of gradmax and gradmin as follows:

IEdge-Strength(x,y) = min{ gradmax(x,y), -gradmin(x,y) } (4)

The above given equation implies a reduction in computational effort. Namely, gradmax and
gradmin have to be computed only once and are used twice.

3. EVALUATION PROCEDURE

The model described in the preceding section has parameters associated with it: the standard
deviation of the Gaussian filter; and the size and effective shape of both the non-linear Laplace
operator and the edge strength filter. In order to take advantage of the parallel between the last
two, the size and shape of both filters are chosen equal.
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Figure 4: Lee's blur minimum morphologic edge detector is very effective on a blurred edge
profile.

In our research we studied the relation between the SNR of the input image and the parameter
choices of the edge detection model, in particular the Gaussian filter size and the non-linear
Laplace filter size versus the SNR. The SNR is defined as:

SNR
g

n

=
2

2σ
(5)

where g is the grey level difference between the two sides of an edge, and σn the standard
deviation of the additive independent Gaussian noise with zero mean. Within a small range of
SNR, the optimum configuration of our edge detector ought to be the one with the smallest support
in the spatial domain. As an objective quantitative performance measure we have chosen Pratt's
figure of merit (Pratt [4]).
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where ID is the number of detected edge points, II the number of ideal edge points (ground truth),
α (>0, often 1/9) a scaling factor, and di the edge deviation or error distance for the ith detected    

edge pixel.

Pratt's figure-of-merit has often been used in edge detection evaluation which allows us to compare
our results with those of others in case the test images are the same. However, Pratt's figure-of-
merit strongly depends on the threshold level used to obtain a binary edge image. In the literature
(Peli [10]) the threshold level was set to achieve the maximum figure-of-merit. We chose instead
for thresholds that provided closed contours and took our chances with the resulting figure-of-merit.
We did so, because the edge results with maximum figure-of-merit consist of many small
disconnected pieces from which hardly any information can be derived. Unfortunately, Pratt's
figure-of-merit gives no bonus for finding closed contours and small eroneous fragments far from
the true contour are heavily penalized.
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4. EXPERIMENTAL RESULTS

In order to estimate the optimal parameter choice for a wide range of SNRs (1≤SNR≤100) we
divide the SNR interval in two parts: 1≤SNR≤10 and 10<SNR≤100. This is done for display
purposes. In our model we used a Gaussian smoothing filter, a non-linear Laplace filter, and Lee's
edge strength filter, all with a pseudo circular shape and of different sizes. We used a circular test
image with additive independent Gaussian noise with zero mean (fig. 2a). Figure 5 shows the
figure-of-merit for several values of σ (standard deviation of a Gaussian filter) and n (filter size of
a non-linear Laplace filter) over the entire range of SNRs.
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Figure 5: The obtained figure-of-merits of several configuration of the edge detection model as
function of the signal-to-noise ratio. A synthetic image containing a circle with additive
independent Gaussian noise with zero mean is used. All non-linear Laplace filters as well as edge
strength operators have a circular support.
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From figure 5 we may deduce that there is a lower bound for the amount of smoothing somewhere
between σ = 0.8 and σ = 1.0. As the SNR decreases we observe a monotonic increase in the
standard deviation of the Gaussian filter required to achieve a respectable figure-of-merit. The
optimum size of the non-linear Laplace filter increases as well. Figure 6 shows a rough estimate of
the locally optimal values for σ and n as a function of the SNR. The  grey region indicates the
uncertainty associated with these parameter values.

Examining the above results we should not forget that the test object is relatively large in relation
to the total filter size. If the complexity of the image is greater with more spatial details, the size
of the filters used can interfere with the estimation of the true edge positions. This is illustrated in
the rounded corners of the detected edges in the highly structured shawl of figure 7b. Very fine
spatial details embedded in a high noise level cannot be detected or are only partially be detected.

Figure 6: Locally optimal standard deviation of the Gaussian smoothing filter and locally optimal
size of the non-linear Laplace filter as function of the signal-to-noise ratio.

5. COMPARISONS

In the previous section we have examined the influence of the parameters σ and n on our edge
detection scheme. This has resulted in a locally optimal configuration as function of the SNR in
the input image. This was done for a circular test image with additive independent Gaussian noise.
Peli(1982) reported an extensive evaluation of well known edge detectors on a similar test image.
His results are shown in Peli [10] figure 11b. He concludes that the Roberts' gradient is a useful
edge detector in images with high SNR due to its computational simplicity while the Rosenfeld
[15-17] algorithm performs better in noisy images. The idea behind the latter technique is that of
computing differences between averages of non-overlapping neighborhoods that meet at the same
point. However, our figure 5 compared with Peli (fig. 11b) shows that the model proposed here is
superior to these other techniques for the entire range of SNR.
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6. CONCLUSIONS

An edge detection scheme inspired by the Marr-Hildreth edge detection model has been described
and evaluated. The scheme reserves a central role for the non-linear Laplace operator and is,
therefore, extremely effective and flexible in the detection of one pixel thick edges. We have
empirically determined the relation between the SNR of the input image and the parameters of the
edge detection model, resulting in a locally optimal configuration for a wide range of SNRs
(1≤SNR≤100).
Comparisons with other edge detectors based on Pratt's figure-of-merit shows that our model
perform at least as well, and in most cases far better, than all other techniques (Peli [10], Van
Vliet [6]).

Finally we present in figure 7 the edge results achieved by applying our detector to some "real
world" images.

Figure 7: Presentation of the edge results achieved by applying our edge detector to "real world"
images. In the shawl of bottom-left figure we notice a displacement of the detected edge position
at sharp corners, caused by interference between these small spatial details and the size of the
edge detector.
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