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AN EDGEWORTH EXPANSION FOR SYMMETRIC STATISTICS
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We consider asymptotically normal statistics which are symmetric
functions of N i.i.d. random variables. For these statistics we prove the va-
lidity of an Edgeworth expansion with remainder O�N−1� under Cramér’s
condition on the linear part of the statistic and moment assumptions for
all parts of the statistic. By means of a counterexample we show that it is
generally not possible to obtain an Edgeworth expansion with remainder
o�N−1� without imposing additional assumptions on the structure of the
nonlinear part of the statistic.

1. Introduction and results. A second-order asymptotic theory for sums
of independent and identically distributed (i.i.d.) random variables was es-
tablished in the 1930’s, mainly through the work of Esseen and Cramér. If
X1; : : : ;XN are i.i.d. random variables with EX1 = 0 and EX2

1 = 1 and
S = �X1 + · · · +XN�/

√
N, then, as N→∞, the distribution function F of S

will converge to the standard normal distribution function 8 by the central
limit theorem. If also E�X1�3 <∞, then the speed of convergence is given by
the Berry–Esseen bound

sup
x
�F�x� −8�x�� = O�N−1/2�:

If, moreover, Cramér’s condition (C) holds, that is,

sup
�t�>δ
�E exp�itX1�� < 1 for some δ > 0;

and E�X1�4 <∞, then we have an Edgeworth expansion for F of the form

G�x� = 8�x� − ~

6
√
N
8′′′�x�

and

sup
x
�F�x� −G�x�� = O�N−1�:

Results of this type are called second-order asymptotic results. The Berry–
Esseen bound is mainly of theoretical interest but clearly a necessary first step
if one wishes to obtain Edgeworth expansions. Edgeworth expansions with
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remainders o�N−1/2� and o�N−1� often provide excellent approximations, and
also form the basis of refined asymptotic investigations in statistical theory.

Of course, most of the random variables occurring in statistics are not sums
of i.i.d. random variables, but many may be approximated by such sums. To
prove asymptotic normality for such statistics T, one usually proceeds by writ-
ing

T = S+R;
where S is a properly normalized sum of i.i.d. random variables and R a re-
mainder term which tends to 0 in probability. Over the past decades, many
authors have worked to extend this argument to obtain Berry–Esseen bounds
and Edgeworth expansions for such more general statistics T. A great many
results have been obtained for special cases, but as yet there is no satisfactory
general second-order theory for asymptotically normal statistics. As long as
we discuss statistics T that are functions of i.i.d. random variables, we may as
well assume also that T is a symmetric function of X1; : : : ;XN, thus restrict-
ing ourselves to symmetric statistics. For this class of statistics, one would
like to have a general second-order asymptotic theory.

Much of the work on second-order asymptotics is based on Taylor expansion
of the statisticT in terms of the underlying i.i.d. random variablesX1; : : : ;XN

[see, e.g., Chibisov (1972), Pfanzagl (1973), Bhattacharya and Ghosh (1978)
and Bai and Rao (1991)]. This has been successful for a number of special
cases, but is not likely to lead to a satisfactory general theory. The reason for
this is that smoothness of the statistic as a function of X1; : : : ;XN, which is
needed for this type of argument, has very little to do with the existence of
the Edgeworth expansion. We believe that Hoeffding’s decomposition, which
expands the statistic in a series of U-statistics of increasing order thus

T−ET =
∑

1≤i≤N
ψ1�Xi� +

∑
1≤i<j≤N

ψ2�Xi;Xj� + · · · ;

is the appropriate tool for this problem.
A program with the ambitious aim of establishing a general theory of Edge-

worth expansions for symmetric functions of i.i.d. random variables, should,
of course, start by obtaining a Berry–Esseen bound for such statistics. If such
a bound is to serve as preparation for obtaining Edgeworth expansions as a
next step, it is essential that it be of the correct order O�N−1/2�. If one can
only prove a Berry–Esseen bound of order, say, O�N−1/2+ε� or O�N−1/2 logN�,
how can one hope to establish an Edgeworth expansion where the first correc-
tion term is of exact order O�N−1/2�? This point is apparently not generally
understood, witness the numerous papers providing Berry–Esseen bounds of
larger order than O�N−1/2�. Such bounds are not only usually trivial, but also
useless as a starting point for a next step.

After more than two decades of work on the Berry–Esseen bound for U-
statistics [see, e.g., Filippova (1962), Grams and Serfling (1973), Bickel (1974),
Chan and Wierman (1977), Callaert and Janssen (1978) and Serfling (1980)],
the Berry-Esseen bound for general symmetric statistics was established in
van Zwet (1984). Friedrich (1989), Götze (1991) and Bolthausen and Götze
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(1993) extended this result to certain non-symmetric statistics, multivariate
symmetric statistics and multivariate sampling statistics. The assump-
tions needed seem natural and are thought to be almost minimal. All that is
required is a finite third moment of the leading term in Hoeffding’s decomposi-
tion of T and a moment assumption controlling the influence of the remaining
terms of the decomposition. It is important to stress that in order to check
these two conditions, one does not need to calculate Hoeffding’s decomposition
explicitly. Berry–Esseen bounds were also obtained separately for many
special cases of symmetric statistics such as linear functions of order statis-
tics [Helmers (1982)], Studentized U-statistics [Zhao (1983) and Helmers
(1985)], multivariate U-statistics [Götze (1987)], multivariate L-statistics
[Zitikis (1993)] and so on.

As a next step, an Edgeworth expansion with remainder o�N−1� was estab-
lished for U-statistics of degree 2 in Bickel, Götze and van Zwet (1986) after
an earlier and less explicit result of Callaert, Janssen and Veraverbeke (1980).
The expansion was proved under Cramér’s condition on the leading term in
Hoeffding’s decomposition and moment assumptions that were to be expected.
However, a condition on the eigenvalues of the second-order term in the de-
composition was also needed. This condition had occurred in earlier work on
degenerate U-statistics [Götze (1979)] and was therefore not entirely unex-
pected. However, the authors expressed their uncertainty about the necessity
of this assumption and this has led a number of authors to propose proofs that
the eigenvalue assumption could be omitted, but all were found to be in error.
To end this discussion, we provide an example in Theorem 1.4 which shows
that the Edgeworth expansion with error o�N−1� is not necessarily valid if
the eigenvalue assumption does not hold.

The present authors will confess that they optimistically believed that it
would be straightforward to generalize the result in Bickel, Götze and van
Zwet to symmetric statistics, thereby completing the program for obtaining
an Edgeworth expansion for such statistics. However, it turns out that the
interplay between the higher-order terms in Hoeffding’s decomposition—which
are, of course, not present for a U-statistic of degree 2—is so complex that
the proof becomes extremely hard. We do have a theorem on the Edgeworth
expansion for general symmetric statistics, but this result is as yet not in a
form which is fit for publication [Götze and van Zwet (1991)].

Instead, we shall backtrack a little in the present paper. The problem with
obtaining the general result lies in the contributions to the Edgeworth ex-
pansion which are of approximate order O�N−1�. In this paper we obtain an
Edgeworth expansion with remainder of order O�N−1�, hence not including
in the expansion the term of order O�N−1� but establishing that it is indeed
of this order. As we pointed out in our discussion of Berry–Esseen bounds, it
is essential to get exactly the right order O�N−1� for the remainder; anything
larger will simply not do as a preparation for the final step, which will be to
establish the term of order O�N−1�.

The conditions of the result of this paper seem natural and are probably
very close to optimal: we need Cramér’s condition on the leading term, the ob-
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vious moments, as well as a moment assumption controlling the influence of
the terms involving functions of three or more variables in Hoeffding’s decom-
position ofT. The latter condition is a natural counterpart of the corresponding
condition for the Berry–Esseen bound in van Zwet (1984).

Having sketched the general context in which the results of this paper
should be viewed, we now define the notation necessary to formulate these
results.

Let X1;X2; : : : ;XN be independent and identically distributed (i.i.d.) ran-
dom variables taking values in an arbitrary measurable space �X ;B� with
common distribution P. Let the measurable function tx X N → R be symmet-
ric in its N arguments, in the sense that it is invariant under permutation of
these arguments. Consider the symmetric statistic

T = t�X1; : : : ;XN�;
and assume throughout that

ET2 <∞:
Our aim is to establish an Edgeworth expansion with remainder O�N−1�

for the distribution of T. Define

Ti = E�T�Xi� −ET;(1.1)

Tij = E�T�Xi;Xj� −E�T�Xi� −E�T�Xj� +ET(1.2)

and write

�1:3� T = ET+
N∑
i=1

Ti +
∑

1≤i<j≤N
Tij +R:

Notice that the terms on the right-hand side of (1.3) are all pairwise uncorre-
lated. Define

�1:4� σ2 = σ2�T� = E�T−ET�2

and

~ = α3 + 3δ;

where

α3 = E�
√
NT1�3; δ = E�

√
NT1

√
NT2N

3/2T12�:
It is easy to verify that the third moment of

N∑
i=1

Ti +
∑

1≤i<j≤N
Tij

equals ~N−1/2+O�N−1�, provided that third moments of
√
NT1 and N3/2T12

are bounded. The formal Edgeworth expansion for the distribution function of
a random variable with expectation 0, variance 1 and third moment ~ equals

8�x� − ~

6
√
N
8′′′�x�:
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Hence, if F and G denote the distribution functions of �T − ET�/σ and its
two-term Edgeworth expansion, then

�1:5� F�x� = P�T−ET ≤ xσ�; G�x� = 8�x� − ~

6σ3
√
N
8′′′�x�:

We shall show that under appropriate conditions

sup
x
�F�x� −G�x�� = O�N−1�:

To arrive at the result, we shall obviously have to make an assumption to
control the remainder term R in (1.3). Define

EiT = �T�X1; : : : ;Xi−1;Xi+1; : : : ;XN�;
DiT = T−EiT for 1 ≤ i ≤N:

Repeating the operation Di, we obtain, for distinct i, j and k,

DiDjT = T−EiT−EjT+ EijT;

DiDjDkT = T−EiT−EjT−EkT+EijT+EikT+EjkT−EijkT;

where, for brevity, we write Eij instead of Ei Ej and Eijk instead of Ei Ej Ek.
Note that the order in which these operations are carried out is immaterial.
Also, the distributions of

DiT; DiDjT; DiDjDkT; Ti; Tij

for distinct i, j and k do not depend on i, j and k.
For s > 0 and m = 1;2;3, define the moments

βs = E�
√
NT1�s; γs = E�N3/2T12�s

and

1sm = E�Nm−1/2D1D2 · · ·DmT�s:

By Jensen’s inequality it follows that

βs ≤ 1s1; γs ≤ 1s2 for s ≥ 1:

Define the number q�σ� ∈ �0;1� by

1− q�σ� = sup
{
�E exp�it

√
NT1��x

σ2

2β3
≤ �t� ≤

√
N

σ

}
:

Note that q�σ� > 0 if the characteristic function of
√
NT1 satisfies Cramér’s

condition

�C� lim sup
�t�→∞

�E exp�it
√
NT1�� < 1:
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Theorem 1.1 (Edgeworth expansion). There exists an absolute constant c
such that, for any symmetric statistic T, any P and any N = 1;2; : : : ;

sup
x
�F�x� −G�x�� ≤ c

q2�σ�N

(
β4

σ4
+ γ3

σ3
+ 1

2
3

σ2

)
:

Sometimes it is more convenient to have an Edgeworth expansion for the
distribution of �T−ET�/τ, where τ2 is the variance of the linear part

∑
Ti of

T−ET. Thus

τ2 = E�
√
NT1�2:

Let

F�x� = P�T−ET ≤ xτ�; G�x� = 8�x� − ~

6τ3
√
N
8′′′�x�

and

1− q�τ� = sup
{
�E exp�it

√
NT1��x

τ2

β3
≤ �t� ≤

√
N

τ

}
:

Theorem 1.2. There exists an absolute constant c such that, for any sym-
metric statistic T, any P and any N = 1;2; : : : ;

sup
x
�F�x� −G�x�� ≤ c

q2�τ�N

(
β4

τ4
+ γ3

τ3
+ 1

2
3

τ2

)
:

Remark 1.3. Let 0 < ρ ≤ 1. Theorem 1.1 remains valid if q2�σ� is replaced
by ρ2q2

ρ�σ�, where

qρ�σ� = 1− sup
{
�E exp�it

√
NT1��x

σ2

2β3
≤ �t� ≤ ρ

√
N

σ

}
:

Furthermore, the proof shows that, for every ε > 0, there exists c�ε� such that

sup
x
�F�x� −G�x�� ≤ c�ε�

q2�σ�N

(
β4

σ4
+ γ2+ε
σ2+ε +

12
3

σ2

)
:

We conjecture that ε may be removed. Such an estimate would be optimal in
view of the lower bounds of Bentkus, Götze and Zitikis (1994). The dependence
on q2�σ� may be improved to q1+ε�σ�, ε > 0. It is not clear whether the bound
remains valid with q2�σ� replaced by q�σ� or an even lower power of q�σ�. The
same improvements and comments hold for the bound on supx

∣∣F�x� −G�x�
∣∣

in Theorem 1.2 with σ replaced by τ.

In the proof of our result an essentially new idea appears to be needed,
and we shall introduce a technique which we call data-dependent smoothing.
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It is based on a nonstandard smoothing inequality [see Prawitz (1972)]. Such
inequalities were suggested by Beurling and have been used in number theory
and analysis [see, e.g., Graham and Vaaler (1981)]. We did not succeed in
proving our result using the conventional Esseen inequality (3.4).

The estimates in Theorems 1.1 and 1.2 are formulated for any fixed sample
size N, but since the constant c is not specified, these are purely asymptotic
results concerned with a sequence of statistics �TN−ETN�/σ�TN� asN→∞.
If β4/σ

4, γ3/σ
3 and 12

3/σ
2 are bounded and q�σ� is bounded away from 0, as

N→∞, then the theorems establish Edgeworth expansions with remainders
O�N−1�. For given bounds on

β4/σ
4; γ3/σ

3; 12
3/σ

2 and q�σ�;

the result is uniform for all symmetric functions of the i.i.d. variables
X1; : : : ;XN and for all underlying distributions P.

In Section 2 we shall apply our general results to several special cases—
sample means, U-statistics, sample variances, Student’s statistic, functions
of sample means, functionals of empirical distribution functions and linear
combinations of order statistics—to see whether we can obtain results com-
parable to the best available ones for these well-studied cases. It turns out
that this is indeed the case. In some instances, such as functions of sample
means of random functions, we derive stronger and more general results than
those available so far. Usually our conditions seem to be optimal, with the sole
exception of Student’s t-statistic, where we need 4+ ε moments instead of 4,
which should suffice.

Edgeworth expansions can easily be used to establish the accuracy of boot-
strap approximations since the estimates of the remainder are explicit, and
the expansions are valid for a sufficiently general class of symmetric statistics.
Bootstrap or Studentized versions of a symmetric statistic are again symmet-
ric, and in order to show the validity of Edgeworth expansions, it suffices to
estimate several lower-order conditional differences. In this paper we shall
do this for the simplest example of the Studentized mean only. More general
results will be published elsewhere.

Similar estimates to those in Theorems 1.1 and 1.2 do not hold for higher-
order Edgeworth expansions, even if we assume the existence of moments of
arbitrarily high order of all parts of the statistic. In Theorem 1.4 we shall pro-
vide an example of this phenomenon. We show that under Cramér’s condition
(C) on the linear part of the statistic and arbitrarily restrictive moment condi-
tions, it is not possible to establish an Edgeworth expansion with remainder
o�N−1�, even for U-statistics of order 2. Hence in this sense our results are
best possible.

In order to formulate Theorem 1.4, we need some additional notation. A
U-statistic T of order 2 can be written as

�1:6� T =
N∑
i=1

Ti +
∑

1≤i<j≤N
Tij;
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where T1 = g1�X1� and T12 = g2�X1;X2�, with some symmetric functions
g1 and g2 such that ET1 = 0 and E�T12�X2� = 0. In this case ET = 0,

D1T = T1 +
N∑
j=2

T1j; D1D2T = T12; D1D2D3T = 0:

Let us assume that the components of the statistic T are uniformly bounded
by some nonrandom A <∞, that is,

�1:7� sup
N

�
√
NT1/σ � ≤ A; sup

N

�N3/2T12/σ � ≤ A:

Notice that (1.7) ensures that the Edgeworth approximation G, as well as any
higher-order Edgeworth expansion, must satisfy

�1:8� sup
N

sup
x
�G′�x�� <∞:

Theorem 1.4. There exists a sequence T = TN of symmetric statistics �1:6�
such that

�1:9� E�
√
NT1�2 = 1; �

√
NT1� ≤ 4; �N3/2T12� ≤ 2;

�1:10� sup
N

sup
�t�≥δ
�E�it

√
NT1�� < 1 for each δ > 0

and

lim sup
N

N sup
x∈R
�F�x� −GN�x�� > 0

for any given sequence of functions GNx R→ R such that

sup
N

sup
x
�G′N�x�� <∞:

Moreover, for any given A > 0,

�1:11� lim sup
N→∞

N inf
G

sup
x
�F�x� −G�x�� > 0;

where the inf is taken over all Gx R→ R such that supx �G′�x�� ≤ A.

2. Applications. In this section we use the following notation. Let B de-
note a real Banach space. LetX1; : : : ;XN be i.i.d. mean-zero random variables
taking values in B. Denote

bs = E�X1�s; X = �X1 + · · · +XN�/N;
EN =

√
NX; Qs = sup

N≥1
E�EN�s;

where we shall assume implicitly that all random variables are well defined
(e.g., assume that B is separable). If B = R is the real line, then we write
µs = EXs

1.
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For a function Hx B→ R, let H�s��x� denote the sth Frechét derivative of
H at the point x ∈ B. Define

H�s��x�h1 · · ·hs
as the value of the s-linear continuous symmetric formH�s��x�with arguments
hj ∈ B, 1 ≤ j ≤ s, as well as

�H�s��∞ = sup
x∈B
�H�s��x��; M0 =M0�H� = L0 + �H′�∞ + �H′′�∞;

where �H�s��x�� is the sup-norm of the s-linear form H�s��x�, and

L0 = L0�H� = sup
x∈B
�H′′�x� −H′′�0��/�x�:

Write

M =M�H� = L+
3∑
i=1

�H�i��∞; L = L�H� = sup
x;y∈B

�H′′′�x� −H′′′�y��
�x− y�1/2 :

2.1. Sample means. Let X1; : : : ;XN be real i.i.d. random variables. Con-
sider the statistic T = X, where X is the sample mean. It follows from The-
orem 1.2 that the distribution function of the statistic

√
NT/

√
b2 can be uni-

formly approximated by a two-term Edgeworth expansion, and that the error
does not exceed cb4/�q2b2

2N�. This is a well-known result. Note that the de-
pendence on

q = 1− sup
�t�≥b2/b3

�E exp�itX1��

can be improved; see Petrov (1975).

2.2. Sample variances. Let X1; : : : ;XN be real i.i.d. random variables.
Consider the sample variance

T = b̂2 =
1
N

N∑
i=1

�Xi −X�2 =
1
N2

∑
1≤i<j≤N

�Xi −Xj�2:

In this case we may write in the decomposition (1.3) for T−ET,

T1 = �N− 1�N−2�X2
1 − b2�; T12 = −2N−2X1X2; R = 0:

Furthermore,

τ2 = �N− 1�2N−3D2; D2 = b4 − b2
2; σ2 = τ2 + 2�N− 1�N−3b2

2:

The distribution function of

�T−ET�/τ
[
or of �T−ET�/σ

]
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is uniformly approximable by its Edgeworth expansion, and the error does not
exceed cb8/�q2D4N�, where

q = 1− sup
�t�≥D2/β3

�E exp�itX2
1��

and

β3 = E�X2
1 − b2�3:

2.3. On the estimation of differences. For the calculation and estimation
of differences and terms of the Hoeffding decomposition, the following sim-
ple inequalities are useful. If V;W are (not necessarily symmetric) statistics
depending on X1; : : : ;XN, then

E�D1 · · ·DkV�s ≤ 2k+sE�V�s for all s ≥ 1

and

E
∣∣D1 · · ·Dk�V+W��s ≤ 2sE�D1 · · ·DkV�s + 2k+sE�W�s for all s ≥ 1:

If V is independent of Xi, then DiV = 0. If V is independent of at least one
of the random variables X1; : : : ;Xk, then D1 : : :DkV = 0.

For example, let us consider the case when T = H�X� is a sufficiently
smooth function of the sample mean. Let τ1; : : : ; τk denote i.i.d. random vari-
ables uniformly distributed on �0;1� and independent of all other random
variables. Then

�2:1�
D1 · · ·DkH�X�

= 1
Nk

D1 · · ·DkEτH
�k�
(
τ1X1

N
+ · · · + τkXk

N
+B

)
X1 · · ·Xk;

where Eτ denotes the conditional expectation given all r.v.’s but τ1; : : : ; τk, and
where B is defined by B = �Xk+1 + · · · +XN�/N.

Indeed, split

X =N−1X1 +A where A = �X2 + · · · +XN�/N:

Expanding into the Taylor series, we have

H�X� =H�A� +N−1EτH
′�N−1τ1X1 +A�X1:

Since the random variable H�A� is independent of X1, we have D1H�A� = 0.
Repeating this procedure for X2; : : : ;Xk, we obtain (2.1).

Thus the right-hand side of (2.1) is bounded from above by

c�k�N−k�H�k��∞ ��X1� + b1� · · · ��Xk� + b1�;

and in many applications this yields a satisfactory estimate.
For a polynomial H of order k, relation (2.1) yields D1 · · ·Dk+1H�X� = 0.
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2.4. Student’s statistic and the bootstrap. LetX1; : : : ;XN denote real i.i.d.
random variables. Consider Student’s t-statistic and its bootstrap version t∗,

t =X
/√

b̂2; t∗ = �X∗ −X�
/√

b̂∗2;

where X denotes the sample mean and b̂2 denotes the sample variance. The
bootstrap version t∗ is obtained by replacing the arguments

X1; : : : ;XN of t by X∗1 −X; : : : ;X∗N −X;
where the i.i.d. random variables X∗1; : : : ;X

∗
N are drawn from FN =

N−1∑N
j=1 δXj

and are independent of X1; : : : ;XN.
We shall prove the following estimate:

�2:2� sup
x

∣∣∣∣P�
√
Nt ≤ x� −GN

(
x;

µ3

b
3/2
2

)∣∣∣∣ ≤
c�ε�
q2N

(
b3b4+ε

b
7/2+ε/2
2

+ b
3
4

b6
2

)

for arbitrary ε > 0, where

GN�x;y� = 8�x� +
y�2x2 + 1�

6
√
N

8′�x�

and

1− q = sup��E exp�iτX1��x b2/�2b3� ≤ �τ� ≤
√
N/b2�:

For fixed X1; : : : ;XN, let P∗ and E∗ denote the conditional probability and
expectation with respect to FN. Substituting in (2.2) Xi by X∗i −X, we obtain

sup
x
�P∗�
√
Nt∗ ≤ x� −GN�x; µ̂3̂b

−3/2
2 �� ≤ c�ε�

q̂ 2N
�̂b−7/2−ε/2

2 b̂3̂b4+ε + b̂−6
2 b̂3

4�

for arbitrary ε > 0, where

1− q̂ = sup
{
�E∗ exp�iτX∗1��x b̂2/�2̂b3� ≤ �τ� ≤

√
N/̂b2

}

and

µ̂3 = E∗�X∗1 −X�3 =
1
N

N∑
i=1

�Xi −X�3;

b̂s = E∗�X∗1 −X�s =
1
N

N∑
i=1

�Xi −X�s

denote the sample moments.
Let us fix a sequenceX1;X2; : : : of random variables. Then P�̂b2 < b2/2� →

0 as N→∞. If X1 satisfies Cramér’s condition (C), then P�q̂ < q/2� → 0 as
N→∞. Indeed,

E∗ exp�iτX∗1� =N−1
N∑
j=1

exp�iτXj�;
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and applying Chebyshev’s inequality, we obtain

P
{∣∣∣∣

1
N

N∑
j=1

exp�iτXj� −E exp�iτX1�
∣∣∣∣ >

q

2

}
≤ 16
q2N

:

Thus a comparison of Edgeworth expansions for t and t∗ shows that

sup
x
�P�
√
Nt ≤ x� −P∗�

√
Nt∗ ≤ x�� = OP�N−1�;

provided that b6 <∞, where the notation ξN = OP�δN� means that

lim
λ→∞

lim sup
N→∞

P��ξN� > λδN� = 0:

Proof of (2.2). Without loss of generality, we may assume that b2 = 1. We
will apply the estimate of Remark 1.3. Let fx R→ R be a bounded infinitely
many times differentiable function such that f�x� = 1/

√
�x� for �x� ≥ 1/2. Note

that all derivatives of f are bounded. We may regularize t by replacing it by
tf =Xf�̂b2�. Indeed,

P�t 6=Xf�̂b2�� ≤ P�̂b2 ≤ 1/2� ≤ cE�̂b2 − Êb2�2 ≤ cb4/N; N ≥ 3:

In order to truncate tf define

Yi =N−1/2Xi|�X2
i ≤N�; SN = Y1 + · · · +YN; s2

N = Y2
1 + · · · +Y2

N:

Thus the complement of the event �X2
i ≤N; 1 ≤ i ≤N� occurs with proba-

bility less than cb4/N, and hence we may replace
√
Ntf by

T = SNf�s2
N −N−1S2

N�:
It is well known (and easy to verify) that

E�SN�p ≤ c�p� for p ≥ 1:

Note that

ET = − µ3

2
√
N
+R where �R� ≤ cb4

N
:

Now split SN = Y1 + · · · + Yi + SN−i and use the independence of the
random variables Y1; : : : ;Yi and SN−i. This yields the bounds

�2:3�
�
√
ND1T� ≤ c�1+ �SN−1���1+ �X1��;

�N3/2D1D2T� ≤ c�1+S2
N−2��1+X2

1 +X2
2 +X2

1�X1� + �X1�X2
2�;

�N5/2D1D2D3T� ≤ c�1+S4
N−3�

∑
�X1�k�X1�l�X1�m;

where the last sum is taken over all nonnegative integers k; l;m ≤ 2. The
inequalities (2.3) imply

β4 ≤ cb4; γ2+ε ≤ cb3b4+ε; 12
3 ≤ cb3

4:
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We shall prove the first inequality in (2.3). The proofs of the other inequal-
ities are similar but somewhat more tedious. Split s2

N = Y2
1 + s2

N−1. We may
split T into

T = Q1 +Q2 where Q1 = Y1f�s2
N −N−1S2

N�
and

Q2 = SN−1f�Y2
1 + s2

N−1 −N−1Y2
1 − 2N−1Y2

1SN−1 −N−1S2
N−1�:

We have Q1 ≤ �Q1�. In order to estimate Q2 one should expand first in powers
of Y2

1 and then in those of 2N−1Y2
1SN−1, using Y2

1 ≤ �Y1�.
For the estimation of q notice that

√
NT1 =

√
NY1 + R, where �R� is

bounded by cN−1b4��X1� + X2
1�. This completes the sketch of the proof of

(2.2). 2

2.5. Functions of sample means. Assume that the independent identically
distributed random variables X1; : : : ;XN take values in a real Banach space
B. Consider the statistics

T0 =
√
N�H�X� −H�0��

and

T =
√
N�H�X� −EH�X��;

where H denotes a function Hx B→ R. The statistics T0 and T are equivalent
for our purposes since

∣∣∣∣EH�X� −H�0� −
1

2N
EH′′�0�X2

1

∣∣∣∣ ≤ L0Q3N
−3/2;

where we write H′′�0�XX =H′′�0�X2. This follows immediately by expanding
H in powers of X. Similarly,

∣∣∣∣EH�X� −H�0� −
1

2N
EH′′�0�X2

1

∣∣∣∣ ≤MN
−3/2�b7/2 + b5/2�;

which is obtained by expansions in powers of Xi, 1 ≤ i ≤N.
Therefore it suffices to prove Edgeworth expansions for T.
Define

s2
1 = E�H′�0�X1�2; a3 = s−3

1 E�H′�0�X1�3;

d = s−3
1 E�H′�0�X1��H′�0�X2��H′′�0�X1X2�; k = a3 + 3d

and

q = 1− sup
�t�≥s2

1/�16M3
0b3�
�E exp�itH′�0�X1��:

Then we have the following result.
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Theorem 2.1. The distribution function of T/s1 can be uniformly approx-
imated by �8�x� − k8′′′�x��/�6

√
N�, and the error does not exceed

cN−1q−2�b3 + b4 + b2
4 +Q2 +Q4

2��s−2
1 M2

0 + s−4
1 M4

0�

or, in case M<∞,

cN−1q−2�b3 + b4 + b2
4��s−2

1 M2 + s−4
1 M4�:

Theorem 2.1 follows from Theorem 1.2 and Lemmas 2.2 and 2.3.
Bounds for the moments Qs are well known; see, for instance, de Acosta

(1981).
Edgeworth expansions for functions of sample means in B = Rk have been

extensively studied; see, for instance, Bhattacharya and Ghosh (1978) and Bai
and Rao (1991). The smoothness conditionM0 <∞ for the functionH seems to
be optimal and is comparable with conditions in Bai and Rao (1991). Although
Theorem 2.1 holds for infinite-dimensional spaces B, our requirement that
the random variable H′�0�X satisfies Cramér’s condition (C) is weaker than
corresponding conditions used in the literature for B = Rk. For instance, it
allows X1 to have discrete coordinates since we need Cramér’s condition (C)
for one coordinate only. The moment assumption b4 <∞ is natural and seems
unimprovable.

Lemma 2.2. We have

E�Nk−1/2D1 · · ·DkT�s ≤ c�k; s��H�k��s∞bks for all s ≥ 1; 1 ≤ k ≤N:

In particular,

s−4
1 β4 + s−3

1 γ3 + s−2
1 12

3 ≤ c�s−4
1 M4

0 + s−2
1 M2

0��b4 + b2
3 + b3

2�:

Proof. The second estimate of the lemma follows from the first one. The
first estimate is a consequence of (2.1).

We omit the tedious proof of Lemma 2.3 since it is similar to that of
Lemma 2.2.

Lemma 2.3. For the statistic T =
√
N�H�X� −EH�X��, we have

√
NT1 =H′�0�X1 +R;

where �R� is bounded by either of the two following quantities:

cM0N
−1�b2 +Q2�X1� + �X1�2�; cMN−1�b2 + b2�X1� + �X1�2�:
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Furthermore,

τ2 = E�H′�0�X1�2 +R1;

�R1� ≤ cmin�M2
0N
−1�b3 +Q2b2�y M2N−1�b3 + b4��;

E�
√
NT1�3 = E�H′�0�X1�3 +R2;

where

�R2� ≤ cN−1/2 min�M3
0�b4 +Q1b3�y M3�b4 + b3b3/2��;

N5/2ET1T2T12 = E�H′�0�X1��H′�0�X2��H′′�0�X1X2� +R3;

with

�R3� ≤ cN−1/2 min�M3
0�b3b2 + b2

2Q1�y M3�b2b3 + b2
2b3/2��:

2.6. Functionals of empirical distribution functions. The results of this
section differ only in notation from those for functions of sample means. We
consider functionals of empirical distribution functions, and, for simplicity of
notation, we shall assume that they have bounded derivatives and that they
are functionals of distribution functions on the real line (but not empirical
measures in general spaces). A simple example satisfying all those assump-
tions is a linear combination of order statistics.

Throughout this section we shall use the following notation. By η1; : : : ; ηN
we denote i.i.d. real random variables with common distribution function P.
By PN we denote the empirical distribution function corresponding to the
sample η1; : : : ; ηN. Define the random processes

Xi�t�; t ∈ R; 1 ≤ i ≤N
by Xi�t� = |�ηi < t� −P�t�. Let

EN =
√
N�PN −P� = �X1 + · · · +XN�/

√
N

denote the empirical process.
Assume that a functional T takes real values and that T�P� and T�PN�

are well defined. Define

S0 =
√
N�T�PN� −T�P��; S =

√
N�T�PN� −ET�PN��:

We may write PN −P = EN/
√
N. Denoting HP�h� = T�P+ h�, we have

S =
√
N�HP�EN/

√
N� −EHP�EN/

√
N��:

Let us define the derivatives of T by the derivatives of HP via T�s��P+ h� =
H
�s�
P �h�. In order to define the derivatives of HP, we introduce a Banach space

B, which may depend on P and should be chosen in dependence on T and
the particular problem. We shall assume that HPx B → R admits Frechét
derivatives, and we require that B contains the sample functions X1�t� =
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|�η1 < t� a.s. Furthermore, we assume that the random variables X1;EN

are well defined and take values in B.
It is sufficient to prove Edgeworth expansions for S since

∣∣∣∣ET�PN� −T�P� −
1

2N
ET′′�P�X2

1

∣∣∣∣ ≤N
−3/2M0�T�Q3;

∣∣∣∣ET�PN� −T�P� −
1

2N
ET′′�P�X2

1

∣∣∣∣ ≤ cN
−3/2M�T��b7/2 + b5/2�:

In order to formulate Edgeworth expansions for S, we need some additional
notation. Write

s2
1 = E�T′�P�X1�2; k = a3 + 3d;

a3 = s−3
1 E�T′�P�X1�3; d = s−3

1 E�T′�P�X1��T′�P�X2��T′′�P�X1X2�
and

q = 1− sup
�t�≥s2

1/�16M3
0b3�
�E exp�itT′�P�X1��:

Theorem 2.4. The distribution function of S/s1 may be uniformly approx-
imated by �8�x� − k8′′′�x��/�6

√
N�, and the error does not exceed

cN−1q−2�b3 + b4 + b2
4 +Q2 +Q4

2��s−2
1 M2

0�T� + s−4
1 M4

0�T��
or, if M�T� <∞,

cN−1q−2�b3 + b4 + b2
4��s−2

1 M2�T� + s−4
1 M4�T��:

2.7. L-statistics. We are going to apply the result for functionals of empir-
ical distribution functions.

Let η1; : : : ; ηN be i.i.d. real random variables with common distribution
function P, and let PN be the empirical distribution function corresponding
to the sample η1; : : : ; ηN. Consider the statistic

lN =N−1
N∑
i=1

ciNηiyN;

where η1yN ≤ · · · ≤ ηNyN are the order statistics of η1; : : : ; ηN, and the coeffi-
cients c1N; : : : ; cNN are generated by a weight function Jx �0;1� → R,

ciN =N
∫ i/N
�i−1�/N

J�u�du:

Define

S0 =
√
N�lN − µ�; S =

√
N�lN −ElN�;

where

µ =
∫ ∞
−∞

xJ�P�x��dP�x�:
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It follows from (2.4) and (2.5) below, that
∣∣∣∣ElN − µ−

ν

2N

∣∣∣∣ ≤ cM0�J�N−3/2�E�η1�4 +E�η1��;
∣∣∣∣ElN − µ−

ν

2N

∣∣∣∣ ≤ cM�J�N
−3/2�E�η1�4 +E�η1�5/6�;

where

ν =
∫

R
J′�P�x��P�x��1−P�x��dx:

Therefore we may restrict ourselves to Edgeworth expansions for S.
Denote

bs = E�η1�s; x ∧ y = min�x;y�;

s2
1 =

∫
R2
J�P�x��J�P�y���P�x ∧ y� −P�x�P�y��dxdy:

Furthermore, write k = a3 + 3d, and

a3 = s−3
1

∫
R3
J�P�x��J�P�y��J�P�z���P�x ∧ y ∧ z� +U�dxdydz;

U = −P�x�P�y ∧ z� −P�y�P�x ∧ z� −P�z�P�x ∧ y� + 2P�x�P�y�P�z�;

d = s−3
1

∫
R3
J�P�x��J�P�y��J′�P�z��V�x; z�V�y; z�dxdydz;

V�x;y� = P�y ∧ z� −P�y�P�z�;
q = 1− sup��E exp�itY��x �t� ≥ c0s

2
1/�M3

0�J��b3 + b1���;

where

Y =
∫

R
J�P�x���|�x < η1� −P�x��dx:

Theorem 2.5. There exists an absolute positive constant c0 (see the defini-
tion of q) such that the distribution function of S/s1 can be uniformly approx-
imated by �8�x� − k8′′′�x��/�6

√
N�, and the error does not exceed

cN−1q−2�b4 + b2
4 + b2/3��s−2

1 M2
0�J� + s−4

1 M4
0�J��

or, if M�J� <∞,

cN−1q−2�b4 + b2
4 + b1��s−2

1 M2�J� + s−4
1 M4�J��:

The result of Theorem 2.5 is a consequence of Theorem 2.4. To see this,
we represent S as a differentiable functional of PN, and provide some useful
estimates of moments.
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If E�η1� <∞ the boundedness of J is sufficient for the following represen-
tation [see Govindarajulu and Mason (1983)]:

lN − µ =
∫ ∞
−∞
�9�PN�t�� −9�P�t���dt;

where

9�x� =
∫ 1

x
J�u�du:

Therefore we may write

lN − µ = T�PN� −T�P�;

where

T�h� =
∫ 0

−∞
�9�h�t�� −9�0��dt+

∫ ∞
0
9�h�t��dt:

Let � · �p denote the norm of the space Lp�R�. Let B be the Banach space
of functions with norm

�x� = �x�1 + �x�2 + �x�3:

The functional h 7→ T�P+h�x B→ R is twice [or thrice if M�J� <∞] Frechét
differentiable and

M0�T� ≤M0�J�; M�T� ≤M�J�:

Define the random processes

Xi�t� = |�ηi < t� −P�t�; t ∈ R; 1 ≤ i ≤N:

It is easy to verify that

E�X1�sp ≤ c�p; s��E�η1�s/p + �E�η1��s/p� for all p ≥ 1; s > 0:

The space Lp, p ≥ 2, is of type 2 and therefore [see de Acosta (1981)]

�2:4� sup
N≥1

E�EN�sp ≤ c�p; s�E�X1�sp ≤ c�p; s��E�η1�s/p + �E�η1��s/p�

for p; s ≥ 2. In the case of L1 we have

�2:5� sup
N≥1

E�EN�s1 ≤ c�p; ε��E�η�1 +E�η1�s+ε� for s ≥ 2; ε > 0:

Indeed, by means of the weight function 1 + �t�α with αs > s − 1 and using
Hölder’s inequality, we obtain

E�EN�s1 ≤ c�α; s�E
∫

R
�EN�t��s�1+ �t�α�s dt:

Now we may use Fubini’s theorem. Integrating by parts, we arrive at (2.5).
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2.8. U-statistics. In this section we again consider the general case of i.i.d.
random variables X1; : : : ;XN taking values in a measurable space. An exam-
ple of a symmetric statistic is a U-statistic of fixed order r, which is given
by

U =
∑

1≤i1<···<ir≤N
h�Xi1

;Xi2
; : : : ;Xir

�;

where h is a fixed kernel function with

Eh�X1; : : : ;Xr� = 0; Eh2�X1; : : : ;Xr� <∞:
If Hoeffding’s decomposition (see section 4) of h�X1; : : :Xr� is written as

h�X1; : : : ;Xr� =
r∑
k=1

∑
1≤i1<···<ik≤r

hk�Xi1
;Xi2

; : : : ;Xik
�;

where

hk�X1; : : : ;Xk� =
∑
A⊂�k
�−1�k−�A�E�h�X1; : : : ;Xr��A�;

then Hoeffding’s decomposition of U is given by

U =
r∑
k=1

(
N− k
r− k

) ∑
1≤i1<···<ik≤N

hk�Xi1
;Xi2

; : : : ;Xik
�:

We have h1�X1� = E�h�X1; : : : ;Xr��X1�,

T1 =
(
N− 1
r− 1

)
h1�X1�; τ2 =N

(
N− 1
r− 1

)2

Eh2
1�X1�;

σ2 =
r∑
k=1

(
N− k
r− k

)2(N
k

)
Eh2

k�X1; : : : ;Xk�;

~ = α3 + 3δ; α3 =N3/2
(
N− 1
r− 1

)3

Eh3
1�X1�;

δ =N5/2
(
N− 2
r− 2

)(
N− 1
r− 1

)2

Eh1�X1�h1�X2�h2�X1;X2�:

The following theorem is a consequence of Theorems 1.1 and 1.2.

Theorem 2.6. The distribution function of U/σ or U/τ can be uniformly
approximated by the corresponding Edgeworth expansion, and the error does
not exceed

c

Nq2�σ�

(
β4

σ4
+ γ3

σ3
+ 1

2
3

σ2

)

or

c

Nq2�τ�

(
β4

τ4
+ γ3

τ3
+ 1

2
3

τ2

)
;
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where �we write hk = hk�X1; : : : ;Xk��

β4

σ4
≤ β4

τ4
≤ Eh4

1

�Eh2
1�2
;

γ3

σ3
≤ γ3

τ3
≤ 8�r− 1�2E�h2�3

�Eh2
1�3/2

;

12
3

σ2
≤ 1

2
3

τ2
≤

r∑
k=3

c�r��N− k�!Eh2
k

�N− 3�!Eh2
1

:

Note that the terms TA of the statistic in Theorem 2.6 corresponding to car-
dinalities �A� > 3 are of much smaller order than required.

3. A smoothing inequality. Let F be a distribution function with char-
acteristic function f. It is known [Prawitz (1972)] that, for all x ∈ R and
H > 0,

F�x+� ≤ 1
2
+ V.P.

∫
R

exp�−ixt� 1
H
K

(
t

H

)
f�t�dt(3.1)

and

F�x−� ≥ 1
2
− V.P.

∫
R

exp�−ixt� 1
H
K

(
− t

H

)
f�t�dt:(3.2)

Notice that all integrals are real and that the integrands vanish unless �t� ≤H.
Here we write

F�x+� = lim
z↓x

F�z�; F�x−� = lim
z↑x

F�z�;

and V.P. denotes Cauchy’s principal value,

V.P.
∫

R
= lim

h↓0

( ∫ −h
−∞
+
∫ ∞
h

)
:

Furthermore, 2K�s� =K1�s� + iK2�s�/�πs�, where

K1�s� =
{1− �s�; for �s� ≤ 1;

0; for �s� ≥ 1;

K2�s� =
{πs�1− �s�� cot πs+ �s�; for �s� ≤ 1;

0; for �s� ≥ 1:

It is known [see, e.g., Chung (1974), page 159] that if we redefine a distri-
bution function G at discontinuity points (say x) as 2G�x� = G�x+�+G�x−�,
then

�3:3� G�x� = 1
2
+ i

2π
lim
M→∞

V.P.
∫
�t�≤M

exp�−itx�g�t�dt
t
;
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where g denotes the characteristic function of G. One can generalize (3.3) to
functions of bounded variation.

The following lemma is elementary.

Lemma 3.1. For 0 ≤ s ≤ 1 we have

K2�0� = 1; K2�1� = 0; K2
( 1

2

)
= 1

2 ;

K′2�s� ≤ 0; K2�s� +K2�1− s� = 1:

Furthermore,

1− 2�1− s� sin2 πs

2
≤K2�s� ≤ 1 for 0 ≤ s ≤ 1

2
;

0 ≤K2�s� ≤ 2s sin2 π�1− s�
2

for
1
2
≤ s ≤ 1:

Let us compare the smoothing inequality (3.1) with the classical Esseen
inequality for characteristic functions, namely,

�3:4� �F�x� −G�x�� ≤ cA
H
+ c

∫
�t�≤H
�f�t� − g�t��dt�t� ;

where A = supx �G′�x��. First of all the inequality (3.1) does not refer to a
comparison of distribution functions. If a limit distribution or an Edgeworth
approximation G is already known, then no regularity conditions on G [like
supx �G′�x�� <∞] are needed. It follows from (3.1) and (3.3) that

�3:5� F�x+� −G�x� ≤ I1 + I2 + I3;

where

I1 =
1
2

∫
R

exp�−ixt� 1
H
K1

(
t

H

)
f�t�dt;

I2 =
i

2π
lim
M→∞

V.P.
∫
�t�≤M

exp�−ixt�K2

(
t

H

)
�f�t� − g�t��dt

t
;

I3 =
i

2π
lim
M→∞

V.P.
∫
�t�≤M

exp�−ixt�
(
K2

(
t

H

)
− 1

)
g�t�dt

t
:

The term I1 corresponds to the concentration function of F, the term I2 cor-
responds to the integral in (3.4) and I3 corresponds to the first summand on
the right-hand side in (3.4). It is essential for our purposes that one may in-
terchange the order of integration and expectation E exp�itZ� = f�t� in (3.5),
where Z has d.f. F; this allows us to choose a random H depending on the
sample and apply (3.5) conditionally (we call this procedure “data-dependent
smoothing”).

4. Hoeffding’s decomposition and moment inequalities. In this sec-
tion we decompose the symmetric statistic T into several parts and derive
bounds for the variances of their conditional Hoeffding decompositions. The
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approach is similar to that of van Zwet (1984), but the calculations are more
involved since the variances are not completely monotone, which was essential
for the short proof in van Zwet (1984). We conclude this section with bounds
for moments of any part of a U-statistic of order 2. These bounds are similar
up to constants to those for sums of independent random variables.

LetX1;X2; : : : ;XN denote i.i.d. random variables taking values in an arbi-
trary measurable space with common distribution P. Consider the symmetric
statistic T = t�X1; : : : ;XN�. Without loss of generality, we shall assume that
ET = 0.

Let � = �1; : : : ;N�. For any A ⊂ �, �A� will denote the cardinality of A,
and we shall write

E�T�A� = E�T�Xi; i ∈ A�:
Thus E�T�A� denotes the conditional expectation of T given those Xi with
index i ∈ A. In particular, E�T�Z� = ET = 0 and E�T��� = T.

Let us define TA as an alternating sum of E�T�B� over all subsets B ⊂ A,
including the empty set and A itself,

�4:1� TA =
∑
B⊂A
�−1��A�−�B�E�T�B�:

Equation (4.1) expresses TA in terms of the conditional expectations. It is easy
to see that there is also an inverse relation

�4:2� E�T�B� =
∑
A⊂B

TA;

and, in particular,

�4:3� T =
∑
A⊂�

TA;

which is called Hoeffding’s decomposition of T. The components TA of T have
the special property that

E�TA�C� = 0 unless A ⊂ C:
Since ET = 0, it follows that

ETA = 0 for all A ⊂ �;
ETATC = 0 if A 6= C:

Hence (4.2) and (4.3) represent E�T�B� and T as sums of uncorrelated mean-
zero random variables TA, and, as a result,

�4:4� σ2�E�T�B�� =
∑
A⊂B

ET2
A;

�4:5� σ2 = σ2�T� =
∑
A⊂�

ET2
A:
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So far we have not used the fact that t is symmetric and X1; : : : ;XN are
i.i.d. This implies that, for A = �i1; : : : ; ik�,

TA = gk�Xi1
; : : : ;Xik

�;
where gk is symmetric in its arguments and depends on A only through its
cardinality �A� = k. Writing Ti and Tij as alternative notation for T�i� and
T�i;j�, we have, for example,

Ti = T�i� = g1�Xi� = E�T�Xi�;

Tij = T�i; j� = g2�Xi;Xj� = E�T�Xi;Xj� −E�T�Xi� −E�T�Xj�
and so forth. It follows that whenever �A� = k, then TA has the same distribu-
tion as T�k , where �k = �1; : : : ; k�. Hoeffding’s decomposition now assumes
the form

T =
∑
A⊂�

TA =
∑

1≤i≤N
g1�Xi� +

∑
1≤i<j≤N

g2�Xi;Xj�

+
∑

1≤i<j<k≤N
g3�Xi;Xj;Xk� + · · · + gk�X1; : : : ;XN�;

and the variance decompositions (4.4) and (4.5) become

σ2�E�T�B�� =
�B�∑
k=1

(�B�
k

)
ET2

�k
=
�B�∑
k=1

(�B�
k

)
Eg2

k�X1; : : : ;Xk�;

σ2 =
N∑
k=1

(
N

k

)
ET2

�k
=

N∑
k=1

(
N

k

)
Eg2

k�X1; : : : ;Xk�:

For i ∈ � and for a (not necessarily symmetric) statistic T, we define the
difference

�4:6� DiT = T−E�T�� \ �i��:
Obviously, Di�DiT� = DiT, DiDjT = DjDiT and, for A = �i1; : : : ; ik� ⊂ �,
the difference

DAT = Di1
· · ·Dik

T

is well defined. We have DADBT = DA∪BT,

DAT =
∑
B⊂A
�−1��B�E�T�� \B�:

The random variable TA is related to the difference DAT, and

TA = E�DAT�A�:
Denote �m = �1; : : : ;m� and consider repeated differences (4.6),

�4:7� D1D2 · · ·DmT =
∑

A⊂�;�m⊂A
TA for m = 1;2; : : : ;N:
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It follows from (4.7) that

12
m =N2m−1E�D1D2 · · ·DmT�2 =N2m−1

N∑
k=m

(
N−m
k−m

)
ET2

�k
;

1
3N

2
N∑
k=3

k3
(
N

k

)
ET2

�k
≤ 12

3 ≤ 3N2
N∑
k=3

k3
(
N

k

)
ET2

�k
:

Denote

31 =
∑

�A�=2; �A∩�m�=2

TA; 32 =
∑

�A�≥3; �A∩�m�=2

TA; 33 =
∑

Ax �A∩�m�≥3

TA:

Define identically distributed random variables η1; : : : ; ηm by

ηi =
∑

�A�≥3;A∩�m=�i�
TA:

Lemma 4.1. We have

E32
3 ≤m3N−512

3; 3 ≤m ≤N;(4.8)

E32
2 ≤m2N−412

3; 2 ≤m ≤N;(4.9)

E�31�3 ≤ cN−9/2m3γ3; 2 ≤m ≤N;(4.10)

Eη2
1 ≤N−312

3; 1 ≤m ≤N:(4.11)

Proof. Let us prove (4.8). Define the function ϕ�m� = E32
3, for 2 ≤m ≤N,

and ϕ�2� = 0. The random variables TA and TB are uncorrelated unless
A = B. Therefore the definition of 33 implies

ϕ�m� =
N∑
r=3

c�r;m;N�ET2
�r
; 2 ≤m ≤N;

where c�r;m;N� is the number of subsets A ⊂ � such that �A� = r and
�A ∩�m� ≥ 3. We have

ϕ�3� =
N∑
r=3

(
N− 3
r− 3

)
ET2

�r
= E�D1D2D3T�2 =N−512

3:

Define the difference operator d acting on the variable m as dϕ�m� =
ϕ�m+ 1� − ϕ�m�. Then

dϕ�2� = ϕ�3� = E�D1D2D3T�2;
ϕ�m� = ϕ�2� + dϕ�2� + · · · + dϕ�m− 1�;

and (4.8) will follow if we show that

�4:12� dϕ�m� ≤m2E�D1D2D3T�2; 3 ≤m ≤N:
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For (4.12) it is sufficient to verify that

�4:13� dc�r;m;N� ≤m2
(
N− 3
r− 3

)
:

Let us consider the class Am of sets,

Am = �Ax A ⊂ �; �A� = r; �A ∩�m� ≤ 2�:
Then Am+1 ⊂ Am and

�4:14� c�r;m;N� = ��Ax A ⊂ ��� − �Am�:
From (4.14) we see that

dc�r;m;N� = �Am� − �Am+1� = �Am \Am+1�:
Under conditions �A� = r and A ⊂ �1; : : : ;N�, we have

A ∈ Am \Am+1 ⇔ �A ∩�m� ≤ 2; �A ∩�m+1� ≥ 3

⇔ �A ∩�m� = 2; m+ 1 ∈ A;
and we have

dc�r;m;N� =
(
m

2

)(
N−m− 1
r− 3

)
:

However,
(
m

2

)
≤m2;

(
N−m− 1
r− 3

)
≤
(
N− 3
r− 3

)
; for 3 ≤m;

and (4.13) follows.
Let us prove (4.9). We have

E32
2 =

N∑
r=3

∑

�A�=r;�A∩�m�=2

ET2
�r
=

N∑
r=3

(
m

2

)(
N−m
r− 2

)
ET2

�r
;

and (4.9) follows since
(
m

2

)
≤m2;

(
N−m
r− 2

)
≤N

(
N− 3
r− 3

)
for m ≥ 3:

Let us prove (4.11). Obviously,

Eη2
1 =

N∑
r=3

(
N−m
r− 1

)
ET2

�r
≤

N∑
r=3

(
N− 1
r− 1

)
ET2

�r
≤N2E�D1D2D3T�2;

since
(
N−m
r− 1

)
≤
(
N− 1
r− 1

)
≤N2

(
N− 3
r− 3

)
for r ≥ 3:

Inequality (4.10) is a consequence of the following lemma.
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In Lemma 4.2 we consider a symmetric function ψ taking values in a
Banach space �B; � · �� of type 2 (e.g., B is finite dimensional).

Lemma 4.2. Assume that E�ψ�X;X1��X� = 0. Let A be a finite subset of
the set of all integer pairs �i; j� such that 1 ≤ i < j. Then

E
∣∣∣∣
∣∣∣∣
∑

�i; j�∈A
ψ�Xi;Xj�

∣∣∣∣
∣∣∣∣
p

≤ �A�c�p�γp for 1 ≤ p ≤ 2;(4.15)

E
∣∣∣∣
∣∣∣∣
∑

�i; j�∈A
ψ�Xi;Xj�

∣∣∣∣
∣∣∣∣
p

≤ �A�p/2c�p�γp for 2 ≤ p ≤ ∞;(4.16)

where γp = E��ψ�X;X1���p, and the constant c�p� in (4.15) and (4.16) depends
only on p and B.

Proof. We use a decoupling inequality due to de la Peña (1992). For any
convex increasing function 8x �0;∞� → �0;∞�, we have

�4:17� E8
(∣∣∣∣
∣∣∣∣
∑

�i; j�∈A
ψ�Xi;Xj�

∣∣∣∣
∣∣∣∣
)
≤ E8

(
8
∣∣∣∣
∣∣∣∣
∑

�i; j�∈A
ψ�Xi;Zj�

∣∣∣∣
∣∣∣∣
)
;

where the sequence Z1;Z2; : : : is an independent copy of X1;X2; : : : :
In the proof of the lemma we shall write c�p� instead of c�p;B�. Let

η1; : : : ; ηm ∈ B, Eηj = 0 be independent random variables assuming values
in B. A result of de Acosta (1981) yields

E
∥∥∥∥

m∑
j=1

ηj

∥∥∥∥
p

≤ c�p�
m∑
j=1

E�ηj�p for 1 ≤ p ≤ 2;(4.18)

E
∥∥∥∥

m∑
j=1

ηj

∥∥∥∥
p

≤ c�p�
( m∑
j=1

E�ηj�2
)p/2
+ c�p�

m∑
j=1

E�ηj�p; 2 ≤ p <∞;(4.19)

provided the Banach space B is finite dimensional or of type 2.
Let us prove (4.15). Let N < ∞ be a natural number such that �i; j� ∈

A ⇒ j ≤ N. Define the sets Ai = ��i; j�x �i; j� ∈ A� for i ≥ 1. Without loss
of generality, we may assume that Ai 6= Z for 1 ≤ i ≤ K, where a number
K ≤N, and that Ai = Z for i > K. Denote

V =
∑

�i; j�∈A
ψ�Xi;Zj� =

K∑
i=1

ξi;

where ξi =
∑
�i; j�∈Ai

ψ�Xi;Zj�. Due to the decoupling inequality, it is suffi-
cient to estimate E�V�p. By a conditioning argument followed by an applica-
tion of (4.18) to

EX

∥∥∥∥
K∑
i=1

ξi

∥∥∥∥
p

and EZ�ξi�p;
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we easily obtain (4.15), where we write EX = EX1;X2;:::
for the conditional

expectation given all r.v.’s but X1;X2; : : : :
The proof of (4.16) is a little bit more tedious. Applying (4.19), we have

�4:20�

E�V�p ≤ c�p�EZ

( K∑
i=1

EX�ξi�2
)p/2
+ c�p�

K∑
i=1

E�ξi�p;

E�ξi�p ≤ c�p�EX

( ∑

�i; j�∈Ai

EZ�ψ�Xi;Z��2
)p/2

+c�p�miγp ≤ c�p�mp/2
i γp;

where mi = �Ai�. Summing, we get

K∑
i=1

E�ξi�p ≤ �A�p/2c�p�γp;

since m1 + · · · +mK = �A�. Let us define an r.v. σ by P�σ = i� = mi/�A� for
1 ≤ i ≤K. We assume that σ is independent of all other r.v.’s Then

K∑
i=1

EX�ξi�2 = �A�EX;σ�ξσ�2/mσ ;

and applying Hölder’s inequality, we get

EZ

( K∑
i=1

EX�ξi�2
)p/2

≤ �A�p/2Em−p/2σ �ξσ�p ≤ c�p��A�p/2γp

if we estimate EZ�ξσ�p by (4.13). Collecting these estimates concludes the
proof of (4.16).

5. Proofs. We shall derive Theorem 1.1 from Theorem 1.2. The proof of
Theorem 1.2 is laborious and needs much effort. One may obtain the result
of Remark 1.3 by inspecting the proof of Theorem 1.2 and making relatively
simple obvious changes. We conclude this section with the construction of a
counterexample in Theorem 1.4.

By c; c1; : : : we shall denote generic absolute positive constants, by
C;C1; : : : ; generic sufficiently large absolute positive constants. If a con-
stant depends on a parameter, say A, then we write c�A�. By Ei; j;::: =
E�·�� \ �i; j; : : :�� we shall denote the expectation with respect to random
variables with pointed out indices i; j; : : :; in other words, we condition on all
random variables with indices different from i; j; : : : :

Proof of Theorem 1.1. It follows from (4.5) that

σ2 = τ2 +R2 where 0 ≤ R2 ≤ γ2

N
+ 12

3

N2
:
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We have

�5:1� sup
x
�F�x� −G�x�� ≤ 1+ �~�

σ3
√
N
≤ c

(
1+ β3

σ3
√
N
+ γ

1/2
2

σ
√
N

)
:

We may assume that

�5:2� β3

σ3
√
N
+ γ

1/2
2

σ
√
N
≤ 2:

Indeed, otherwise

1 ≤ max
{

β3

σ3
√
N
;
γ

1/2
2

σ
√
N

}
≤ max

{(
β3

σ3
√
N

)2

;

(
γ

1/2
2

σ
√
N

)3}
;

and Theorem 1.1 follows.
Now we consider the cases 2τ2 ≥ σ2 and 2τ2 ≤ σ2.
The case 2τ2 ≤ σ2 is trivial, since the result is an easy consequence of (5.1)

and (5.2). Indeed, the inequality R2/σ2 ≥ 1/2 (since 2τ2 ≤ σ2) implies that at
least one of the inequalities

γ2

σ2N
≥ 1

4
;

12
3

σ2N2
≥ 1

4

is fulfilled. If the first inequality holds, then (5.1) and (5.2) imply

sup
x
�F�x� −G�x�� ≤ c ≤ c

(
γ2

σ2N

)3/2

≤ cγ3

σ3N
:

If the first inequality is not fulfilled, then the second holds and

sup
x
�F�x� −G�x�� ≤ c ≤ c12

3

σ2N2
;

which concludes the proof in the case 2τ2 ≤ σ2.
In the case 2τ2 ≥ σ2 the result follows from Theorem 1.2. Using the estimate

of this theorem and (5.2), we reduce the problem to the estimation of

�5:3� sup
x

∣∣∣∣8�x� −8
(
τx

σ

)∣∣∣∣;
∣∣∣∣1−

τ3

σ3

∣∣∣∣; sup
x

∣∣∣∣8
′′′�x� −8′′′

(
τx

σ

)∣∣∣∣:

The inequality 2τ2 ≥ σ2 implies τ2/σ2 = 1−R2/σ2, where R2/σ2 ≤ 1/2, and
one may estimate the quantities (5.3) by expansion in Taylor series. 2

Proof of Theorem 1.2. Roughly speaking, the proof of Theorem 1.2 is
based on a reduction to sums of (conditionally) independent random variables
and on elimination of the influence of the nonlinear part of the statistic. For
this we use Taylor expansions and moment inequalities from Section 4 for
symmetric statistics or their parts.

Without loss of generality, we shall assume that

τ2 = 1:
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We shall prove that

�5:4� sup
x
�F�x� −G�x�� ≤ c�β4 + γ3 + 12

3�
q2N

;

where

q = qN�τ� = 1− sup��E exp�itN1/2T1��x 1/β3 ≤ �t� ≤
√
N�;

and where, for brevity, we write qN�τ� = q, F = F and G = G. Now Theorem
1.2 is a consequence of (5.4).

Without loss of generality in the proof of (5.4), we may assume that

�5:5�
β4 ≤ cN; β3 ≤ c

√
N; γ2 ≤ cN;

q ≥ CN−1 ln N; N ≥ C;
where c is a sufficiently small positive absolute constant and where C is a
sufficiently large absolute constant. Indeed, if at least one of inequalities (5.5)
is not fulfilled, then the result of the theorem follows from the obvious estimate
supx �F�x� −G�x�� ≤ c, which we may assume as in (5.2).

The result of Theorem 1.2 follows from Lemmas 5.1–5.3. In Lemmas 5.2 and
5.3 we show that the integrals Ik; r, I and J from Lemma 5.1 do not exceed
the right-hand side of (5.4).

Lemma 5.1. Let H1 =
√
N/β3, and let F̂ resp. Ĝ denote the ch.f. of F resp.

G. For some natural number k > r ≥N/2, we have

�5:6� sup
x
�F�x� −G�x�� ≤ cIk; r + cI+ cJ+R;

where R does not exceed the right-hand side of (5.4), and

I =
∫
�t�≤H1

�F̂�t� − Ĝ�t��dt�t� ;

J = cq−2 ln2N
∫
�t�≤H1

�ETN−1N exp�itT��dt;

Ik; r =
1
qN

∫
�t�≤H1

E�1+ θ��E1;:::;r exp�itT��dt; θ =NE1

∣∣∣∣
N∑
j=k

T1j

∣∣∣∣:

In the proofs of Lemmas 5.1–5.3 we use the conditional Hoeffding decom-
position of certain parts of T. Fix a number m, 1 ≤ m ≤ N, and denote
�m = �1; : : : ;m�. We may decompose T:

�5:7� T = V+W;
where

W = E�T�Xm+1; : : : ;XN� =
∑

Ax A∩�m=Z
TA;
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and where the sum
∑
A is taken over all nonempty subsets A ⊂ � =

�1; : : : ;N�.
For fixed Xm+1; : : : ;XN,

V = T−W =
∑

Ax A∩�m 6=Z
TA

is a symmetric statistic of X1; : : : ;Xm. Let us consider its conditional Hoeff-
ding decomposition:

V =
∑

B⊂�m
VB where VB =

∑
A⊂�; A∩�m=B

TA:

Writing Vi instead of V�i�, we obtain

�5:8� V =
m∑
i=1

Vi + 31 + 32 + 33;

where Vi =
∑
Ax A∩�m=�i�TA,

31 =
∑

�A�=2; �A∩�m�=2

TA; 32 =
∑

�A�≥3; �A∩�m�=2

TA; 33 =
∑

Ax �A∩�m�≥3

TA:

Let us decompose Vi:

�5:9� Vi = Ti + ξi + ηi;
where

ξi =
N∑

j=m+1

Tij; ηi =
∑

�A�≥3; A∩�m=�i�
TA:

For fixed Xm+1; : : : ;XN the random variables Ti, 1 ≤ i ≤m (or ξi, 1 ≤ i ≤m
or ηi, 1 ≤ i ≤m), are i.i.d.

Proof of Lemma 5.1. Let

m ≈ Cq−1 ln N;

be an integer, where the positive constant C is sufficiently large and is chosen
later. Because of (5.5) such an m, 1 ≤m ≤N, exists.

Before applying the Fourier transform [i.e., the smoothing inequality (3.1)],
we shall remove certain parts of the statistic T in order to obtain a relatively
small sum of (conditionally) independent summands. For each m, 3 ≤m ≤N,
we may write [see (5.7), (5.8) and Lemma 4.1]

T = T̃+ 31 + 32 + 33; T̃ =
m∑
j=1

Vj +W;

where

�5:10� E�31�3 ≤ cN−9/2m3γ3; E32
2 ≤m2N−412

3; E32
3 ≤m3N−512

3:
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We are going to apply a simple Slutzky argument. Due to (5.5), supx �G′�x�� ≤
c. Therefore, instead of

sup
x
�F�x� −G�x��; where F�x� = P�T < x�;

we shall estimate

sup
x
�F̃�x� −G�x��; where F̃�x� = P�T̃ < x�:

The error by this replacement does not exceed [use (5.10) and note thatm ≤N,
m = Cq−1 lnN]

cq−1N−1 + 2P�qN�31� ≥ 1� + 2P�qN�32� ≥ 1� + 2P�qN�33� ≥ 1�
≤ cq−1N−1 + cN−3/2γ3 ln3N+ cN−2 ln2N12

3;

which is bounded by the right-hand side of (5.4).
In order to prove (5.6) we shall apply the smoothing inequality (3.1). The

estimate (5.6) follows from

�5:11� 2F̃�x+� ≤ 2G�x� + cIk; r + cI+ cJ+R;

�5:12� 2F̃�x−� ≥ 2G�x� − cIk; r − cI− cJ+R
if the remainder �R� is bounded by the right-hand side of (5.4). We shall prove
only (5.11). The proof of (5.12) is similar; a minor difference being that in-
stead of the smoothing inequality (3.1) one should use (3.2). Alternatively, one
can derive (5.12) from (5.11), applying (5.11) to −T (instead of T) and using
symmetry arguments.

Define

θ1 =NE1

∣∣∣∣
k∑

j=m+1

T1j

∣∣∣∣; θ2 =NE1

∣∣∣∣
N∑

j=k+1

T1j

∣∣∣∣;

where the number k is chosen as k ≈ �N+m�/2, and write

H = qN

4�1+ θ1 + θ2�
:

Notice that H depends only on Xm+1; : : : ;XN.
The random variables X1; : : : ;Xm are independent of Xm+1; : : : ;XN. Thus

we may apply the smoothing inequality (3.1) conditionally with H = qN/�4+
4θ1 + 4θ2�, which is random but independent of X1; : : : ;Xm. We get

2F̃�x+� ≤ 1+EI1 +EI2;

where

I1 =
1
H

∫
R

exp�−ixt�K1

(
t

H

)
f�t�dt;

I2 =
i

π

∫
R

exp�−ixt�K2

(
t

H

)
f�t�dt

t
;
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and where f�t� = E1;:::;m exp�itT̃�. Therefore (5.11) follows from

�EI1� ≤ cIk; r +R;(5.13)

�EI2 + 1− 2G�x�� ≤ cI+ cJ+R;(5.14)

with the remainder terms �R� bounded by the right-hand side of (5.4).

Estimation of �EI1�. In order to estimate �EI1� we shall replace the random
bound H in the integral I1 by a nonrandom one, and K1�t/H� by 1. Further-
more, due to the special structure of H, we can interchange the integral and
expectation with respect to a sufficiently large group of r.v.’s Xm+1; : : : ;XN.

We have

�EI1� ≤ �EI3� +EI4;

where

I3 =
1
H

∫
�t�≤H1

exp�−ixt�K1

(
t

H

)
f�t�dt; H1 =

√
N

β3
;

I4 =
1
H

∫
H1≤�t�

K1

(
t

H

)
�f�t��dt ≤ 1

H
|�H ≥H1�

∫
H1≤�t�≤H

�f�t��dt:

Let us show that

�5:15� EI4 ≤ c�1+ 12
3�/N:

The random variable W is independent of X1; : : : ;Xm, and we have

�f�t�� = �E1 exp�itV1��m

for fixed Xm+1; : : : ;XN. We have [see (5.9) and Lemma 4.1]

V1 = T1 + ξ1 + η1; ξ1 =
N∑

j=m+1

T1j

and

�5:16� Eη2
1 ≤N−312

3:

Let us consider the indicator function

| = |�4E1�tη1� ≤ q�:
Estimating �f�t�� ≤ 1, we have

EI4 ≤ EJ1 +EJ2;

where

J1 =
1
H

|�H ≥H1�
∫
H1≤�t�≤H

|�f�t��dt;

J2 =
1
H

|�H ≥H1�
∫
H1≤�t�≤H

�1−|�dt:
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Using Chebyshev’s inequality and (5.16), we get

EJ2 ≤ cEq−2H2�E1�η1��2 ≤ c12
3/N;

since H ≤ qN.
In order to estimate J1 we use a Taylor expansion

|�E1 exp�itV1�� ≤ �E exp�itT1�� + �t�E1�ξ1� +|E1�tη1�:
However, the first summand does not exceed 1 − q because of Cramér’s con-
dition (C). The second summand does not exceed q/4 for �t� ≤ H due to the
definition of H. The third summand is obviously less than q/4. Therefore

EJ1 ≤ �1− q/2�m ≤ exp�−mq/2� ≤ c/N;
because of our choice of m = Cq−1 ln N with a sufficiently large C. Collecting
the estimates, we get (5.15).

Let us estimate EI3. Note that �K1�s� − 1� ≤ �s� for all s ∈ R. Therefore

�EI3� ≤ �EI5� +EI6;

where

I5 =
1
H

∫
�t�≤H1

exp�−ixt�f�t�dt

and

EI6 ≤ E
2
H

∫ H1

0

t

H
dt ≤ E

H2
1

H2
≤ cq

−2β−2
3 �1+ γ2�
N

:

It remains to estimate �EI5�. Let us replace T̃ by T in EI5. We have [see
(5.10)] T̃ = T− 31 − 32 − 33. Expanding in a Taylor series, we get

EI5 = EI7 +R;
where

I7 =
1
H

∫
�t�≤H1

exp�−ixt� exp�itT�dt;

�R� ≤ cEH
2
1

H
��31� + �32� + �33��:

Now, applying Hölder’s inequality several times together with Lemma 4.1, we
obtain

�R� ≤ cq−2β−2
3 �1+ γ3 + 12

3�/N:
It remains to estimate EI7. Recall that 1/H = q−1N−1�1+θ1+θ2�, and that

θ1 depends on Xm+1; : : : ;Xk only, and θ2 on Xk+1; : : : ;XN only. Therefore we
may write EI7 as the sum of three integrals, and we can interchange the
integrals and the expectation with respect to r.v.’s independent of θ1 (or θ2).
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Due to symmetry and the i.i.d. assumption, the last two integrals are bounded
by

q−1N−1
∫
�t�≤H1

E�θ2� �E1;:::;r exp�itT��dt;

where r, 1 ≤ r < �N + m�/2, is arbitrary, θ2 = NE1�
∑N
j=k+1T1j� and k ≥

�N+m�/2. Therefore

�EI7� ≤ cq−1N−1
∫
�t�≤H1

E�1+ �θ2���E1;:::;r exp�itT��dt;

and (5.13) follows.

Estimation of EI2. We shall proceed as in the estimation of EI1. We have

EI2 = EI3 +R; �R� ≤ EI4;

where

I3 =
i

π
V.P.

∫
�t�≤H1

exp�−ixt�K2

(
t

H

)
f�t�dt

t
; H1 =

√
N

β3
;

I4 = |�H ≥H1�
∫
H1≤�t�≤H

�f�t��dt�t� :

The estimation of EI4 is similar to the proof of (5.15) and EI4 ≤ c�1+12
3�/N.

Note that �K2�τ� − 1� ≤ 5τ2. Therefore

EI3 = EI5 +R; �R� ≤ EI6;

where

I5 =
i

π
V.P.

∫
�t�≤H1

exp�−ixt�f�t�dt
t
;

EI6 = cE
∫
�t�≤H1

�t�
H2

dt ≤ cq
−2β2

3�1+ γ2�
N

:

Collecting these estimates, we get EI2 = EI5 +R, where �R� does not exceed
the right-hand side of (5.4), and we may rewrite EI5 as

EI5 =
i

π
V.P.

∫
�t�≤H1

exp�−ixt�E exp�itT̃�dt
t
:

As in the estimation of EI1, we may replace T̃ by T− 31 and EI5 by

I6 =
i

π
V.P.

∫
�t�≤H1

exp�−ixt�E exp�it�T− 31��
dt

t
:

In order to remove the term 31, we expand exp�−it31� = 1− it31 +O�t232
1�.

Due to symmetry and the i.i.d. assumption,

I6 = I7 + I8 +R;
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where R is bounded by the right-hand side of (5.4), and

I7 =
i

π
V.P.

∫
�t�≤H1

exp�−ixt�F̂�t�dt
t
;

�I8� ≤ m2
∫
�t�≤H1

�ETN−1N exp�itT��dt = J:

We have

2G�x� = 1+ i

π
V.P.

∫
R

exp�−itx�Ĝ�t�dt
t
;

where

Ĝ�t� =
(

1+ �it�
3~

6
√
N

)
exp

{
− t

2

2

}
:

Estimating �~� ≤ c
√
N, we get

�1+ I7 − 2G�x�� ≤ I+ cβ4/N:

Collecting these estimates, we get (5.14), which concludes the proof of the
lemma. 2

The proof of Lemma 5.2 is a simplified version of that of Lemma 5.3.

Lemma 5.2. The integrals J and Ik; r in Lemma 5.1 are bounded by the
right-hand side of (5.4).

Proof. We shall estimate Ik; r only since the estimation of J is similar and
somewhat simpler. Using Hoeffding’s decomposition, we may write T = U+Z,
where U is a U-statistic:

�5:17� U =
N∑
i=1

Ti +
∑

1≤i<j≤N
Tij;

and Z is the remaining part of T. According to Lemma 4.1 (with m =N), we
have EZ2 ≤N−212

3. Expanding in a Taylor series, we get

Ik;r ≤ EI1 +EI2;

where

I1 = q−1N−1
∫
�t�≤H1

�1+ θ��E1;:::;r exp�itU��dt

and

EI2 = Eq−1N−1
∫
�t�≤H1

�1+ θ��t��E1;:::;rZ
2�1/2 dt

≤ cq−1N−2H2
1E1/2�1+ θ�213 ≤ cq−1N−1�1+ γ2 + 12

3�;
which does not exceed the right-hand side of (5.4).
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Let us estimate EI1. Estimating the characteristic function in the integral
by 1, we have

�EI1� ≤ cq−1N−1�1+ γ2� + cI3;

where

I3 = q−1N−1E
∫
C≤�t�≤H1

�1+ �θ���E1;:::;m exp�itU��dt;

and where C is an absolute sufficiently large constant, and m ≤ N/2 ≤ r is
arbitrary. We choose

m = C1
N ln �t�
t2

;

with a sufficiently large absolute constant C1. For fixed Xm+1; : : : ;XN we
consider the conditional Hoeffding decomposition of U:

U =
m∑
i=1

Vi + 31 +W; Vi = Ti + ξi;

ξi =
N∑

j=m+1

Tij; 31 =
∑

1≤i<j≤m
Tij:

Expanding in a Taylor series, we may replace U in I3 by
∑m
i=1Vi +W; the

error does not exceed

cq−1N−1
∫
C≤�t�≤H1

E�1+ �θ���t31�dt;

and is bounded from above by the right-hand side of (5.4) due to our choice of
m. Therefore, instead of I3, we have to estimate

I4 = q−1N−1E
∫
C≤�t�≤H1

�1+ �θ���h�t��m dt;

where h�t� = E1 exp�itV1�. Let us consider the indicator function

| = |�6NE1�ξ1� ≤ �t��:
Then

1
qN

E
∫
C≤�t�≤H1

�1+ �θ���1−|�dt ≤ cN
q

E
∫
C≤�t�≤H1

E�1+ �θ���E1�ξ1��2
dt

t2
;

which is bounded from above by the right-hand side of (5.4). Therefore, instead
of I4, we have to estimate

I5 = q−1N−1E
∫
C≤�t�≤H1

�1+ �θ��|�h�t��m dt:

However,

�5:18� |�h�t�� ≤ �E exp�itT1�� +|�t�E1�ξ1� ≤ 1− t2

6N
;
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since

�E exp�itT1�� ≤ 1− t2

3N
; |�t�E�ξ1� ≤

t2

6N
:

The estimate (5.18) implies |
∣∣h�t�

∣∣m ≤ �t�−C with a sufficiently large C, and
therefore I5 is bounded by the right-hand side of (5.4), which concludes the
proof of the lemma. 2

Lemma 5.3. The integral I in Lemma 5.1 does not exceed the right-hand
side of (5.4).

Proof. Let us show that

�5:19� I ≤ I1 + I2;

where

I1 =
∫
C≤�t�≤H1

�F̂�t� − Ĝ�t��dt�t� ;

I2 =
∫
�t�≤C
�F̂�t� − Ĝ�t��dt�t� ≤ c

β4 + γ2 + 12
3

N
:

Let us start with the (unconditional) Hoeffding decomposition T = U+Z,
where U is the U-statistic (5.17), and, according to Lemma 4.1, EZ2 ≤ 12

3/N
2.

Expanding in a Taylor series, we get

I2 ≤ I3 + c�EZ2�1/2; �EZ2�1/2 ≤ c�1+ 12
3�/N;

where

I3 =
∫
�t�≤C
�E exp�itU� − Ĝ�t��dt�t� :

For �t� ≤ C the function f�x� = exp�itx� is smooth and has bounded deriva-
tives. Therefore, applying Lemma 6.1, we get I3 ≤ c�β4 + γ2�/N, and (5.19)
follows.

Henceforth we shall write R ≺ D if there is an absolute constant c such
that

∫
C≤�t�≤H1

�R�dt�t� ≤ cD;

as well as AwB if A − B ≺ �β4 + γ3 + 12
3�/N: In view of (5.19), we have to

show that F̂�t�w Ĝ�t�.
Let us choose

m = C1
N ln �t�
t2

;
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with a sufficiently large absolute constant C1. Using the conditional Hoeffding
decomposition (5.10), we have

T = T̃+ 31 + 32 + 33; T̃ =
m∑
j=1

Vj +W;

where W is independent of X1; : : : ;Xm. Expanding in a Taylor series and
using (5.10) for the estimation of variances of 32 and 33, we obtain

F̂�t�wE exp�it�T̃+ 31��:
The error by this replacement does not exceed

c�t�mN−213 ≺ �1+ 12
3�/N:

We have 31 =
∑

1≤j<k≤mTjk. Expanding in powers of 31 and using the sym-
metry and the i.i.d. property, we obtain

�5:20� F̂�t�wE
(

1+ it
(
m

2

)
T12

)
exp�itT̃�;

with an error not exceeding cN−3t2m2γ2 ≺ γ2/N.
Recall that Vj = Tj + ξj + ηj [see (5.9)], and introduce the notation

h1�t� = E exp�itT1�;
h2�t� = E1 exp�itT1 + itξ1�;
h3�t� = E1 exp�itV1�;

h4�t� = it
(
m

2

)
E1;2T12 exp�itV1 + itV2�:

Then we may rewrite (5.20) as

F̂�t�wE exp�itW��hm3 �t� + h4�t�hm−2
3 �t��:

Let us show that

�5:21� h4�t�wh5�t� = it
(
m

2

)
E1;2T12 exp�itT1 + itT2�;

and that

�5:22� �h5�t�� ≤ �t�3m2N−5/2γ
1/2
2 ≤ c for C ≤ �t� ≤H1:

Expanding in powers of η1, η2 and using
(
m

2

)
≤m2; m = CNt−2 ln �t�;

we get

h4�t�w it
(
m

2

)
E1;2T12 exp�itT1 + itξ1 + itT2 + itξ2�:
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Now we expand in powers of ξ1+ξ2. Using symmetry and the i.i.d. assumption,
we get h4�t�wh5�t� + h6�t�, where

h6�t� = 2�it�2
(
m

2

)
E1;2ξ1T12 exp�itT1 + itT2�:

Expanding in powers of T2, we have

E�h6�t�� ≤ �t�3m2E1;2�ξ1T12T2� ≺ γ2/N;

and (5.21) follows. Finally, we derive (5.22) from (5.21) by expansions, using
γ2 ≤ cN.

It follows from (5.21) that

�5:23� F̂�t�wE exp�itW��hm3 �t� + h5�t�hm−2
3 �t��:

Let us consider the following indicator functions:

|1 = |�NE1η
2
1 < c1�; |2 = |�NE1ξ

2
1 < c1�;

choosing a sufficiently small absolute positive constant c1. Notice that the
functions |1, |2 depend on Xm+1; : : : ;XN only.

Using (5.22), Chebyshev’s inequality and estimates of moments of Lemma
4.1, we get

E�1−|1 + 1−|2��1+ �h5�t��� ≺ c�γ3 + 12
3�/N:

Therefore (5.23) yields

�5:24� F̂�t�wE|1|2 exp�itW��hm3 �t� + h5�t�hm−2
3 �t��:

Let us show that

�5:25� max�|1|2�h3�t��y |2�h2�t��y �h1�t��� ≤ exp
{
− t2

6N

}
for �t� ≤H1:

We shall estimate |1|2

∣∣h3�t�
∣∣ only. We have

V1 = T1 +P; where P = ξ1 + η1:

Expanding in powers of P, we get

|1|2�h3�t�� ≤ �h1�t�� +|1|2�E1tP exp�itT1�� +|1|2t
2E1P

2:

However,

|1|2E1P
2 ≤ 2|2E1ξ

2
1 +|1E1η

2
1 ≤

1
12N

;

provided that the constant c1 in the definitions of |1 and |2 is sufficiently
small, and

|1|2�E1tP exp�itT1�� ≤ t2|2E1�ξ1T1� +|1t
2E1�η1T1� ≤

t2

12N
;

�h1�t�� ≤ 1− t2

2N
+ β3�t�3

6N
√
N
≤ 1− t2

3N
:

Now (5.25) follows.
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For a natural number k ≥m/4 by (5.25) we have

�5:26� �hki �t�� ≤ exp�−kt2/6� ≤ �t�−A for i = 1;2;3 and �t� ≤H1;

where the number A can be chosen arbitrarily large by choice of the constant
in the definition of m. This means that while estimating (5.24) we may neglect
powers of t, provided we keep at least m/4 factors hi�t� and the product |1|2
as balancing factors.

In view of (5.26), we derive from (5.24), expanding in a Taylor series,

�5:27� F̂�t�wE|1|2 exp�itW�
(
hm3 �t� + i δt3N−5/2

(
m

2

)
hm−2

3 �t�
)
;

where δ =N5/2ET1T2T12.
Let us now replace h3�t� in (5.27) by h2�t�. Choose k approximately equal

to m/2. Then

hk3�t� = E1;:::;k exp
{
it

k∑
j=1

Vj

}
= hk2�t� +R;

where

E�R� ≤ cE�t�E1

∣∣∣∣
k∑
j=1

ηj

∣∣∣∣ ≤ c�t�
√
k�Eη2

1�1/2 ≤ c�ln �t��1/213/N:

Therefore we may replace hk3�t� by hk2�t�. Arguing similarly, we replace the
remaining factors h3�t� by h2�t�, obtaining

�5:28� F̂�t�wE|1|2 exp�itW�
(
hm2 �t� + it3δN−5/2

(
m

2

)
hm−2

2 �t�
)
:

Now we shall replace hk2�t� by hk1�t� in (5.28). We have

hk2�t� = E1;:::;k exp
{
it

k∑
j=1

�Tj + ξj�
}
= hk1�t� + itkhk−1

1 �t�E1ξ1 exp�itT1� +R;

where

E�R� ≤ ct2EE1;:::;k�ξ1 + · · · + ξk�2 ≤ kt2γ2/N
2:

Furthermore,

itkhk−1
1 �t�E1ξ1 exp�itT1� = −t2khk−1

1 �t�E1ξ1T1 +R;
where

E�R� ≤ �t�3kN−1E�E1ξ
2
1�1/2 ≤ �t�3kγ

1/2
2 /N2:

By similar arguments we may replace the remaining factors h2�t� by h1�t�,
obtaining

�5:29� F̂�t�whm1 �t�G1�t� + hm−1
1 �t�G2�t� + hm−2

1 �t�G3�t�;
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where

G1�t� = E|1|2 exp�itW�;(5.30)

G2�t� = �it�2mET1ξ1|1|2 exp�itW�;(5.31)

G3�t� = �it�3δN−5/2
(
m

2

)
E|1|2 exp�itW�:(5.32)

Using Chebyshev’s inequality, we can finally remove |1|2 in (5.30)–(5.32).
Since the symmetric statistic W depends on Xm+1; : : : ;XN only, we may

write (applying a simplified variation of Lemma 4.1)

W =W1 + · · · +WN−m;

where

W1 =
N∑

j=m+1

Tj; W2 =
∑

m+1≤j<k≤N
Tjk;

E�W2 + · · · +WN−m�2 ≤ �γ2 + 12
3�/N; E�W3 + · · · +WN−m�2 ≤ 12

3/N
2:

Expanding in a Taylor series, we may assume that (5.29) holds with

�5:33�

G1�t� = E exp�itW1 + itW2�;
G2�t� = �it�2mET1ξ1 exp�itW1�

G3�t� = �it�3δN−5/2
(
m

2

)
E exp�itW1�:

To prove the lemma, it is sufficient to show that, for Gj defined in (5.33),

hm1 �t�G1�t� w
(

1+ �it�
3α3

6
√
N
+ �it�

3�N−m�2δ
2N2
√
N

)
exp

{
− t

2

2

}
;(5.34)

hm−1
1 �t�G2�t� w �it�3m�N−m�δN−5/2 exp

{
− t

2

2

}
;(5.35)

hm−2
1 �t�G3�t� w

�it�3δm2

2N2
√
N

exp
{
− t

2

2

}
;(5.36)

which, together with (5.29), finally implies the desired result F̂�t�w Ĝ�t�.
For the proof of (5.34) we apply the expansion (6.2) of Lemma 6.1. We get

hm1 �t�G1�t� w hm1 �t�
(

1+ �it�
3

6
√
N

(
α3

(
1− m

N

)
+ 3δ

(
1− m

N

)2))

× exp
{
− �1−m/N�t

2

2

}
:

Similarly, applying Lemma 6.2 to hm1 �t�, we obtain (5.34).
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It remains to prove (5.35) and (5.36). We shall give the proof of (5.35) only
[the proof of (5.36) is similar but simpler]. Using the i.i.d. assumption, we
have

hm−1
1 �t�G2�t� = �it�2m�N−m�hN−2

1 ET1T12 exp�itT2�:
Expanding the exponential function, we get

hm−1
1 G2�t�w �it�3m�N−m�δN−5/2hN−2

1 �t�:
An application of Lemma 6.2 now establishes (5.35). 2

Proof of Theorem 1.4. Let us choose

T = TN =
N∑
i=1

Ti +
∑

1≤i<j≤N
Tij

as a sequence of U-statistics of second order. To prove the theorem, it is suffi-
cient to verify (1.11) for a subsequence of N’s. Therefore we have to construct
T1 and T12, verify (1.9) and (1.10) and prove

�5:37� N inf
�G′�≤A

sup
x
�F�x� −G�x�� ≥ c > 0

for sufficiently large N =m2 only, where m are odd natural numbers.
One gets the result, dividing T by τ = �NET2

1�1/2 in the following construc-
tion. Let �x� denote the difference of x to the nearest integer:

�x� = x− k if k is an integer such that �x− k� < 1
2

(define �x� = 0 for x = k + 1/2). Let �x� be the nearest integer to x, that is,
�x� + �x� = x. The functions �x� and �x� are odd.

Define the statistic

T = 1

12
√
N
+

N∑
j=1

Xj√
N

(
1−

N∑
k=1

�
√
NXk�
N

)
;

where X1;X2; : : : are i.i.d. random variables having uniform distribution on
the interval �−1/2;1/2�. It is easy to see that

T1 =
X1√
N
− X1�mX1�

N
√
N

+ 1
12N2

and

N3/2T12 = −X1�mX2� − �mX1�X2

satisfy �
√
NT1� ≤ 1 and �N3/2T12� ≤ 1/2. Writing

VN =
N∑
k=1

�mXk�√
N

; WN =
N∑
k=1

�mXk�
N

;
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we may decompose T as follows:

T = 1

12
√
N
+
(
WN +

VN√
N

)(
1− VN√

N

)
:

It is easy to verify that the random variables �mX1� and �mX1�, as well
as VN and WN are independent.

Let AN = �uN < T ≤ vN�,

uN = 1+ 1

12
√
N
− δ

N
; vN = 1+ 1

12
√
N
; 0 < δ < 1:

Due to the independence of VN and WN, we have

P�AN� ≥ P�AN and WN = 1� = P��VN� <
√
δ�P�WN = 1�:

The random variable �mX1� is uniformly distributed. Therefore the local limit
theorem for densities implies [see Petrov (1975), Chapter 7]

P��VN� <
√
δ� ≥ c

√
δ for some c > 0:

The random variable �mX1� assumes integer values. Using the explicit for-
mula for the ch.f. of �mX1� and proceeding as in the proof of Theorem 2 in
Chapter 7 of Petrov (1975), we have

P�WN = 1� ≥ c

N
for some c > 0:

Therefore P�AN� ≥ c
√
δ/N. Let

11 = F�vN� −G�vN�; 12 = G�uN� −F�uN�:
Thus, for any given function Gx R→ R such that supx �G′�x�� ≤ A, we get

11 + 12 ≥ �c
√
δ−Aδ�/N ≥ c1

√
δ/N; c1 > 0;

if δ = δ�A� is sufficiently small. Therefore max�11; 12� ≥ c1

√
δ/�2N�, which

implies (5.37).
The Cramér condition (1.10) may be verified using Taylor expansions and

separating the cases �t� ≤ δ1 and δ1 ≤ �t� ≤ δ2N for some appropriate δ1 and
δ2. The case �t� ≥ δ2N again needs special arguments. 2

6. Auxiliary results Let T denote a symmetric statistic with Hoeffding
decomposition (4.3). For 1 ≤m ≤N consider the statistic

V =
m∑
i=1

Ti +
∑

1≤i<j≤m
Tij:

Lemma 6.1. Let fx R→ C1 be a sufficiently smooth function. Then

�6:1� �Ef�V/τ� −Ef�
√
m/Nη�� ≤ c�f�mN−3/2�τ−3β3 + τ−5/3γ5/3�;
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where c�f� = �f′� + �f′′� + �f′′′� and �f� = supx �f�x��. Furthermore,

�6:2� Ef
(
V

s

)
= Ef

(√
m

N
η

)
+ ~m

6τ3
√
N

Ef′′′
(√

m

N
η

)
+R;

where η is a standard �0;1� normal r.v.,

~m =mN−1α3 + 3m2N−2δ; �R� ≤ c�f�mN−2�τ−4β4 + τ−2γ2�;
and c�f� = �f�2�� + �f�4�� + �f�6��.

Proof. Without loss of generality, we may assume that τ2 = 1. We shall
give the proof of (6.2) only since the proof of (6.1) is simpler. Expanding, we
get

Ef�V� = Ef�A� +Ef′�A�B+R;
where

A =
m∑
i=1

Ti; B =
∑

1≤i<j≤m
Tij;

�R� ≤ c�f′′�EB2; EB2 ≤ cmγ2/N
2:

It is easy to show [see Bentkus, Götze, Paulauskas and Račkauskas (1991)]
that
∣∣∣∣Ef�A� −Ef

(√
m

N
η

)
− mα3

6N
√
N

Ef′′′
(√

m

N
η

)∣∣∣∣ ≤
c��f�4�� + �f�6���mβ4

N2
:

We have

Ef′�A�B =
(
m

2

)
ET12f

′�A�:

Let us write A = T1 +A1. Then

EN3/2T12f
′�A� = ET1N

3/2T12f
′′�A1� +R1;

where

�R1� ≤ c�E�1− θ�T2
1N

3/2T12f
′′′�A1 + τT1��;

and where θ denotes an r.v. uniformly distributed in �0;1�, independent from
all other r.v.’s. Let us write A1 = T2+A2. Expanding in powers of T2, we have

�R1� ≤ cδ1N
−3/2�f�4��;

δ1 =N3ET2
1�T2T12� ≤ β1/2

4 γ
1/2
2 ≤ β4 + γ2:

Write δ =N5/2ET1T2T12. We have

ET1N
3/2T12f

′′�A1� =N−1δEf′′′�A2� +R;

�R� ≤ cN−3/2�f�4��δ1 ≤ cN−3/2�f�4���β4 + γ2�:
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Furthermore,

Ef′′′�A2� = Ef′′′�A� +R; �R� ≤ c�f�4��/
√
N;

�Ef′′′�A� −Ef′′′�
√
m/Nη�� ≤ cmN−3/2�f�6��β3:

Collecting the estimates concludes the proof of the lemma. 2

The result of the following lemma is well known; see Petrov (1975) and
Bhattacharya and Ranga Rao (1986).

Lemma 6.2. Let τ2 = 1. For 1 ≤m ≤N and �t� ≤
√
N/β3, the characteristic

function h�t� = E exp�itT1� satisfies

�hm�t�� ≤ exp
{
− mt

2

4N

}
;

∣∣∣∣h
m�t� − exp

{
− mt

2

2N

}∣∣∣∣ ≤ cN
−1/2β3�t�3 exp

{
− mt

2

4N

}
;

hm�t� =
(

1+ �it�
3mα3

6N
√
N

)
exp

{
− mt

2

2N

}
+R;

where

�R� ≤ cN−1β4�t4 + t6� exp
{
− mt

2

4N

}
:

REFERENCES

Bai, Z. D. and Rao, C. R. (1991). Edgeworth expansion of a function of sample means. Ann.
Statist. 19 1295–1315.

Bentkus, V., Götze, F., Paulauskas, V. and Račkauskas, A. (1991). The accuracy of Gaussian
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