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An Edge-Guided Image Interpolation
Algorithm via Directional Filtering

and Data Fusion
Lei Zhang, Member, IEEE, and Xiaolin Wu, Senior Member, IEEE

Abstract—Preserving edge structures is a challenge to image
interpolation algorithms that reconstruct a high-resolution image
from a low-resolution counterpart. We propose a new edge-guided
nonlinear interpolation technique through directional filtering
and data fusion. For a pixel to be interpolated, two observation sets
are defined in two orthogonal directions, and each set produces an
estimate of the pixel value. These directional estimates, modeled
as different noisy measurements of the missing pixel are fused
by the linear minimum mean square-error estimation (LMMSE)
technique into a more robust estimate, using the statistics of the
two observation sets. We also present a simplified version of the
LMMSE-based interpolation algorithm to reduce computational
cost without sacrificing much the interpolation performance.
Experiments show that the new interpolation techniques can
preserve edge sharpness and reduce ringing artifacts.

Index Terms—Data fusion, edge preservation, image interpola-
tion, linear minimum mean square-error estimation (LMMSE).

I. INTRODUCTION

M
ANY users of digital images desire to improve the

native resolution offered by imaging hardware. Image

interpolation aims to reconstruct a higher resolution (HR)

image from the associated low-resolution (LR) capture. It has

applications in medical imaging, remote sensing and digital

photographs [3]–[5], etc. A number of image interpolation

methods have been developed [1], [2], [5], [6], [8]–[16]. While

the commonly used linear methods, such as pixel duplication,

bilinear interpolation, and bicubic convolution interpolation,

have advantages in simplicity and fast implementation [7],

they suffer from some inherent defects, including block effects,

blurred details and ringing artifacts around edges. With the

prevalence of inexpensive and relatively LR digital imaging

devices and the ever increasing computing power, interests in

and demands for high-quality image interpolation algorithms

have also increased.

The human visual systems are highly sensitive to edge struc-

tures, which convey much of the image semantics, so a key re-
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quirement for image interpolation algorithms is to faithfully re-

construct the edges in the original scene. The traditional linear

interpolation methods [1]–[3], [5], [6] do not work very well

under the edge preserving criterion. Some nonlinear interpola-

tion techniques [8]–[15] were proposed in recent years to main-

tain edge sharpness. The interpolation scheme of Jensen and

Anastassiou [8] detects edges and fits them by some templates

to improve the visual perception of enlarged images. Li and

Orchard [9] used the covariance of the LR image to estimate

the HR image covariance, which represents the edge direction

information to some extent, and proposed a Wiener-filtering

like interpolation scheme. Since this method needs a relatively

large window to compute the covariance matrix for each missing

sample, it may introduce some artifacts in local structures due to

sample statistics change and, hence, the incorrect estimation of

covariance. The image interpolator by Carrato and Tenze [10]

first replicates the pixels and then corrects them by using some

preset 3 3 edge patterns and optimizing the parameters in the

operator. Muresan [15] detected the edge in diagonal and nondi-

agonal directions and then recovered the missing samples along

the detected direction by using one-dimensional (1-D) polyno-

mial interpolation.

Some nonlinear interpolation methods try to enlarge an

image by predicting the fine structures in the HR image from

its LR counterpart. To do so, a multiresolution representation

of the image is needed. Takahashi and Taguchi [11] represented

an image by Laplacian pyramid, and with two empirically

determined parameters, they estimated the unknown high-fre-

quency components from the LR Laplacian detail signal. In the

past two decades, wavelet transform (WT) theory [17] has been

well developed and it endows a good multiresolution frame-

work for signal representation. WT decomposes a signal into

several scales, along which the signal sharp edges have some

correlation. Carey, et al. [12] exploited the Lipschitz property

of sharp edges in wavelet scales. They used the modulus

maxima information at coarse scales to predict the unknown

wavelet coefficients at the finest scale. Then, the HR image is

constructed by inverse WT. Muresan and Parks [14] extended

this strategy by using the entire cone influence of a sharp edge

in wavelet scale space, instead of only the modulus maxima, to

estimate the finest scale coefficients through optimal recovery

theory. The wavelet-based interpolation method by Zhu, et

al. [13] uses a parametric discrete time model to characterize

important edges. With this model, in wavelet domain the

lost edge information at the finest scale is recovered through

linear minimum mean square-error estimation (LMMSE). The
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above schemes employ, implicitly or explicitly, an isolated

sharp edge model, such as an ideal or smoothed step edge,

in the algorithm development. For real images, however, the

wavelet coefficients of a sharp edge may be interfered by the

neighboring edges. Generally, nonlinear interpolation methods

are better at edge preservation than linear methods. In [16],

Malgouyres and Guichard analyzed some linear and nonlinear

image enlargement methods theoretically and experimentally.

Compared with the discontinuities in 1-D signals, edges in

two-dimensional (2-D) images have one more property: the

direction. In the linear interpolation methods, 1-D filtering is

done alternatively in horizontal and vertical directions without

heeding the local edge structures. In the presence of a sharp

edge if a missing sample is interpolated across instead of along

the edge direction, large and visually disturbing artifacts will

be introduced. A conservative strategy to avoid most severe

artifacts is to use an isotropic 2-D filter. This, however, reduces

the edge sharpness. A more “assertive” approach is to interpo-

late in an estimated edge direction. The problem with the latter

is that the penalty to image quality is high if the estimated edge

direction is wrong, which can happen due to the difficulty in

determining the edge direction from insufficient data provided

by the LR image.

This paper proposes a new balanced approach to the problem.

A missing sample is interpolated in not one but two mutually or-

thogonal directions. The two interpolation results are treated as

two estimates of the sample and adaptively fused using the sta-

tistics of a local window. Specifically, we partition the neigh-

borhood of each missing sample into two oriented subsets in or-

thogonal directions. The hope is that the two observation sets

will exhibit different statistics, since the missing sample has

higher correlation with its neighbors in the edge direction. Each

oriented subset yields an estimate of the missing pixel. The

pixel is finally interpolated by combining the two directional

estimates in the principle of LMMSE. This process can dis-

criminate the two subsets in terms of their coherence to the

missing sample, and make the subset perpendicular to the edge

direction contribute less to the LMMSE estimate of the missing

sample. The above new approach performs significantly better

than linear interpolation methods in preserving edge sharpness

while suppressing artifacts, by adapting interpolation to local

image gradient. A drawback of the proposed interpolation ap-

proach is its relatively high computational complexity. We also

develop a simplified interpolation algorithm of greatly reduced

computation requirement but without significant degradation in

performance.

The paper is organized as follows. Section II describes our

edge-guided LMMSE-type image interpolation algorithm.

Section III presents a simplified version of the algorithm,

striving for fast, practical implementations. Section IV reports

the experimental results. Section V concludes.

II. EDGE-GUIDED LMMSE-BASED INTERPOLATION

As in many previous papers, we assume an LR image is

directly downsampled from an associated HR image through

, , . Re-

ferring to Fig. 1, the black dots represent the available samples

of and the white dots represent the missing samples of .

Fig. 1. Formation of an LR image from an HR image by directly down sam-
pling. The black dots represent the LR image pixels and the white dots represent
the missing HR samples.

The interpolation problem is to estimate the missing samples in

HR image , whose size is , from the samples in LR

image , whose size is .

The central issue of image interpolation is how to infer and

utilize the information on the missing sample that is hidden

in the neighboring pixels. If the downsampled signal of the

LR image exceeds the Nyquist sampling limit, the convolu-

tion-based interpolation methods will suffer from the aliasing

problem in reconstructing the HR image. This is the cause

of artifacts such as ringing effects in the interpolated images

which are common to linear interpolation methods. Given

that the human visual system is highly sensitive to the edges,

especially in their spatial locations, it is crucial to suppress the

interpolation artifacts while retaining the edge sharpness and

geometry.

The edge direction is the most important information for the

interpolation process. To extract and use this information, we

partition the neighboring pixels of each missing sample into two

directional subsets that are orthogonal to each other. From each

subset, a directional interpolation is made, and then the two in-

terpolated values are fused to arrive at an LMMSE estimate of

the missing sample. We recover the HR image in two steps.

First, those missing samples at the center locations

surrounded by four LR samples are interpolated. Second, the

other missing samples and

are interpolated with the help of the already recovered samples

.

A. Interpolation of Samples

Referring to Fig. 2, we can interpolate the missing HR sample

along two orthogonal directions: 45 diagonal and

135 diagonal. Denote by and the

two directional interpolation results by some linear methods,

such as bilinear interpolation, bicubic convolution, or spline in-

terpolation [1]–[5]. Consider the directional interpolation out-

puts as the noisy measurements of the missing HR sample

(2-1)

where the random noise variables and represent the

interpolation errors in the corresponding direction.
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Fig. 2. Interpolation of the HR samples I (2n; 2m). Two estimates of I (2n;2m) are made in the 45 and 135 directions as two noisy measurements of
I (2n;2m).

To fuse the two directional measurements and into a

more robust estimate, we rewrite (2-1) into matrix form

(2-2)

where

and

Now, the interpolation problem is to estimate the unknown

sample from the noisy observation . This estimation can

be optimized in minimum mean square-error sense. To obtain

the minimum mean square-error estimation (MMSE) of ,

i.e., , we need to know the

probability density function . In practice, however, it

is very hard to get this prior information or cannot be

estimated at all. Thus, in real applications, LMMSE is often

employed instead of MMSE. To implement LMMSE, only the

first and second order statistics of and are needed, which

may be estimated adaptively.

From (2-2), the LMMSE of can be calculated as [18]

(2-3)

where ,

is the co-variance operator, and we abbreviate as

, the variance operator. Through the LMMSE operation,

fuses the information provided by directional measurements

and .

Let , . Through intensive ex-

periments on 129 images, including outdoor and indoor images,

portraits, MRI medical images, and SAR images, etc., we found

that and . Thus, noise vector can be con-

sidered to be zero mean. Denote by and the normalized

correlation coefficients of and with

Our experiments also show that the values of and are very

small. Thus, we consider and and, consequently, to

be nearly uncorrelated with . With the assumption that is

zero mean and uncorrelated with , it can be derived from (2-3)

that

(2-4)

where and . To implement the

above LMMSE scheme for , parameters , , and need

to be estimated for each sample in a local window.

First, let us consider the estimation of and . Again, re-

ferring to Fig. 2, the available LR samples around

are used to estimate the mean and variance of . De-

note by a window that centers at and contains

the LR samples in the neighborhood of . For esti-

mation accuracy, we should use a sufficiently large window as

long as the statistics is stationary in . However, in a locality

of edges, the image exhibits strong transient behavior. In this

case, drawing samples from a large window will be counter-

productive. To balance the conflicting requirements of sample

size and sample consistency, we propose a Gaussian weighting

in the sample window to account for the fact that the corre-

lation between and its neighbors decays rapidly in

the distance between them. The further an LR sample is from

, the less it should contribute to the mean value of

. We compute as

(2-5)

where is a 2-D

Gaussian filter with scale . The variance of is

computed as

(2-6)

Next, we discuss the estimation of , the co-variance ma-

trix of . Using (2-1) and the assumption that and are

zero mean and uncorrelated with , it can be easily derived that

(2-7)

Since has been estimated by (2-6), we need to estimate

and in a local window to arrive at
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and . For this, we associate with a set

of its neighbors in the 45 diagonal direction. Denote by

the vector that centers at

(2-8)

Set encompasses and its neighbors, i.e., the original

samples and the directional (45 diagonal) interpolated samples.

Symmetrically, we define the sample set for associ-

ated with interpolated results in the 135 diagonal

The estimates of and are computed as

and (2-9)

where is a 1-D Gaussian

filter with scale .

Now, and can be computed by (2-8),

and finally the co-variance matrix can be estimated as

(2-10)

where is the normalized correlation coefficient of with

Although and are nearly uncorrelated with , they are

somewhat correlated to each other because and have

some similarities due to the high local correlation. We found

that the values of are between 0.4 and 0.6 for most of the test

images. The correlation between and varies, from rela-

tively strong in smooth areas to weak in active areas. In the areas

where sharp edges appear, which is the situation of our concern

and interests, the values of are sufficiently low, and we can as-

sume that and are uncorrelated with each other without

materially affecting the performance of the proposed interpola-

tion algorithm in practice. In practical implementation , the

correlation coefficient between and , can be set as 0.5

or even 0 for most natural images. Our experiments reveal that

the interpolation results are insensitive to . Varying from 0

to 0.6 hardly changes the PSNR value and visual quality of the

interpolated image.

If a sharp edge presents in in or near one of the two di-

rections (the 45 diagonal or the 135 diagonals), the corre-

sponding noise variances and will differ

significantly from each other. By the adjustment of in (2-4),

Fig. 3. Interpolations of the missing HR samples (a) I (2n � 1; 2m) and
(b)I (2n;2m�1). The symbols “
” represent the already recovered samples
I (2n;2m). The two estimates of I (2n�1;2m) or I (2n;2m�1) are made
in horizontal and vertical directions. I (2n� 1; 2m) and I (2n;2m� 1) are
estimated similarly to I (2n;2m).

the interpolation value or , whichever is in the direction

perpendicular to the edge, will contribute far less to the final es-

timation result . The presented technique removes much of

the ringing artifacts around the edges, which often appear in the

interpolated images by cubic convolution and cubic spline in-

terpolation methods.

B. Interpolation of Samples and

After the missing HR samples are estimated, the

other missing samples and can

be estimated similarly, but now with the aid of the just estimated

HR samples. Referring to Fig. 3(a) and (b), the LR image pixels

are represented by black dots “ ,” while the estimated

samples by symbols “ .” The samples that are to

be estimated are represented by white dots “ .” As illustrated in

Fig. 3, the missing sample or

can be estimated in one direction by the original pixels of the LR

image, and in the other direction by the already interpolated HR

samples. Similar to (2-2), the two directional approximations of

the missing sample are considered as the noisy measurements of

or , and then the LMMSE of the

missing sample can be computed in a similar way as described in

the previous section. Finally, the whole HR is reconstructed

by the proposed edge-guided LMMSE interpolation technique.

III. SIMPLIFIED LMMSE INTERPOLATION ALGORITHM

In interpolating the HR samples, the LMMSE technique of

(2-4) needs to estimate , , , and compute the inverse

of a 2 2 matrix. This may amount to too heavy a computa-

tion burden for some applications that need high throughput.

Specifically, if we set be the average of the four nearest

LR neighbors of to reduce computation, then computing

needs three additions and one division and computing needs

seven additions, four multiplications, and one division. By set-

ting the size of vector and as 5 and setting

, i.e., , in (2-10) to reduce

the computational cost, we still need 20 additions and 20 mul-

tiplications to compute . The remaining operations in (2-4)

include nine additions, eight multiplications, and one division.

In total, the algorithm needs 39 additions, 32 multiplications,

and three divisions to compute a with (2-4).
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One way to reduce the computational complexity is to ju-

diciously invoke the LMMSE algorithm only for pixels where

high local activities are detected, and use a simple linear inter-

polation method in smooth regions. Since edge pixels represent

minority in the total sample population, this will lead to signif-

icant savings in computations. In addition, we present a simpli-

fied version of the LMMSE-based interpolation algorithm while

only slightly decreasing the performance.

We can see that the LMMSE estimate of HR sample is

actually a linear combination of , and . Referring to

(2-4) and let , then is a 2-D

vector and we rewrite (2-4) as

(3-1)

where and are the first and second elements of . We

empirically observed that is close to zero, and, hence,

has a light effect on . In this view, can be simplified to

a weighted average of and , while the weights depend

largely on the noise covariance matrix .

Instead of computing the LMMSE estimate of , we deter-

mine an optimal pair of weights to make a good estimate of

. The strategy of weighted average leads to significant reduc-

tion in complexity over the exact LMMSE method. Let

(3-2)

where . The weights and are de-

termined to minimize the mean square-error (MSE) of :

.

Although the measurement noises of and , i.e.,

and , are correlated to some extent, their correlation is suf-

ficiently low to consider and as being approximately

uncorrelated. This assumption holds better in the areas of edges

that are critical to the human visual system and of interests to

us. In fact, if and are highly correlated, that is to say,

the two estimates and are close to each other, then

varies little in and anyway. With the assumption that

and are approximately uncorrelated, we can show that

the optimal weights are

(3-3)

It is quite intuitive why the weighting scheme works. For in-

stance, for an edge in or near the 135 diagonal direction, the

variance is higher than . From (3-3), we see

that will be less than and, consequently, has less

influence on than , and vice versa. To compute

and as described in Section II, however, we still need

30 additions, 24 multiplications, and two divisions. In order to

TABLE I
OPERATIONS NEEDED FOR THE LMMSE ALGORITHM

AND THE SIMPLIFIED ALGORITHM

further simplify and speed up the computation of and ,

we use the following approximations:

(3-4)

where “ ” means nearly equivalent to. With the above sim-

plification, we only need 23 additions, two multiplications, and

two divisions to obtain and . Finally, with (3-2), we

only need 24 additions, four multiplications, and two divisions

to get . This yields a significant computational savings com-

pared with (2-4), which needs 39 additions, 32 multiplications,

and three divisions. Table I lists the operation counts of the sim-

plified algorithm and the LMMSE algorithm.

As we will see in the next section, the simplified algorithm

only has slightly lower PSNR result than the LMMSE algo-

rithm, while its output images are virtually indistinguishable

from those of the latter.

IV. EXPERIMENTAL RESULTS

The proposed image interpolation algorithms were imple-

mented and tested, and their performance was compared with

some existing methods. We downsampled some HR images

to get the corresponding LR images, from which the original

HR images were reconstructed by the proposed and competing

methods. Since the original HR images are known in the sim-

ulation, we can compare the interpolated results with the true

images, and measure the PSNR of those interpolated images.

The presented LMMSE-based interpolator was compared

with the bicubic convolution interpolator, the bicubic spline

interpolator, the subpixel edge detection-based interpolator

of Jensen and Anastassiou [8], and the Wiener filtering-like

interpolator of Li and Orchard [9]. To assess the sensitivity

of the proposed interpolation algorithms to different initial

directional estimates prior to fusing, they were tested when

coupled with bicubic and bilinear convolution interpolators re-

spectively. In the table and figure legends, the LMMSE method

developed in Section II is labeled LMMSE_INTR_cubic or

LMMSE_INTR_linear, depending on if bicubic or bilinear

convolution interpolator is used to obtain initial directional

estimates. Likewise, the simplified method in Section III is

labeled OW_INTR_cubic (OW stands for optimal weighting)

or OW_INTR_linear. In the experiments, we set the scale of

2-D Gaussian filter [referring to (2-5)] around 1 and scale

of 1-D Gaussian filter [referring to (2-9)] around 1.5.

The PSNR results of the eight algorithms for the six test im-

ages are listed in Table II. The proposed LMMSE_INTR_cubic
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TABLE II
PSNR (dB) RESULTS OF THE RECOVERED HR IMAGES BY THE EIGHT

ALGORITHMS, WHERE THE LR IMAGE IS DIRECTLY DOWN-SAMPLED

FROM THE HR IMAGE AS SHOWN IN FIG. 1

Fig. 4. Interpolated image Lena by (a) LMMSE_INTR_cubic and
(b) LMMSE_INTR_linear.

Fig. 5. Interpolated image Butterfly by (a) LMMSE_INTR_cubic and
(b) LMMSE_INTR_linear.

algorithm achieves the highest PSNR results on all test images,

except for image Lena, for which it has a slightly lower PSNR

than the method in [9].

Our experimental results also call attention to a fact that the

proposed methods are insensitive to their choice of the initial di-

rectional interpolators. Even with bilinear interpolation, which

usually gets considerably worse result than bicubic interpola-

tion, the final fused result is very close to that of bicubic interpo-

lation, especially in terms of visual quality (the PSNR values are

slightly lower as shown in Table II). Figs. 4 and 5 show the inter-

polated images Lena and Butterfly of the LMMSE_INTR_cubic

and LMMSE_INTR_linear methods. In visual effects, the two

methods are almost indistinguishable. This demonstrates the

power of LMMSE-based data fusing strategy in correcting much

of the interpolation errors of traditional linear methods.

Fig. 6. Interpolation results of the image Holes. (a) Original image; interpo-
lated image by (b) the cubic convolution; (c) the method in [8]; (d) the method in
[9]; (e) the proposed LMMSE_INTR_cubic; (f) the proposed OW_INTR_cubic.

Fig. 6 presents the experimental results of a pattern image,

Holes. Fig. 6(a) is the original image, and Fig. 6(b)–(f) is the

interpolated images by the bicubic convolution, the method

in [8], the method in [9], the LMMSE_INTR_cubic, and

OW_INTR_cubic methods, respectively. The interpolated im-

ages of the bicubic spline interpolator are very similar to those

of bicubic convolution interpolator and are not presented here

to save space. The small holes in this image are good patterns

to test the edge recovery ability of the interpolation algorithms.

The LMMSE_INTR_cubic and OW_INTR_cubic methods

reconstruct the original image very well. The fine round edge

structures of the small holes are well preserved. The bicubic

convolution method blurs the image and introduces many

ringing effects around the perimeters of the holes. The artifacts

introduced by the method in [8] are mainly due to the errors

of edge detection carried out by the algorithm. The method

in [9] also introduces artifacts around the hole’s perimeters.

This is because the algorithm uses a relatively large window

to compute the covariance matrix for each missing sample,
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Fig. 7. Interpolation results of the image Lena. (a) Original image, interpolated image by (b) the cubic convolution, (c) the method in [8], (d) the method in [9],
(e) the proposed LMMSE_INTR_cubic, and (f) the proposed OW_INTR_cubic.

whereas the edge structure is small in scale in this test image,

causing incorrect estimation of sample covariance.

In Figs. 7–11, we compare the visual quality of the test

interpolation methods for natural images: Lena, Splash, Pep-

pers, Cloth, and Butterfly. The proposed methods remove

many of the ringing and other visual artifacts of the other

methods. The OW_INTR_cubic method is slightly inferior

to the LMMSE_INTR_cubic method in reducing the ringing
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Fig. 8. Interpolation results of the image Splash. (a) Original image, interpolated image by (b) the cubic convolution, (c) the method in [8], (d) the method in [9],
(e) the proposed LMMSE_INTR_cubic, and (f) the proposed OW_INTR_cubic.

effects, but this is a small price to pay for the computational

savings of the former. The interpolator of Jensen and Anastas-

siou [8] can reproduce very thin edges in the object contour

because it contains a subpixel edge detection process, but it

causes visible artifacts when the edge detector commits errors.

This method leaves a considerable amount of ringing effects in
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Fig. 9. Interpolation results of the image Peppers. (a) Original image, interpolated image by (b) the cubic convolution, (c) the method in [8], (d) the method in
[9], (e) the proposed LMMSE_INTR_cubic, and (f) the proposed OW_INTR_cubic.

the hat of Lena and the wing of the Butterfly. The interpolator of

Li and Orchard [9] can preserve large edge structures well, such

as those in Lena; however, it introduces artifacts in the finer

edge structures, such as the drops of Splash and the head part

of Butterfly. Another disadvantage of Li and Orchard’s method

is its high computational complexity. If an 8 8 window is
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Fig. 10. Interpolation results of the image Cloth. (a) Original image, interpolated image by (b) the cubic convolution, (c) the method in [8], (d) the method in [9],
(e) the proposed LMMSE_INTR_cubic, and (f) the proposed OW_INTR_cubic.

used to compute the covariance matrix, this algorithm requires

about 1300 multiplications and thousands of additions. In

comparison, the proposed LMMSE_INTR_cubic algorithm

requires only tens of multiplications and divisions.

The downsampling process considered in this paper, through

which an LR image is generated from the corresponding HR

image, is ideal Dirac sampling. An alternative model of LR

images is that of low-pass filtering followed by downsampling.
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Fig. 11. Interpolation results of the image Butterfly. (a) Original image, interpolated image by (b) the cubic convolution, (c) the method in [8], (d) the method in
[9], (e) the proposed LMMSE_INTR_cubic, and (f) the proposed OW_INTR_cubic.

In our experiments we also simulated the latter model and

created LR test images by downsampling of low-pass filtered

HR images (averaging of four pixels in a 2 2 window).

The resulting LR images were processed by all the interpo-

lation methods of our comparison group. Table III lists the

PSNR results. Fig. 12(a) shows the original Butterfly image.

Fig. 12(b)–(f) shows the interpolation results of image Butterfly

by different algorithms. Even though the new interpolation
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Fig. 12. Interpolation results of the image Butterfly when the LR image is generated by low-pass filtering and downsampling the HR image. (a) Original image,
interpolated image by (b) the cubic convolution, (c) the method in [8], (d) the method in [9], (e) the proposed LMMSE_INTR_cubic, and (f) the proposed
OW_INTR_cubic.

technique is not tailored to the alternative model of LR images,

like others in the comparison group of this paper, it appears to

perform well nonetheless. The new interpolation algorithms

reproduced much sharper edges than the bicubic convolution

or bicubic spline methods, while being competitive against the

methods of [8] and [9].
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TABLE III
PSNR (dB) RESULTS OF THE RECOVERED HR IMAGES BY THE EIGHT

ALGORITHMS, WHERE THE LR IMAGE IS GENERATED BY LOW-PASS

FILTERING AND DOWNSAMPLING THE HR IMAGE

V. CONCLUSION

We developed an edge-guided LMMSE-type image in-

terpolation technique. For each pixel to be interpolated, we

partitioned its neighborhood into two observation subsets in

two orthogonal directions. Each observation subset was used

to generate an estimate of the missing sample. These two di-

rectional estimates were processed as two noisy measurements

of the missing sample. Using and combining the statistics of

the two observation subsets, we fused the two noisy measure-

ments into a more robust estimate via linear minimum mean

square-error estimation. To reduce the computational com-

plexity of the proposed method, we simplified it to an optimal

weighting problem and determined the optimal weights. The

simplified method had competitive performance with signif-

icant computational savings. Experimental results showed

that the presented methods avoided interpolation against edge

directions and, hence, achieved noticeable reduction in ringing

and other visual artifacts.
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