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Research has indicated that fatigue is a critical factor in cognitive lapses because it negatively affects an 

individual’s internal state, which is then manifested physiologically. This study explores neurophysiological 

changes, measured by electroencephalogram (EEG), due to fatigue. This study further demonstrates the feasibility 

of an on-line closed-loop EEG-based fatigue detection and mitigation system that detects physiological change and 

can thereby prevent fatigue-related cognitive lapses. More importantly, this work compares the efficacy of fatigue 

detection and mitigation between the EEG-based and a non-EEG-based random method. Twelve healthy subjects 

participated in a sustained-attention driving experiment. Each participant’s EEG signal was monitored continuously 

and a warning was delivered in real time to participants once the EEG signature of fatigue was detected. Study 

results indicate suppression of the alpha- and theta-power of an occipital component and improved behavioral 

performance following a warning signal; these findings are in line with those in previous studies. However, study 

results also showed reduced warning efficacy (i.e., increased response times to lane deviations) accompanied by 

increased alpha-power due to the fluctuation of warnings over time. Furthermore, a comparison of EEG-based and 

non-EEG-based random approaches clearly demonstrated the necessity of adaptive fatigue mitigation systems, 



 2 

based on a subject’s cognitive level, to deliver warnings. Analytical results clearly demonstrate and validate the 

efficacy of this on-line closed-loop EEG-based fatigue detection and mitigation mechanism to identify cognitive 

lapses that may lead to catastrophic incidents in countless operational environments. 

Keywords: EEG, Fatigue, Auditory Feedback, Brain Dynamics, Driving Safety. 

1. Introduction 

Fatigue is the induction of and generally accompanies 

drowsiness, a transitional state between wake and 

sleep.
1
 Further, fatigue accumulates gradually and 

associated with declines in attention, eventually 

reducing performance and efficiency.
2
 The resulting risk 

of injury or death is obvious when drivers are fatigued; 

that is, reaction time slows, situational awareness 

decreases, and judgment and vision are impaired.
3, 4

 

Driver fatigue is a major cause of crashes and 

negatively impacts road safety. Mechanisms that can 

identify fatigues are necessary to prevent fatigue-related 

accidents.
5-8

 

Studies have deployed indicators to measure 

physiological changes, such as changes in blinking rate
9
 

and heart rate,
10

 as a means of evaluating cognitive 

capability. A number of studies have also indicated that 

variation in an individual’s behavioral performance 

accompanies significant changes in the electro-

encephalogram (EEG) power spectrum.
11-26

 Researchers 

have indicated that the EEG signal may be a very 

predictive and reliable indicator of alertness
27

 and can 

be used to develop devices to combat fatigue.
19, 25, 28, 29

 

Our recent study
25

 used an event-related lane-

keeping task in a virtual environment and recorded brain 

dynamics via a noninvasive electroencephalogram 

(EEG) device. Subjects were instructed to steer a 

simulated car back to its original cruising position when 

it drifted into another lanes. Response time (RT), the 

time interval between deviation and response, was 

improved by auditory feedback delivered to drowsy 

subjects. Furthermore, the capacity of a subject to 

respond was correlated with variations in EEG power 

spectra. 

Several studies have explored methods to mitigate 

fatigue-related cognitive lapses. Graham
5
 and Belz et 

al.,
30

 for example, demonstrated that warning signals 

effectively improve the performance of drivers. Our 

previous studies
25, 31

 delivered an auditory warning 

signal at 1,750 Hz to drivers to restore performance that 

had been decreased by fatigue, and thereby reduced the 

magnitude of cognitive lapses. Furthermore, we have 

explored the effects of arousal feedback to reduce 

cognitive lapses in situations requiring attention
25, 32

 and 

conduct an on-line lapse detection and mitigation 

system
28

 in real-world environments. 

This study extends the previous work using an on-

line closed-loop EEG-based fatigue detection system to 

predict driving fatigue based on EEG power spectra. 

This system validates the correlation between EEG and 

behavioral performance while driving before and after a 

warning delivered to drowsy subjects. Additionally, this 

study investigates that the efficacy of warning signals 

often declines over time. Furthermore, in order to 

validate the benefits of an EEG-based fatigue-mitigation 

system over those that do not use the EEG, this study 

compares the task performance obtained by the EEG-

based and non-EEG-based random fatigue mitigation 

systems. 

2. Methods 

2.1. Subjects 

In total, twelve healthy subjects (7 males and 5 females) 

aged 20–26 with normal hearing were recruited as paid 

volunteers for this virtual reality (VR)-based highway 

driving experiment. No subjects had neurological and 

psychological disorders and did not abuse drugs or 

alcohol. The subjects were instructed to get sufficient 

and regular sleep in the night before the experiment. No 

subject consumed alcohol or caffeine in the morning on 

the experiment day or had worked a night shift during 

the previous two months. The Institutional Review 

Board of the Taipei Veterans General Hospital approved 

the experimental protocol. All experiments were 

conducted in the early afternoon (13:30 ± 1h) after 

lunch, when the circadian sleep rhythm becoming 

stronger. 

All subjects were informed about experimental 

materials, features and the driving task process in 

advance. Subjects practiced driving for 5–10 min until 

they felt comfortable with experimental procedures. 

They were also asked to complete a questionnaire 

before and after the experiment. 
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2.2. Experimental equipment 

The VR-based highway driving experiments were 

performed in a simulator that mimicked a driving 

situation in a darkened sound-reduced room. The VR 

scene simulated driving at a constant speed of 100 km/h 

on a four-lane divided highway with their car randomly 

drifting away from the center of the cruising lane to 

simulate driving on non-ideal road surfaces or with poor 

alignment.
24, 25

 In addition, a straight and monotonous 

road without traffic or stimuli was intended to simulate 

a long-time driving situation likely to induce 

drowsiness. The refresh rate of the highway scene was 

60 Hz. Scenes moved according to car displacement and 

steering. 

During the experiment, the EEG activities were 

recorded by 30-channel scalp electrodes (Ag/AgCl 

electrodes) with a unipolar reference at the mastoid by 

the SynAmps system (Compumedics Ltd., VIC, 

Australia). The EEG electrodes were placed based on a 

modified international 10-20 system. Contact 

impedance between EEG electrodes and the cortex was 

calibrated to <10 kΩ. The EEG data were recorded with 
a 32-bit quantization level at a sampling rate of 500 Hz 

and preprocessed with a 50 Hz low-pass filter and a 0.5 

Hz high-pass filter. 

2.3. Experimental paradigm 

An event-related lane-departure driving task (Fig. 

1(a))
25

 was used to assess objectively and quantitatively 

fluctuations in driving (behavioral) performance over 

long periods. Each driving session lasted 40–60 min, 

which was sufficient for subjects to experience fatigue. 

Furthermore, each experiment consisted of two sessions, 

a calibration session to determine a reasonable warning 

threshold (EEG power spectra in the alpha band) of 

 

Fig. 1.  Experimental paradigm. (a) Event-related lane-keeping tasks. The solid black arrows represent driving trajectory. The empty 

circle represents deviation onset. The double circle represents response onset. The circle with a cross represents end of response. 

Drivers’ response time (RT) is the time interval from deviation onset (empty circle) to response onset (double circle). End of response 

(circle with a cross) means that drivers are steering car back into the original lane. The next deviation begins at 16–20 s after end of 

response [Adapted from Ref. 25]. (b) Setting a warning threshold while drivers became drowsy. The height of an arrow represents the 

response time of a single trial. The alpha-band power was recorded as the warning threshold (WTH) when a trial’s RT was longer than 

2.5 times the mean RT of trials within the first 4 min of the task during which the subject was asked to remain alert and attend to the 

tasks [Adapted from Ref. 25]. (c) Criteria for delivering auditory feedback to drivers during driving tasks. The subject’s alpha-band 

power was calculated using the fast Fourier transform (FFT). A warning was delivered to drivers when their alpha-band power 

exceeded the WTH. The warning lasted until the driver’s alpha-band power dipped below the WTH. 
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each subject (Fig. 1(b)), and an on-line session (Fig. 

1(c)). 

Fig. 1(a) shows the event-related lane-departure 

task. Lane-departure events were randomly introduced 

at 16–20 s intervals with the car drifting at a constant 

speed with equal probability toward the curb or into the 

opposite lane.
25

 Subjects were instructed to then steer 

the vehicle back toward the center of the original 

cruising lane as soon as possible.
25

 Before the 

experiment, subjects were instructed to remain as alert 

as possible. Experimental performance was monitored 

by a surveillance camera and vehicle trajectory was 

recorded. The times at which the car veered, when a 

response onset occurred, and when the response ended 

were recorded during each experiment. In Fig. 1, an 

empty circle represents an unexpected veering event, 

and is marked as “deviation onset”. Response onset was 

when subjects began to steer the car back toward the 

center of the cruising lane (double circle). The moment 

subjects stopped moving the steering wheel (circle with 

cross) was end of response. Response time (RT) was the 

time interval between the deviation onset and response 

onset. 

The experiment had two sessions. Due to 

individual variability, suitable criteria for the warning 

needed to be determined from data acquired in the first 

calibration session (Fig. 2). The threshold of EEG alpha 

power was set according to a subject’s behavioral 

performance in the session.
25

 Then, the second session 

used the spectral threshold to trigger a warning 

delivered to fatiguing subjects. Fig. 2 presents the 

flowchart of the closed-loop fatigue-monitoring system. 

Fig. 1(b) shows the method used to set a suitable 

warning threshold for each subject. The EEG data were 

recorded and converted into the frequency domain using 

the fast Fourier transform (FFT) with a 4-s window and 

500-ms step. During the first 4 min, subjects were 

requested to stay alert and the RT of these alert trials 

was computed, averaged, and defined as mean RT. The 

averaged alpha-band power in the first 40 s was defined 

as the baseline. If a subject’s response times exceeded 

the mean RT by 2.5 times, the subject was considered 

fatigued. Simultaneously, the subject’s alpha-band 

power was recorded and averaged as the threshold, 

triggering a warning, and is marked as “WTH”. 

Notably, the alpha-power threshold was set to the 

averaged alpha power of trials with mild fatigue (RT 

between 2.5 and 5 times of alert mean RT). 

Fig. 1(c) presents the procedure of delivering a 

warning during the second session. The time interval 

marked as “over the warning threshold (OWT)” (Fig. 

1(c)), a subject’s alpha-band power exceeded WTH and 

the system delivered a 1,750-Hz tone burst31
 to subjects 

until his/her alpha-band power reduced to below WTH. 

However, to compare EEG signals with and without a 

warning, a warning was delivered in only 50% of 

fatigue episodes. In all experiments, the warning signal 

volume was set at a fixed level (68.5±1.5 dB), which 

was very noticeable but not too loud. 

One might argue that if arousing feedback proves 

effective for improving task performance, the easiest 

practice of fatigue prevention seems to randomly deliver 

warning signals to participants. To justify the use of an 

EEG-based fatigue-mitigation system, ten subjects 

returned to participate in a control experiment in which 

a warning was randomly delivered to them every 15–20 

min. This study then could quantitatively compare the 

task performance obtained by the EEG-based and non-

EEG-based random fatigue mitigation systems. 

 

Fig. 2.  The flowchart of the experimental protocol. The first 

session determined a rational warning threshold for each 

subject (cf. Fig. 1(b)). In the second session, a warning was 

delivered if the average alpha-band power exceeded the 

warning threshold (cf. Fig. 1(c)). 
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2.4. Data analysis 

The recorded 32-channel EEG signals were first 

inspected to remove bad EEG channels, and then down-

sampled to 250 Hz. The continuous EEG signals were 

segmented into 55-s epochs, from 15 s preceding to 40 s 

after the start of the OWT (cf. Fig. 4) or end of the 

OWT (cf. Fig. 6(b)). The epochs contaminated by noise 

signals (muscle activity, blinking, eye movement and 

environmental noise) were eliminated manually to 

minimize their influence on subsequent analysis. 

Notably, the channel/epoch removal procedure was only 

applied to offline analysis. 

Independent component analysis (ICA)
13, 33

 was 

applied to decompose EEG signals into temporally 

independent time courses corresponding to brain and 

non-brain sources using EEGLAB.
34

 The 30-channel 

EEG signals were separated into 30 independent 

components, based on the assumption that EEG signals 

at sensors were linear mixtures of activation of distinct 

brain and non-brain sources whose time courses were 

statistically independent. 

To identify comparable independent components 

across subjects, components obtained from multiple 

subjects were grouped into component clusters based on 

their scalp maps, equivalent dipole locations and 

baseline power spectra of component activations.
34, 35

 

Time courses of activations of components of interest 

were selected and transferred into the frequency domain 

by the Fast Fourier Transform (FFT). 

The dynamic changes, tonic and phasic spectral 

changes of the EEG signals, were measured following 

the warning feedback in occipital area in this study. 

Tonic changes are long-time (minute-scale) variations in 

brain activities following a warning. Phasic changes are 

the short-time (second-scale) variations in brain 

activities in response to a warning. 

The RT and EEG power were not normally 

distributed, such that nonparametric statistical tests were 

performed to analyze the data. The Wilcoxon signed-

rank test (Matlab statistical toolbox, Mathworks) was 

applied to identify significant differences among the 

effects of auditory feedback on RTs and changes in 

average EEG power spectra. Bootstrapping (EEGLAB 

toolbox, University of California, San Diego) was 

applied to determine the statistical significance of EEG 

power changes at specific frequency bins. To test group 

statistics, intrinsic inter-subject RT differences were 

reduced by dividing RTs by the mean RT of trials 

within the first 4 min of each session. The EEG spectra 

were also aligned by shifting individual baseline power 

to all-subject average baseline power. 

3. Results 

3.1. Comparison of behavioral performance with 

alpha-band power exceeding warning 

threshold epochs with and without a warning 

feedback 

Fig. 3 shows the RTs of consecutive trials before and 

after alpha-band power exceeded WTH. In 50% of 

epochs, arousing warning signals were delivered to the 

subjects. Trials before the warning threshold (BWT) 

refer to trials with lane-departure events before a 

subject’s alpha-band power exceeded WTH. The trials 

after alpha-band power declined to under WTH in 10 s 

were marked as trials after the warning threshold 

(AWT) and the trials following these were marked as 

AWT+1. Notably, the RTs of AWT+1 were removed 

from analysis when a warning was delivered during the 

time between AWT and AWT+1. Additionally, trials 

after the low-alpha power (ALT) were regard as trials 

 

Fig. 3.  Comparison of response times (RTs) of trials with 

warning (red boxes) and without warning (blue boxes) before 

and after OWT (across subjects, sessions and trials). The box 

plot shows the RT distributions of trials before the warning 

threshold (BWT), trails after the warning threshold (AWT), 

trials following AWT (AWT+1) and trials after low-alpha 

power (ALT) with and without warning. The middle 

horizontal line is the median of the distribution, and the top 

and bottom of the rectangle are the third and first quartile, and 

the dash line ends are the maximum and minimum after 

removing extreme values. The Wilcoxon singed rank test was 

applied to determine significant differences. Note: alpha-band 

power was under WTH for the duration of the trials before 

BWT. 
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after the trials without a warning with a low alpha-band 

power (average 3-s alpha-band power after the onset of 

OWT was less than WTH). The RTs were normalized 

by dividing the respective subjects’ average RTs in the 

first 4 min of the experiment during which subjects 

were attentive and alert (evidenced by their RTs and 

video recordings). 

The RTs of BWT (i.e., lane-deviation events 

immediately before a subject’s alpha power exceeded 

the warning threshold) in both conditions were 

comparable at 1x normalized mean alert RTs. However, 

the RTs of AWT with a warning (the mean RT was 1.1 

times the normalized RT) were significantly shorter 

than those without a warning (the mean RT was 1.6 

times the normalized RT) (signed-rank test, p<0.05). 

The variation of RTs of AWT without a warning was 

markedly higher than that of RTs AWT with a warning. 

Furthermore, the RTs of BWT and AWT with a warning 

were comparable, suggesting that the warning 

effectively mitigate a fatigue-induced decrease in 

driving performance. In AWT+1, although the mean 

RTs of trials with and without a warning were 

comparable, the standard deviation of trials without a 

warning was higher than that with a warning in Table 1. 

Interestingly, the RTs of ALT were comparable to those 

of BWT under both conditions. Presumably, subjects 

were fairly alert in these trials and did not need any 

warning. The RTs of ALT immediately after low alpha 

power were therefore near the mean alert RT. 

These empirical results demonstrate the efficacy of 

this warning system to rectify cognitive lapses (Fig. 3). 

3.2. Comparison of dynamic brain activities 

between alpha-band power exceeding 

threshold epochs with and without a warning 

feedback 

Fig. 4 shows the time courses of the fatigue-related 

alpha- and theta-band spectral changes in occipital 

components for epochs with warning (red, orange and 

cyan curves) and without warning (blue curve). The 

epochs with warning were divided into three groups 

according to the duration of the warning: <3 s (red 

curve, short), 3–7 s (orange curve, medium) and >7 s 

(cyan curve, long). All epochs were aligned to the start 

of OWT and transferred to the frequency domain by the 

FFT with a 4-s window and 200-ms step. The time 

courses of the alpha- and theta-band spectra were 

plotted from 10 s before and 32 s after the moment 

when the alpha-band power exceeded WTH. The red, 

orange and cyan horizontal dots mark the time points 

when the spectral difference between the trials with and 

without warning was statistically significant (p<0.05, 

short-, medium-, long-duration warning is red, orange 

and blue, respectively). 

For the epochs with short-duration warnings, 

alpha-band power increased to over 5 dB (from 36 to 43 

dB) and dropped rapidly in 1–2 s after warning onset 

(upper panel in Fig. 4). For the epochs with 3–7 s 

warning, the alpha-band power increased from 36 to 47 

dB and peaked at 4 dB higher than the power with a 

short-duration warning. For the epochs with a long-

duration warning, alpha-band power increased from 36 

to 45 dB. For epochs without warning, the alpha-band 

power increased to 47 dB and then decreased to baseline 

slowly in 15 s. 

The lower panel of Fig. 4 shows the time courses 

of theta-band power. Evidently, the theta-band power 

trend resembled that of alpha-band power, albeit the 

range of fluctuations for theta-band power (36–40 dB) 

was smaller than that of alpha-band power. This 

empirical results suggest that alpha-band power 

fluctuations were more sensitive than theta-band 

fluctuations to the transition from full alertness to mild 

drowsiness. 

The spectral difference between epochs with short-

duration warnings and without warnings was 

Table 1.  Average RTs and standard deviations of BWT, AWT, AWT+1 and ALT (cross subjects, trials and sessions). 

 BWT AWT AWT+1 ALT 

 w/ warning 
w/o 

warning 
w/ warning 

w/o 
warning 

w/ warning 
w/o 

warning 
w/o 

warning 

Mean 1.15 1.11 1.12 1.58 1.11 1.16 1.07 

Standard 

Deviation 
0.53 0.38 0.54 2.31 0.58 1.10 0.33 

(Normalized RT) 
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statistically significant from 2–13 s after OWT in the 

both theta and alpha bands. Notably, once the power of 

epochs without warning declined to under WTH, a 

warning is again delivered if the power again exceeded 

WTH, leading to an insignificant spectral difference 

between a warning lasting <3 s and no warning after 13 

s in alpha and theta bands. For epochs with warning 

lasting 3–7 s and without warning, the spectral 

difference was statistically significant from 4–12 s in 

the alpha band. 

Fig. 5 extends the result of Fig. 3 to divide the 

trials with warning into three groups according to the 

durations of warnings. The RTs of AWT with short- and 

medium-duration warnings were comparable to the 

mean alert RT and significantly different (signed-rank 

test, p<0.05) from those without a warning. However, 

the RTs of the trials with long warnings and without 

warnings did not differ significantly due to the high 

variation of RTs and less number of trials. 

3.3. Reduced warning efficacy to the auditory 

feedback 

Fig. 6 shows the average alpha-band power elevations 

relative to the alert baseline (33.8 dB) from 5 to 20s 

after the warning offset during different sections of the 

experiments. Fig. 6(a) shows the time courses of alpha 

power of the occipital components for epochs following 

an auditory warning. These time courses were selected 

from sessions with at least ten trials with warning. All 

the epochs with warning were divided into five 

segments based on ‘sections of warning feedback’ (0–

20%, 20–40%, 40–60%, 60–80% and 80–100%, note 

 

Fig. 4.  Averaged (across subjects, sessions and trials) power spectral time series in alpha (upper) and theta (lower) bands of the 

occipital components. The spectral fluctuations were estimated using a moving discrete wavelet transform (DWT) with a 4-s time 

window. All trials were aligned with the starting alpha power exceeding the warning threshold (vertical black solid line). The red, cyan 

and orange curves are average power spectra of trials with warnings of different durations (<3, 3–7 and >7 s). Further, the blue curves 

are those trials without warning. The horizontal colored lines mark the spectral differences between trials with different warning 

durations (<3, 3–7 and >7 s) and without warning that were statistically significant (bootstrap significance test, p<0.01). 
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that the interval was left-open and right-closed) and 

time-aligned to the warning offset. The alpha power of 

the epochs in Section 40–60% fluctuated between 36 

and 43 dB at 5–20 s; this fluctuation was greater than 

that in other sections. The power fluctuation of epochs 

in Section 80–100% was between 36 and 40 dB, and 

that in Sections 0–40% and 60–80% was between 36 

and 38 dB. Fig. 6(b) shows the alpha-band power across 

different sections, which was computed by averaging 

half-maximum power relative to the mean baseline 

power (33.8 dB) in 5–20 s after the warning offset. The 

power increase of 40–60% was significantly different 

from 0–20% and 20–40% (signed-rank test, p<0.05). 

Additionally, the alpha power in Section 80–100% was 

significant higher than that in Section 20–40% (signed-

rank test, p<0.05).  

Furthermore, Fig. 7 compares the RTs of AWT’s in 

different sections of the experiment. The RTs in 

Sections 40–60%, 80–100% and 60–80% were 

significantly higher than those in Sections 0–20% and 

20–40% (signed-rank test, p<0.05, p<0.05 and p<0.05, 

respectively). The standard deviations of RTs in 

Sections 40–60%, 80–100% and 60–80% were larger 

than those in Sections 0–20% and 20–40%. 

Both the brain dynamics and behavioral 

performance showed that the efficacy of warning 

signals often declined over time. 

3.4. Comparison of an EEG-based and a non-

EEG-based random fatigue detection and 

mitigation system 

The analytical results obtained by this study and 

previous studies show that auditory feedback can 

mitigate the adverse effects of cognitive fatigue and 

alter EEG activities.
25

 However, they did not completely 

justify the necessity of EEG-based fatigue detection as 

one might randomly deliver arousing feedback to 

subjects to keep them awake. To evaluate the 

advantages of an EEG-based fatigue detection system 

over its non-EEG-based random counterpart, 10 of the 

12 subjects participated in an additional simulated 

 

Fig. 6.  Comparison of averaged occipital alpha-band power of 

epochs in five different sections of warning occurrence order 

(0–20%, 20–40%, 40–60%, 60–80% and 80–100%, note that 

the interval was left-open and right-closed). (a) Averaged 

alpha-band power spectral time-series (between 10 s preceding 

and 30 s following warning offset) in different sections of the 

experiment. (b) The Δ Power refers to the difference between 
the average half-maximum alpha-band power and the mean 

alert baseline power (33.8 dB) at 5–20 s after warning onset. 

Standard deviations are also shown. The Wilcoxon signed-rank 

test was applied to determine significant differences (p<0.05). 

 

Fig. 5.  Comparison of response times (RTs) of trials with 

warning of different durations (red, orange, and cyan boxes) 

and without warning (blue boxes) before and after OWT 

(across subjects, sessions and trials). The box plot shows the 

RT distributions of BWT, AWT and AWT+1 with and without 

warning. The middle horizontal line is the median of the 

distribution, and the top and bottom of the rectangle are the 

third and first quartile, and the dash line ends are the 

maximum and minimum after removing extreme values. The 

Wilcoxon signed rank test was applied to determine 

significant differences. 
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driving experiment during which a warning was 

delivered randomly (between 15–20 min), rather than 

according to subjects’ EEG spectra. Fig. 8 shows 2-trial 

moving averaged RTs from one subject using an EEG-

based fatigue detection/mitigation (red time course) vs. 

a non-EEG-based random method (blue time course). 

The EEG-based lapse mitigation system delivered a 

warning whenever the subject’s alpha power exceeded 

the warning threshold. The resulting RTs never 

exceeded three times the mean alert RT. The RTs of the 

non-EEG-based random system varied widely (twice 

reaching 11 times the mean alert RT in Fig. 8(a)). As 

expected, if warning signal were delivered to the subject 

randomly, the system could miss periods when the 

subject was fatigued and non-responsive to lane-

deviation events (i.e., minutes 16, 26 and 36 in Fig. 

8(a)). 

Furthermore, Fig. 8(b)–(j) shows the 2-trial moving 

average of RTs in nine additional subjects. Again, the 

EEG-based lapse mitigation system delivered warning 

signals whenever the subject’s alpha power exceeded 

the warning threshold. The resulting RTs never 

exceeded three times the mean alert RT in Fig. 8(b)–(j). 

The RTs of the non-EEG-based random system from the 

subjects in Fig. 8(b)(e)(f)(g)(h) exceeded three times the 

mean alert RT on several occasions. These results again 

demonstrated that the EEG-based detection/mitigation 

method effectively assisted subjects in maintaining good 

performance during the entire experiments. 

4. Discussion 

4.1. Changes in behavioral performance with the 

warning system 

Many studies, including ours, have shown brain 

oscillations in the alpha and theta bands were associated 

with fluctuations in task performance.13, 14, 25, 36
 Several 

studies, have also explored the use of warnings as 

feedback to help individuals combat drowsiness or 

prevent cognitive lapses.
6-8, 25, 30-32, 37-40

 Our previous 

studies further showed that warning signals improved 

task performance of individuals experiencing 

momentary cognitive lapses and reset the EEG spectra 

in the alpha and theta bands to alert baseline power,
25, 32

 

suggesting that auditory feedback assisted subjects in 

reducing their drowsiness, reflected in both behavioral 

performance and brain activities. 

However, the above-mentioned studies defined 

cognitive fatigue in terms of behavioral performance 

(non-responsive to lane departures). In reality, if the 

warning feedback is delivered to subjects after cognitive 

lapses, catastrophic incidents may have occurred. Thus, 

to be practical for real-life applications, a fatigue 

mitigation system needs to detect cognitive fatigue 

based on spontaneous EEG activities. 

Wang et al
28

 recently proposed a smartphone-based 

system that detects and tracks the cognitive states of 

users, and delivers arousing signals that mitigate 

cognitive fatigue. Their study focused on the design and 

implementation of the fatigue detection and mitigation 

system and demonstrating the effectiveness of their 

system. However, their study did not systematically 

explore brain dynamics following arousal feedback. 

This study extended their work by exploring transient, 

and more importantly, tonic changes on brain activities 

and task performance following a warning (i.e., reduced 

warning efficacy). Finally, this study compared the 

efficacy of a closed-loop EEG-based fatigue detection 

and mitigation system with that of a non-EEG-based 

random system. The goal of this study is to investigate 

and justify the advantages of an EEG-based fatigue 

detection and mitigation system over its non-EEG-based 

random counterparts. 

 

Fig. 7.  The box plot of RTs of AWT in different sections (0–

20%, 20–40%, 40–60%, 60–80% and 80–100%) in Fig. 6. The 

middle horizontal line is the median of the distribution, and 

the top and bottom of the rectangle are the third and first 

quartile, and the dash line ends are the maximum and 

minimum after removing extreme values. 
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Fig. 8.  A comparison of 2-trial moving averaged RTs based on two different warning strategies (EEG-based vs non-EEG-based 

random methods). The red curve represents RTs in the experiment using an EEG-based method, as this study designs. The blue curve 

represents the RTs in the experiment using a non-EEG-based random method (a random warning every 15–20 min) and the green 

point is the warning time (e.g. 20 and 38 min in (a)). The x-axis is the processing time of the experiment. The y-axis is the normalized 

RT by divided the mean baseline RT. 
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Additionally, it should be noted that fatigue 

generally accompanies drowsiness and associated with 

declines in attention, eventually reducing performance 

and efficiency
1, 2

. Thus, both fatigue and attention might 

affect behavioral performance in the simulated driving 

task. However, Lin et al.
25

 and current study showed 

that occipital alpha- and theta-band power would 

increase with decreasing behavioral performance during 

drowsiness. In contrast, studies have shown that 

increasing attentional demands were associated with 

anterior and frontal midline theta and low alpha 

power.
41

 The current study mainly focused on the 

associations between the occipital theta- and alpha-band 

power and task performance. Study results showed 

increased, as opposed to decreased, theta activities in 

the frontal midline and occipital components, indicating 

subjects put forth their best attentional efforts to 

perform the task even during low-performance periods. 

These result suggested that the decline in task 

performance was due to fatigue. 

4.2. Effects of task performance with and without 

warnings 

4.2.1.  Behavioral Performance 

Our previous study
25

 verified the efficacy of auditory 

feedback by assessing the subject’s RT as an index of a 

decrease or increase of behavioral performance. This 

study presented a real-time system that monitors brain 

dynamics and computes fluctuations of alpha-band 

power to identify a subject’s condition. Significant 

changes between RTs before and after a warning were 

consistent with those in our previous study.
25

 

Behavioral results in this study showed that the 

average RTs of epochs with warning were steady at 

around 1.15 times the mean alert RT. However, the RTs 

of trials whose alpha power exceeded the warning 

threshold but without receiving a warning was 

statistically significantly higher (and with a higher 

variance) (cf. Fig. 3) than those of trials following 

warning signals, demonstrating the necessity of the 

warning at that moment. Fig. 5 further splits the trials 

following a warning into three groups depending on the 

duration of the warning signals. Presumably, as a 

subject’s fatigue increased, the mitigation system must 

use prolonged warning signals to arouse the subject. 

The mean RTs were slightly longer following longer 

warnings, but were still shorter than that in the OWT 

trials without warning (Fig. 5). These analytical results 

suggest that the warning feedback can effectively retain 

driving performance at the onset of fatigue. 

4.2.2.  Brain Activities 

The EEG power spectra of the occipital component in 

the theta and alpha bands decreased rapidly following a 

warning (Fig. 4). However, the alpha-band power 

variation of the epochs with long warnings (>7 s) was 

more fluctuant and decreased more slowly than that of 

epochs with short warnings (0–7 s). In addition, the 

power of epochs without warning also decreased 

slightly, which could be attributed to the fact that lane 

deviations aroused drivers as well (Fig. 4). 

Nevertheless, the alpha-band power of epochs without 

warning was significantly different from that of epochs 

with warning at 1–13 s after the OWT onset. 

Fig. 4(b) shows the time courses of theta-band 

power, which had smaller fluctuations but the trends 

was comparable to that of the alpha power; power was 

significantly different between trials with and without 

warning at 1–12 s after the OWT onset. Furthermore, 

Fig. 4 also shows the alpha-power spectra following 

different durations of warnings (<3, 3–7 and >7 s). The 

longer warning would correspond to worse fatigue level. 

The spectral changes following warning feedback 

reported in this study were consistent with those in our 

previous studies,25
 suggesting that auditory feedback 

can help subjects improve task performance. 

4.3. Reduced warning efficacy 

This study further investigated the effects of warnings 

over time. We hypothesize that the efficacy of a 

warning may decline over time due to habitation to the 

warning signals. Fig. 6 shows that the first 40% of 

warnings were most effective, evidenced by the fact that 

alpha power at 5–20 s after a warning offset was lower, 

compared to alpha power rebounds in Section 40–60% 

and thereafter. Additionally, the behavioral performance 

in different sections also resembled the results in the 

alpha power (Fig. 7). According to questionnaire filled 

out by subjects, as many as 80% of subjects felt that a 

warning had less or no effect during the second half of 

the experiment. These findings indicate that the 

warnings delivered to subjects may not always be 

effective in arousing drowsy drivers. Future studies will 

explore the efficacy of changing warning signals or 

other modalities to mitigate cognitive fatigue. 
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4.4. Comparison of long-term behavioral changes 

with different warning strategies 

Fig. 8 shows the behavioral performance fluctuations in 

two separate 50-min lane-keeping driving experiments 

from ten subjects. For each subject, the red time course 

shows that the RTs of the session with a warning 

delivered based on the subject’s alpha-band power were 

always under 3.5 times the mean alert RT (most were 

under 2.5 times). These analytical results were 

consistent with those in our previous studies.
25

 On the 

contrary, the blue time course shows that the RTs of the 

session with a warning delivered randomly to a subject; 

these RTs were often much higher and variable than 

those of the red time course. For example, in Fig. 8(a), 

half of the RTs were also over 3.5 times the mean alert 

RT. The random warning was delivered to the subject at 

around 20 min and 38 min, and as expected, they 

resulted in short RTs in the subsequent trials. However, 

at 16 and 36 min, RTs exceeded 11 times the mean alert 

RT (completely non-responsive) on two occasions, 

which may have led to devastating incidents. Fig. 8(b)–

(j) provides more evidence for the efficacy of the EEG-

based lapse detection and mitigation system to 

preventing fatigue-related lapses. 

4.5. Limitations of the EEG-based fatigue 

detection and mitigation system 

Although the results of the current study validated the 

efficacy of the EEG-based system for detecting and 

mitigating fatigue in a driving task, it is important to 

keep in mind that the current demonstration still has 

some limitations. 

First, the calibration data were needed before every 

online session to model subjects’ physiological 

condition. This could be time-consuming and labor-

intensive and hinders the utility of BCI systems in real 

life. Therefore, the methods to reduce or even eliminate 

the amount calibration data were needed. 

Second, the study findings indicate that the 

efficacy of warning signals delivered to drowsy subjects 

may decline over time, suggesting that the warning 

signals should be more versatile (changed over time or 

through other modalities) to mitigate cognitive fatigue. 

Third, although the study has yielded the consistent 

results across the subjects participating this 

experiments, the more testing samples and comparison 

tests were still needed to confirm effectiveness and 

robustness of an EEG-based fatigue detection and 

mitigation system, and reduce possible individual 

physiological differences. 

5. Conclusions 

This study demonstrates the feasibility and efficacy of 

an on-line closed-loop fatigue detection and mitigation 

system based on monitoring and measuring subjects’ 

EEG spectra noninvasively measured from the scalp. 

The auditory warnings can effectively arouse subjects, 

helping them avoid possible cognitive lapses in real 

environments. Furthermore, study results suggest that 

the efficacy of the warning signals with same modality 

and form may decline over time. More importantly, this 

study compared an EEG-based with a non-EEG-based 

random approach for mitigating cognitive fatigue and 

clearly showed the need for an adaptive fatigue 

detection and mitigation system that delivers warnings 

based on subjects’ cognitive levels. 
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