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Brain-computer interface (BCI) technology shows potential for application to motor

rehabilitation therapies that use neural plasticity to restore motor function and improve

quality of life of stroke survivors. However, it is often difficult for BCI systems to provide

the variety of control commands necessary for multi-task real-time control of soft robot

naturally. In this study, a novel multimodal human-machine interface system (mHMI) is

developed using combinations of electrooculography (EOG), electroencephalography

(EEG), and electromyogram (EMG) to generate numerous control instructions. Moreover,

we also explore subject acceptance of an affordable wearable soft robot to move basic

hand actions during robot-assisted movement. Six healthy subjects separately perform

left and right hand motor imagery, looking-left and looking-right eye movements, and

different hand gestures in different modes to control a soft robot in a variety of actions. The

results indicate that the number of mHMI control instructions is significantly greater than

achievable with any individual mode. Furthermore, the mHMI can achieve an average

classification accuracy of 93.83% with the average information transfer rate of 47.41

bits/min, which is entirely equivalent to a control speed of 17 actions per minute. The

study is expected to construct a more user-friendly mHMI for real-time control of soft

robot to help healthy or disabled persons perform basic hand movements in friendly and

convenient way.

Keywords: electroencephalogram (EEG), electromyogram (EMG), electrooculogram (EOG), multimodal human-

machine interface (mHMI), soft robot hand

INTRODUCTION

Stroke is ranked as the third most common cause of disability worldwide and seriously affects
the quality of life of survivors in terms of their daily functioning (Lim et al., 2012). Up to 80%
of stroke survivors are left with a residual deficit in movement function of the arm and hand
(Hung et al., 2016). It has been found that rehabilitation is most effective if instituted early on the
first 6 months post-stroke, when the mechanisms of brain plasticity are more active and facilitate
relearning and recovery of hand function (Robertson and Murre, 1999). Although a rehabilitation
program involving repetitive movements of the activities of daily living can allow stroke survivors
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to partially recover lost motor function, it is difficult for many
patients to move their affected upper limbs in the manner
required by such physical training routines (Ang and Guan,
2013). Many clinical studies have indicated that active, repetitive,
and intensive rehabilitation trainingmay have significant benefits
for the recovery of impaired motor functions (Fisher and
Sullivan, 2001; Schaechter, 2004). In the traditional therapeutic
approach, physical therapists teach stroke survivors how to guide
their movements with the aim of regaining basic physical skills.
However, this approach is highly labor-intensive, inefficient, and
requires a good deal of physical effort on the part of patients, who
may sometimes refuse to actively cooperate with the regime. In
addition, patients may need to be hospitalized for some of their
rehabilitation. Another problem is that many physical therapists
may not have received the necessary training to prepare them
to administer such stroke rehabilitation programs (Curtis and
Martin, 1993). Furthermore, the process of rehabilitation training
is inadequate in that it does not deal with Brain–computer
interfaces (BCI). The above factors have severely restricted the
clinical effectiveness of rehabilitation training.

Recently, robot-assisted physical therapy has been proposed
to enhance neurological rehabilitation in traditional post-stroke
therapy. Specifically, not only can robotic devices be timed
to provide rehabilitation training for long periods, delivering
a suitable force for patients in a consistent, precise manner,
without fatigue, but they can also be programmed to switch
between different therapeutic modes depending on the state
of rehabilitation of the patient. They are also able to monitor
and record patients’ performance during rehabilitation training
(Takahashi et al., 2008). Many clinical studies have indicated that
robot assistance can significantly enhance the performance of
physical therapy involving intensive repetitive hand movements
aimed at improving limb function (Fasoli et al., 2003). The
human hand is a delicate and intricate structure made up of
a total of 27 individual bones, and its joints allow a wide
range of precise movements with around 21 degrees of freedom
(DOF) and subject to a complex distribution of forces. Although
conventional rigid robots are able to deliver linear and rotational
motion to the limbs of stroke patients with high forces and
torques, they still have some shortcomings. Typically, they are
heavy, noisy, and expensive; they suffer from limited adaptability;
they are potentially unsafe; and they require care and time for
proper alignment with human joints (Polygerinos et al., 2015).
Soft hand robots have a number of advantages over conventional
robotic devices. They have a continuously deformable structure
that fits snugly with the fingers, allowing accurate performance
of exercises. They also allow plastic bending with a high degree
of curvature and a high level of security, and there are positive
interactions between limb and robot. As a result, the painful
muscle cramps or spasms and secondary injury that can occur
with robotic systems are effectively avoided (Rus and Tolley,
2015). With the use of soft hand robots, stroke patients are
able to participate actively in rehabilitation exercises that involve
bending motion of the fingers to meet basic requirements
of everyday life, such as drinking and eating. However, the
appropriate control strategy to make a soft robot comply with a
subject’s intended motion is still an open problem.

BCI have the potential to provide an assistive technology
that converts brain activity into commands communicating with
a user’s intent to control robot-assisted system that promote
the neural plasticity required for recovery of function after
stroke (Wolpaw et al., 2002).

The method combining hybrid BCI and robot-assisted
therapy is more effective to recover from stroke help activate
brain plasticity than single traditional rehabilitation therapy
(Dipietro et al., 2005; Ang et al., 2015).Furthermore, the
control commands can be based on features extracted from
biological signals, such as electroencephalography (EEG),
electrooculography (EOG), and electromyography (EMG). For
example, using advanced methods for detection, processing, and
classification of EMG signals from muscle movements, it has
proved possible to drive a prosthetic hand with fast response and
high precision (Gray et al., 2012). However, stroke can lead to
muscle weakness to such an extent that muscles cannot produce
adequate forces for effective classification of the resulting EMG
signals, thus limiting the clinical application of this approach
(Lum et al., 2012). An alternative approach is to monitor EEG
activity as a patient imagines an intended movement, thereby
exploiting neural informations as input control for a robotic
prosthesis. Unfortunately, EEG signals do not have sufficient
spatial resolution for them to be used to control individual
finger movements. Besides, EEG signals are attenuated during
transmission, which hampers post-classification processing of
these signals to control fine movements (Xiao and Ding, 2013).
EOG signals have good stability and larger potentials than EEG.
EOG can be applied to BCI at quite low cost and provides
good accuracy, so this is another potentially useful method
for controlling robotic prostheses. However, the application of
this approach over sustained periods is limited by the fact
that users’ eyes tend to become dry, fatigued, or even painful
(Singh and Singh, 2012). Each of these traditional single-
mode BCI systems based on EEG, EOG, or EMG has its own
disadvantages hindering further development. In order to make
use of the respective advantages of the different types of BCI, it is
possible to combine different modes in an approach called multi-
modal HMI (mHMI) (Allison et al., 2010). However, whether
single- or double-mode, these methods of active control still
possess a number of shortcomings, such as a limited number
of possible commands, poor real-time capability, and failure
to meet the requirements of the basic actions required in
rehabilitation training.

The aim of mMHI combining two or more user modes
such as eye movements, hand gestures, and motor imagery in a
coordinated approach is to increase the number of instructions
and enhance classification accuracy, reduce errors, and overcome
the specific disadvantages of each individual mode of BCI (Amiri
et al., 2013; Zhang et al., 2016). For example, Edlinger et al.
introduced a system employing real-time analysis of EEG, EMG,
EOG, and motion sensors to implement three different types
of navigation optimally suited to a user’s needs for a specific
control task. However, this system required subjects to perform
predefined tasks in chronological order (Edlinger et al., 2013).
Nam et al. presented a novel HMI that allowed a user to control
a humanoid robot by selecting items from a predefined menu
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through eye and tonguemovements and tooth clenching detected
by GKP (glossokinetic potential), EOG, and EMG signals,
respectively (Nam et al., 2014). This suggests the possibility of
an mHMI approach that integrates two or more brain/nonbrain
signal acquisition modalities from areas other than the damaged
hemisphere. There have also been some proposals for simple
switches and motion sensors in hybrid EEG–EOG based BCI
(Lalitharatne et al., 2013). However, to the best of our knowledge,
there is still no relatively mature, practical method of mHMI
that integrates EEG, EOG, and EMG for on-line control of
robot-assisted system for stroke rehabilitation training.

On the basis of recent research on mMHI, this study
introduces a three-mode interface that should allow normal
subjects to control soft hand robot performing intense repetitive
hand movements. The system can recognize motor imagery,
hand gestures, and eye movements. EEG based pattern is used
to detect the intention of left or right hand movement. EMG-
based pattern is used to identify hand gestures to facilitate
control of the robot. EOG-based pattern is used not only to
recognize eye movements such as looking left and right, but
also, by double blinking of the eyes, to select different actions
that best suit the subject’s needs within a selected category.
Given high performance in mHMI, this is a critical step in the
development of an effective, mature, practical training system for
motor functional recovery.

METHODS AND MATERIALS

Participants
Six healthy subjects (four men and two women, aged 23–26
years old, and all right handed) were recruited to participate
in the study at regular times during their work period. All but
one of the subjects had prior experience with mHMI or similar
experiments. The subjects were all able to control the mHMI
system with their intentions and use their hands for any activity
of daily living. More than anything, all signed an informed
consent forms after having been notified for the experimental
procedure. And the study was approved by the Ethics Committee
of Xi’an Jiaotong University, China, and they were managed
according to the ethical standards of the latest Declaration
of Helsinki.

Experiment Apparatus and Setup
The proposed prototype mHMI combines EEG, EOG, and EMG
modes into a fully integrated system to allow handicapped people
to control their peripheral mobility. Each subject was required to
sit comfortably watching the 14-inch screen of a portable laptop
computer (Windows 7, Intel (R) Core (TM) i7 CPU, 2.10 GHz,
2.70 GHz, 3.19 GB RAM, and 32 bits operational system), with a
Myo Armband (Thalmic Labs Inc., USA) on one forearm to track
arm movements while the other arm pulled on the soft robot
as shown in Figure 1. The subject was asked to rest both arms
comfortably on the desk, which was in its own room to reduce
noise and distractions.

The experiment was carried out to control soft robot as shown
in Figure 1A, EEG and EOG signals were recorded using a
Neuroscan NuAmps Express system (Compumedics Ltd., VIC,
Australia). An elastic cap with 40 mounted Ag/AgCl electrodes

positioned according to the 10–20 international system was
used to detect EEG activities and EOG movements, with all
the electrode impedances being kept below 5 k. Both EEG
and EOG were sampled at 500Hz with the electrode (A2)
on the right mastoid acting as reference and the electrode
(GND) on the forehead as ground. EMG were used to track
arm movements which were obtained from forearm muscle
activities through the Myo Armband, with eight EMG sensors,
a gyroscope, an accelerometer, and a magnetometer measuring
muscle tension traveling across the widest part of the user’s
healthy arm. The EMG electrode impedance was maintained
below 20 k. TheMyo was capable of collecting EMG at a sampling
rate of 200Hz, and employed wireless data communication
(Bluetooth) with its own dongle. The EEG, EOG, and EMG
signals were simultaneously recorded, and a notch filter was used
to remove 50Hz interference. The soft robot was a custom-
built device developed and produced by our team for neuro-
motor rehabilitation of normal hands, as shown in Figure 1B.
The details of its design and the associated experimental setup
can be found elsewhere (Zhang et al., 2015). The robot comprised
a lightweight comfortable glove, electric actuators, a control
panel, and a mini air pump, and was able to safely execute
all combinations of joint flexion-extension. Each actuator was
linked to a PVC pipe connected to an air pump to apply air
pressure through the control unit. The control unit included
proportional valves, a throttle valve, solenoid valves and other
components. Flexible finger movements were made possible by
five flexion actuators worn on the hand and connected through
an electronic board.

Experimental Procedure
The experimental approach was similar to that adopted in similar
mHMI studies (Ma et al., 2015; Minati et al., 2016) and illustrated
in Figure 2. It involved a training phase and a testing phase,
as depicted in Figure 2A. Subjects were asked to spend <2min
carrying out the training to set the parameters for the EOG and
EEGmodes simultaneously, since they were known to be familiar
with the experiment. The screen was black for the first 2 s, then a
cross appeared in the center of the screen until 4 s, after which a
cue picture appeared in a dashed border for 2 s. In the EOGmode,
the appearance of a left or right arrow instructed the subject to
track the arrow with their eyes (looking left and right) and with
their eyes blinking naturally. In the EEG mode, imagined left
or right hand movement appeared in turn on the screen as a
cue demonstrating the motor imagery of the corresponding hand
movement for 2 s. Both the EOG and EEG modes involved 10
trials, including 5 left arrows and 5 right arrows, or 5 times left
hand motor imagery (MI), and 5 times right hand MI. All the
subjects were asked to track the left or right arrows or imagine
either left hand MI or right hand MI, depending on a sequential
visual cue stimulus. Thus, each trial of the EOG mode or EEG
mode lasted for 44 s.

Moreover, in EMG mode, subjects were required to
create a custom profile with the proper guidance of
MYO Windows software development kit (MYO SDK)
1.0.1 for Windows 7 that is free to download from the
website (Ganiev et al., 2016; Labs, 2018b).
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FIGURE 1 | Display of the experimental condition and control system to demonstrate the using principles of mHMI in hand testing process, (A) is the prototype model

of mHMI and experimental condition, (B) is the schematic of control system and soft robot hand.

FIGURE 2 | Trial structure for training and testing paradigm and process of mode-alternating. (A) Trial procedure of a training and testing phase according to the cue

presented in the screen or emitted from the computer. The time ranges of EOG, EEG and EMG mode are from 0 to t1, from t2 to t3, and from t4 to t5, respectively.

The time ranges for mode-alternating separately are from t1 to t2, from t3 to t4, and from t5 to t6. (B) The mode-alternating circular ring describes the

mode-alternating process of the three modes according to subject’s intention from double blink.

After completion of a training phase, the mHMI enters
a testing phase. Figure 2B is a ring chart illustrating the
alternation of the three modes (EOG, EEG, and EMG). This
mode-alternating cycle makes it possible to control the entire
system with high efficiency according to the user’s intentions.
In the initial condition of the mHMI system, the EOG mode
is adopted as the default. Because this mode works in an
asynchronous fashion, the system is always able to actively detect
eye movements, and the user can repeatedly change and send
EOG instructions to the soft robot at any time. If the system is
idle, double blinks, which have the highest priority, can switch
it to the next mode no matter what its current mode is. The
EEG mode, in contrast, operates synchronously. When a double
blink is detected using EOG, the system enters the EEG mode
automatically and the computer emits a “Thinking” sound (not
too loud). The subject then begins to imagine the execution of
left or right hand movement (Jongsma et al., 2013), and the
output data are stored in a standard text file. The system can

then automatically issue the appropriate commands to control
the soft robot using our customized software. When the system
is idle, double blinks can again switch mode, in this case to the
EMG mode, accompanied by a “Moving” sound. The robot is
then controlled by commands generated by the software from
EMG, which works in an asynchronous fashion. Again, at any
time, double blinks can make the system reenter the EOG
mode, accompanied by a “Looking” sound, thus completing the
alternation of the three modes.

After setting the mHMI parameters, an experiment involving
real-time control of the soft robot is performed to verify the
system performance. Subjects are again required to rest their
arms comfortably on the desk as in training, but this time
listening for cue sounds without looking at the computer screen.
They are able to control the soft robot using only their minds
in accordance with whichever one of a set of specific soft hand
actions that they would like to execute. There is a customized
correspondence between five basic hand gestures and five hand
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TABLE 1 | A series of types of hand movement, task and hand action

descriptions are presented in different modes for the proposed mHMI.

Modes Types of hand

movement

Task Hand action

EOG Non grip Look left Push with bend five fingers

Look right Pull with pinch five fingers

Double blink Modal shift

EEG Power grip Left hand MI Three finger grip

Right hand MI Fist

EMG precision grip Rest Idle

Fist Ball pinch

Wave in Tip pinch

Wave out Multiple-tip pinch

Fingers spread Finger loosen up

Double tap Cylindroids grip

tasks. Those hand gestures that are more easily performed
correspond to the hand actions that are most frequently used and
are most important. The optimum relationship between hand
gestures and actions and these hand actions are all listed in
Table 1. In each session of the experiment, a subject performs
all the actions for each mode. When the mHMI and user
are idle, the subject is able to switch to next mode. All the
subjects implemented a single session with 50 runs, resting for
3∼5min between each run. The whole process is captured on
videotape to record the time and the number of correct and
wrong actions.

Detection of Movement Intention
Using mHMI
In a testing phase, many control scenarios demand real-time
and multitasking control commands detected from the user’s
intention. Figure 3 shows how the mHMI system is based
on a combination of event-related desynchronization (ERD)
and synchronization (ERS), eye movements and hand gestures,
making full use of the advantages of each mode and helping
to overcome the disadvantages. The most significant aspect of
the mHMI is its versatility and flexibility, as represented by
the various hand actions. Before detecting user’s intention, the
training model of EOG and EEG are built by the training data
collecting 10 times trials per mode to calculate thresholds and
train classifier parameters, respectively. Then the MYO must
be warm up and performed a special calibration hand gestures
according to the requirements of MYO API every time in case of
re-positioning the MYO on user’s arm. For the calibration and
successful synchronization, the API is able to accurately calculate
a user’s custom profile whose related parameters are saved in
a computer.

Once the mHMI enters a testing stage, in EOG mode, EOG
are firstly filtered using a zero-phase FIR lowpass filter (hamming
window) with a lower cutoff frequency 0.05Hz and a higher
cutoff frequency 45Hz (Shao et al., 2017). Next, the results are
obtained by filtered EOG based on wavelet transform using
the 4th order of Daubechies Wavelet with 10 decomposition

levels. So EOG model is established using the dual threshold
method to identify eye movement of look left, look left and
double blink, and transform them into corresponding commands
which separately are push with bend five fingers (S1), pull with
pinch five fingers (S2), and modal shift (S0). In EEG mode, the
DC component and baseline drift with respect to a preferred
common average reference are first removed from the EEG
signals and they are filtered by a zero-phase FIR lowpass filter
with cut off frequency 0.05∼45Hz. Next, the grand averaged
ERD/ERS in the EEG are estimated as the power decrease (ERD)
or power increase (ERS) compared with first 2 s reference interval
of the resting state (Tang et al., 2016; Cho et al., 2017). The mean
values of the quadratic sums of the signals separately obtained
by left or right hand MI are calculated. The power changes
in each channel are extracted through Daubechies wavelet at 5
levels using the db4 mother wavelet for the mean value (Chen
et al., 2017). The difference between the mean values from the
EEGs recorded respectively on the central region positioned
over the left (C3) and right (C4) primary sensorimotor cortex
is obtained (Babiloni et al., 2008), and the ERD and ERS are
calculated using difference normalization. An optimal hyper-
plane is then constructed as the decision surface for two-class
feature classification, following which the appropriate kernel
function RBF is select, and the parameters of the decision surface
are determined according to the principles of Support Vector
Machines (SVM) using MATLAB functions “svmtrain.m” under
Matlab 2010a (MathWorks, Inc.) (Chang and Lin, 2011; Lawhern
et al., 2012). Final, the processed EEG data are input to the
trained model of the SVM classifier, and the classification result
is then obtained from the test model on the testing set. The
results are easily translated into three fingers grip (S3) and fist
(S4) command to control the soft robot. In EMG mode, if most
dominant arm muscles are alive, a subject can wear MYO on
his/her arm and practice the five basic hand gestures (Ganiev
et al., 2016). The details of all operation also can be found
at MYO support in the website (Labs, 2018a). The application
programming interface of Myo Connect is used to real-time
obtain gestural data from EMG activities of forearm, and EMG
are input into the packaged pattern recognition algorithm to
classify hand gestures which are successfully transformed to
corresponding control instructions (such as S5, S6, S7, S8, S9,
and S10).

On-Line Control Soft Robot Hand With
the mHMI
The prototype mHMI has the advantages of friendly human-
machine interaction and efficient real-time control of the
soft robot (Martišius and Damaševičius, 2016). The system is
implemented based on our customized C++ application, which
has been developed to allow on-line recording of EOG, EEG,
and EMG while ensuring that all data remain synchronized; the
details of the similar synchronizationmethod are described in the
references (Luu et al., 2017). As shown in Figure 4, there are four
aspects to the achievement of this goal.

The first aspect is human and environmental. The subject
can select different mental/action tasks in accordance with the
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FIGURE 3 | The flow charts of movement intention detection and controlling soft robot using the mHMI.

FIGURE 4 | The main structure and work flow of the mHMI.

external environment, such as eating or drinking, to control
the soft robot, after which the outputs of the control are fed
back visually in real time to the user. This enhances system’s
interaction ability, and might be effective for hand recovery
in patients with hand muscle weakness. The second aspect
is the provision of hardware support for an on-line/off-line
data acquisition and control system. The training model needs
to collect EOG and EEG using the same NuAmps system as
for training data, following which the calculated correlation
parameters are transmitted to the testing model in an off-line
training phase. In addition, a special calibration of hand gestures
should be performed to generate a user’s custom profile. The
testingmodel then automatically calls the related parameters with
the Myo API. In the on-line testing phase, live EOG and EEG
are collected using the NeuroScan SDK, while live EMG data are
collected using the Myo. The control system real-time receives
intentions to control air pump through a communication line.
The third aspect is the communication link between hardware

and software, from which information can be exchanged between
software, computer hardware, and soft robot. The EEG, EOG,
EMG and the offline training parameter are entered into the
computers by the program interface, with instructions being
available directly from the control interface. The instructions for
the EEG mode are written in a file named Label.txt, which is
generated by calling a training program written in MATLAB.
Each time the program is re-run, the previous Label.txt file
is overwritten.

The fourth aspect is the software integration platform which
employs multi-threading and multi-processing techniques for
real-time data acquisition, pre-processing, feature extraction, and
classification, with each subsystem for EEG, EOG, and EMG
being contained in an individual thread (Bulea et al., 2013). The
EOG mode is the default thread, but the program interface can
allow switching between threads through double blinking. Last,
but most importantly, the soft robot is controlled using the C
language on a single-board computer and the C++ implemented
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in Visual Studio 2010 for hardware interfacing. Communication
between commands generated by different modes and the
control system is operated as a TCP/IP server, from which
the program interface can transfer data reliably and can accept
commands from the dedicated threads to allow real-time on-line
implementation of the mHMI (Minati et al., 2016).

Evaluation Criteria of the mHMI
To complete the evaluation of the mHMI, the performance
is estimated in terms of classification accuracy (ACC), control
speed, and average time in EOG, EEG, EMG mode and
multimodal. ACC is defined as the percentage of successful
actions. Control speed stands for the number of correct actions in
1min. Average time presents mean time of whole task in 1min.
These parameters have been calculated previously as follows
(López et al., 2017).

ACC =
Correct action output

Total number of sections
× 100% (1)

Speed =
Number of correct actions

Process time
(2)

In addition, to further assess overall classification performance,
the ACC, control speed and the number of movement intention
are combined by the information transfer ratio (ITR) which is
used to calculate for all the movement intention of different
modes (Djemal et al., 2016).

ITR =

S× [log2N + Acc× log2Acc+ (1− Acc)× log2(
1− Acc

N − 1
] (3)

Where S is control speed. Acc is classification accuracy of each
mode. N is the number of possible movement intention.

RESULTS AND DISCUSSION

Analysis of Movement Intention
One of the advantages of the mHMI is to combine EOG,
EEG, and EMG modes to detect movement intention, and
the significant feature of movement intention are analyze and
compare in each mode. In EOG mode, as shown in Figure 5A,
an eye movement detection method is applied according to the
different distributed voltage ranges. The first subgraph describes
the differences from a comparison between the raw EOG and
the signal after wavelet de-noising. In the second subgraph,
if the signal is larger than the first threshold 180 µV, then
the blink is taken to be significant; otherwise it is ignored.
Further, if the signal is larger than the second threshold 385
µV, the blink is considered to be voluntary blink; otherwise,
it is regarded as an involuntary blink. The final subgraph
represents a blink removed EOG in the vertical direction and a
separate voluntary blink. If the blink vector reaches or exceeds
a threshold of 3, this is taken to indicate a voluntary double
blink. Figure 5B depicts the process of saccade detection. The
fist subgraph shows the raw EOG obtaining 4 saccade singles.
These are then reconstructed based on wavelet transform in

second one. A single-valued pulse signal can then be obtained
from the point-wise difference of the signals, although some noisy
random signals are decomposed into small stair-step signals,
so a threshold 30 µV should be set to correctly identify pulse
signals. If a threshold is met or exceeded, the pulse signal
is either regarded as a saccade signal or is neglected. The
corrected saccade signal is obtained as shown in the third
subgraph: if the pulse signal is positive, it represents looking right;
otherwise it represents looking left. After correct identification,
the looking-left and looking-right signals can be transformed
into commands for the robot hand to push with bend five
fingers and to pull with pinch five fingers, and the double blink
signal can be transformed into a command for the system to
shift mode.

In EEG mode, the physiological phenomena reflecting
sensorimotor brain activity through ERD/ERS components are
extracted from the EEG signal to identify different tasks. The
grand average ERD/ERS of C3 and C4 in the frequency range
of 8 ∼ 12Hz is calculated as compared to the reference
period 2 s before the cue occurs across 10 trials for each
subject. The mean ERD/ERS of left or right hand MI for
different condition are visible in Figure 6. To visually find
the brain activity and ascertain the percentage values for ERD
and ERS, the area of blue line with a square under red line
with a rhombus represents ERD (power decrease), and the
remainder area of green stands for ERS (power increase) during
left and right hand MI (the time period 2 s after the cue
appearance). The EEG reveals a significant ERD (Blue area)
and relatively week ERS (Green area) over the contralateral
side (such as C3 or C4). The feature reflects the change of
signal characteristics, then it is expected to identify left or right
hand MI.

In EMG mode, the common features of surface EMG such as
mean absolute value, waveform length, zero crossing, slope sign
change and mean absolute value slope are used as an input to
a classification model for hand gestures recognition (Khokhar
et al., 2010). Then there is a customized correspondence between
5 basic hand gestures and hand tasks according to what extent
such a principle to improve the action recognition efficiency
and accuracy rate, meanwhile hand gesture that are more easily
performed matches well with hand action which is prioritized by
frequency of use and importance, and the optimum relationship
between hand gestures and actions is matched. If a subject
performs the “Fist” hand gesture, this is recorded as a “Ball
pinch” hand action, and the “Wave in,” “Wave out,” “Fingers
spread,” and “Double tap” hand gestures correspond to “Tip
pinch,” “Multiple tip pinch,” “Finger loosen up,” and “Cylindroid
grip” hand actions, respectively (Boyali and Hashimoto, 2016). If
the “Rest” hand gesture is performed, the mHMI is considered
as “idle.”

Performance Analysis of mHMI
Subject actively takes participate in the interactive home
training to complete the hand movements based on the
mHMI. Figures 7A–I separately illustrates different hand actions
including fist, three finger grip, push with bend five fingers, pull
with pinch five fingers, finger loosen up, ball pinch, tip pinch,

Frontiers in Neurorobotics | www.frontiersin.org 7 March 2019 | Volume 13 | Article 7

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhang et al. Multimodal HMI Control Soft Robot Hand

FIGURE 5 | The recognition results of blinks and saccades detection. After treatment of EOG, the same section marked in same color with bar graph. (A) is the

processing results of blink base on EOG, the threshold values 1, 2, and 3 of blink vector separately stand for an involuntary blink, a voluntary single blink and a

voluntary double blink, (B) is the processing results of saccade, if the saccade amplitude is a positive number, it represents left saccade (blue), otherwise it means

right saccade (green).

FIGURE 6 | The grand average ERD/ERS over C3 and C4 electrodes separately compares to the corresponding rest condition for detecting left- or right hand MI,

(A) is the ERD/ERS over C3 electrode in right hand MI condition, (B) is the ERD/ERS over C4 electrode in left hand MI condition.

multiple-tip pinch and cylindroids grip with the help of a soft
robot prototype in daily life. To evaluate the performance of
mHMI, the time and the number of correct or wrong actions for
each action are all computed from the corresponding videotape
in each run. The results of statistical analysis are introduced for
each subject as shown in Table 2. From this, the performance of
each subject can be analyzed on the basis of these results. The
actions performed by the subjects take anywhere from 3.24 to
3.96min, and with control speeds ranging from 15.08 to 18.52

times/min. The number of errors varies from 4 to 8, with a mean
of 6.17±1.47 times. The ACC is about 91.83%∼ 96.12%, with an
average of 93.83%± 0.02. Clearly, S1 performed well with regard
to both control speed and ACC, since this subject had access to a
lot of training over a long period andwas familiar with the control
process. S4 also achieved a remarkable performance, adopting a
cautious approach to obtain a good result and spending 3.96 s to
finish the whole process, thus giving a classification rate of 95.29%
with this control strategy.
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FIGURE 7 | The hand action results are separately presented. A subject is capable of grasping various objects of their everyday live quickly according to his/her

intention with assistance from soft robot. (A,B) Display separately the hand actions of fist and three finger grip in EEG mode. (C,D) Separately show the hand actions

of push with bend five fingers, pull with pinch five fingers in EOG mode. (E–I) Illustrate hand actions of finger loosen up, ball pinch, tip pinch, multiple-tip pinch, and

cylindroids grip, respectively in EMG mode.

The mHMI not only increases the number of control
commands, but also enhances the classification accuracy by
combining the EOG, EEG, and EMG modes. Here, the
performances of the separate EOG, EEG, and EMG modes
and of the multi-modal approach are assessed through an
analysis of the average time, control speed, ACC, and ITR
for all subjects in 50 runs. The performance is shown for
each mode in Table 3. As can be seen, the average time is
defined as the mean time of six subjects who finish the entire
process from the start of one intention task to output the
control command for each run in each mode. The number
of actions is taken as the number of actions in a pre-defined
manner for each run, with the EOG, EEG, EMG, and multi-
modal modes having 2, 2, 6, and 10 action tasks, respectively.
The control speeds of the EOG, EMG, multi-modal and EEG
modes successively decrease, being 50, 42.86, 16.95, and 5.88
actions/min, respectively. And their respective ACC values
separately are 94.23, 96.38, 91.46, and 93.83%. This also shows

that the EMG mode gives greater accuracy than the EOG and
EEG modes.

By considering the ITR of each mode, it is possible to evaluate
the overall classification performance of each mode across six
subjects. As can be seen from the above table, all subjects
successful finish the control task using the mHMI, with a control
speed of 17 ± 1.14 actions per minute, giving an ITR of 47.41
bits/min. The average ITR is significantly higher the EOG and
EEG modes. Although the mHMI is not achieved the highest
ITR value, it shows significantly more commands than the other
single mode.

In order to analyze the differences between classification
accuracy, the classification performance of EOG, EEG, EMG,
and mHMI is presented in Figure 8. As can be observed, the
ACC for each mode is above 88%, and even it reaches up to
98% in some cases. The EOG, EEG, EMG and multi-modal
have their best performance and small deviation: 94.23% ±

0.0278, 91.46%± 0.0229, 96.38%± 0.0178, and 93.83%± 0.0213,
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TABLE 2 | Performance form the six subjects of mHMI obtained with real-time

control the soft robot.

Subject second per

action (s)

Speed

(actions/min)

Error

times

ACC (%) ITR

(bits/min)

S1 3.24 18.52 4 96.12% 54.82

S2 3.54 16.95 6 93.23% 46.50

S3 3.60 16.67 7 93.45% 45.99

S4 3.96 15.08 5 95.29% 43.66

S5 3.48 17.24 7 93.06% 47.11

S6 3.42 17.54 8 91.83% 46.39

AVG 3.54 17 6.17 93.83% 47.41

SD 0.24 1.14 1.47 0.02 3.82

Subject 1, subject 2, … subject 6 are short for S1, S2, … S6, respectively. AVGmeans the

corresponding average values, SD presents standard deviation. The result in bold number

is the highest results among six subjects.

TABLE 3 | The performance results of three single modes and multimodal in

parameters of time, commands, speed, ACC and IRT.

Parameters EOG

mode

EEG mode EMG mode Multimodal

Time per action (s) 1.2 10.2 1.4 3.54

commands 2 2 6 10

Speed (actions/min) 50 5.88 42.86 16.95

ACC (%) 94.23% 91.46% 96.38% 93.83%

ITR (bits/min) 33.84 3.34 97.48 47.23

respectively. Those values possess a small standard deviation
which implies that the classification performance is clustered
close to its mean, and the corresponding system has stability
and reliability. To further compare and analyze the significant
differences between the modes, the p-value is assessed by a
statistical study using one-way analysis of variance (ANOVA)
test with IBM SPSS Statistics 19 (IBM Corporation, America) for
classification accuracy. Regarding the ACC of each mode, there
is a significant difference of each mode, there is a significant
difference between the EMG and EEG modes [F(1, 18) = 28.74,
p= 0.000] and between EOG and EEG mode [F(1, 18) = 5.87,
p= 0.026], but no significant difference between the EOG and
EMGmodes [F(1, 18) = 4.28, p= 0.053].

Specifically, the ACC between multi-modal and any
single mode is compared by the ANOVA. There also exists
considerable difference between multi-modal and EEG mode
[F(1, 18) = 5.73, p= 0.028], as well as EMGmode [F(1, 18) = 8.43,
p= 0.009]. Then it is not significantly influenced by EOG mode
[F(1, 18) = 0.13, p = 0.73]. However, the performance of the
mHMI is represented by the mean value of all the evaluation
parameters among different modal, it is not dominant in the
various parameters when comparing with EOG, EEG, or EMG
mode. Then it is significantly superior to the single modes with
regard to control commands. In addition, it is further simplified
to add commands and avoid the disadvantage of individual mode
to the system, which is a further advantage of mHMI for a long
period of real-time experiment.

FIGURE 8 | The distribution of classification performance in EOG, EEG, EMG,

and theirs basic combined mode across all participants during on-line test.

Box edges represent the interquartile range which is the distance between the

1st and 3rd quartiles, red line and cross is the median of interquartile range

and the mean of minimum and maximum data values. Outlier points with circle

stand for those that are greater than the interquartile range.

Comparison to Previous Work
Although the combination of EEG, EOG, and EMG modes
in an mHMI is promising, there are very few BCI systems
that have implemented this approach (Hong and Khan, 2017).
However, in a similar approach, a system has been developed
to control external devices or other services with different input
modalities based on EEG, EOG, EMG, or motion signals. The
combination of six different input signals gives an advantage
in the number of input controls (total 11) in comparison
with a single control/input mode, and the EEG-SSVEP method
have an accuracy of 74%. All subjects are required to perform
predefined tasks with each input method according to a
sequential experimental paradigm (Edlinger et al., 2013). In
contrast to our work, subjects are able to switch between modes
to control desired actions at any time through double blinks, with
a large number of control commands. A novel HMI to control a
humanoid robot has also been presented and is the first interface
that integrates GKP, EOG, and EMG to improve information
capacity, the results shows that the mean accuracy is 86.7 ±

8.28% and the mean response time is 2.77 ± 0.72 s (Nam et al.,
2014). This system detects four kinds of tongue movement or
eye movements, as well as teeth clenching movements, and the
subject controls the robot’s performance of various actions by
selecting from a predefined menu. In comparison with our work,
the number of control commands is limited, and the inclusion of
EEG in this system has not been investigated. In other work, a
hybrid control approach at two levels has been used to control a
5 + 1 DOF robot from EEG, EOG, and EMG signals together
with head movements via consumer-grade wearable devices,
and the classification accuracy of hEOG, ERD/ERS and blink
model is 73 ± 5% (Minati et al., 2016). A further approach to
HMI has combined different modalities to potentially control

Frontiers in Neurorobotics | www.frontiersin.org 10 March 2019 | Volume 13 | Article 7

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhang et al. Multimodal HMI Control Soft Robot Hand

16 objects based on EEG, EOG, eye tracking, and EMG signals,
and the prediction accuracy is 90.3 ± 8.8% (Novak et al., 2013).
Although these two studies have integrated four or more different
sensing technologies, they control a robot arm or objects based on
combinations of four or more signals rather than integration of
all signals, and the effect of the combination between three modes
and a singlemode have been investigated in terms of classification
performance. However, no obvious increase is found in the
number of control commands. Presently, there is less research
on ITR of mHMI under the same conditions. Then there are
some studies on ITR of mHMI as analogous to the current
conditions as possible. The online result of hybrid HMI based
on EMG and EOG is 43.3 bits/min (Buchwald and Jukiewicz,
2017), and the ITR of new hybrid EEG-EMG-BCI system is
18.43 bits/min in the process of writing some English letters
with a robot arm (Gao et al., 2017). Our system translates three
signals into 11 classes of control commands to control a soft
robot with an accuracy of 93.83% which is outperformed the
above mentioned system and its mean ITR is 47.41 bits/min,
and it can be used to assist both healthy and disabled persons
with high efficiency in classification performance compared with
existing mHMI.

Overall, this comparison demonstrates clearly that our novel
mHMI shows little similarity with other recent hybrid BCI
systems with the capacity to control external devices for
rehabilitation from a combination of three or more signals.
To the best of our knowledge, the combination of EEG,
EOG, and EMG signals has not been employed in previous
studies. Furthermore, our prototype system has increased
the number of control commands to a certain extent, and
explored subject acceptance of an affordable wearable soft
robot. Hence, it is more suitable for application by disabled
persons using multiple rehabilitation devices for activities of
daily living.

Limitations
The evaluation of the mHMI has shown that the combination of
three modes is feasible and effective in increasing the number
of control commands. However, this prototype system still has
several limitations.

First, the EEG mode impinges on the control speed of the
mHMI in a synchronous manner. Subjects start to imagine left or
right hand movement when they hear a “Thinking” sound from
the computer, but it takes time to await the cue in this process,
which affects the control speed of the system. Second, if the
working pressure of the soft robot changes over time to fall below
a barometric threshold, the stiffness change space is limited,
although only to a certain extent (Yufei et al., 2017). Indirectly,
this reduces the attainable strength of grasping actions, with
further effects on applications such as lifting weights (Deimel
and Brock, 2015). Third, because the subjects of the study were
healthy individuals, rather than patients suffering from strokes
or brain injuries, their movement imaginings may differ from
those of patients with impaired motor functions (Ang et al.,
2011). Fortunately, clinical trials of BCI rehabilitation therapy
can detect the MI of patients to facilitate motor functional
recovery (Ang and Guan, 2017). Similarly, eye movements of

patients can be measured by EOG (Berger et al., 2006) and
EMG have also been recorded from stroke patients (Cesqui et al.,
2013). Thus, patients might be able to select certain modes of
the mHMI to control the soft robot in a manner tailored to their
individual conditions, and this would allow future investigations
of the variation in classification performance between healthy
and handicapped subjects. Finally, if a subject is not familiar
with the operation of the mHMI, this affects the classification
rate and control speed in the initial experiment. In addition, the
experimental environment, including the subjects themselves,
can have an impact on classification performance, for example
if a subject is sweating or nervous, and the collection of EEG,
EOG, and EMG data can be affected by different intensity
of noise.

CONCLUSION AND FUTURE WORK

In this study, we have proposed a task-oriented approach to
assistance and motor function training with the activities of
daily living using the mHMI with robust real-time control of a
soft robot through MI, eye movements, and hand gestures.
The system integrates EEG, EOG, and EMG modes to
increase the number of possible control commands to soft
robot in his/her customary expressive way. Subjects select
different modes with double blinks and execute various
hand actions to indicate the required command easily,
robustness and intuitively. The mHMI can detect 11 kinds
of movement intention with an accuracy of 93.83% and an
average ITR of 47.41 bits/min. The proposed mHMI real-time
controls soft robot in friendly and convenient way to provide
assistance to healthy or disabled persons with performing
hand movement.

Future work will focus on the development of a portable,
cheaper, fully asynchronous EEG/EOG/EMG-based mHMI
and a synchronous multi-information acquisition system
to improve control commands, control speed, ACC, and
practicability. Meanwhile, the mHMI should be performed
to assist chronic stroke patients in recovering their hand
motor functions.
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