
An effective approach for the protection of privacy text data in the CloudDB

Zongda Wua,b, Guandong Xuc, Enhong Chenb, Guiling Lid,∗

aOujiang College, Wenzhou University, Wenzhou, Zhejiang, China
bSchool of Computer Science, University of Science and Technology of China, Hefei, Anhui, China

cFaculty of Engineering and IT, University of Technology, Sydney, Australia
dSchool of Computer Science, China University of Geosciences, Wuhan, China

Abstract

Due to the advantages of pay-on-demand, expand-on-demand and high availability, cloud databases (CloudDB) have

been widely used in information systems. However, since a CloudDB is distributed on an untrusted cloud side, it is an

important problem how to effectively protect massive private information in the CloudDB. Although traditional securi-

ty strategies (such as identity authentication and access control) can prevent illegal users from accessing unauthorized

data, they cannot prevent internal users at the cloud side from accessing and exposing personal privacy information.

In this paper, we propose a client-based approach to protect personal privacy in a CloudDB. In the approach, privacy

data before being stored into the cloud side, would be encrypted using a traditional encryption algorithm, so as to

ensure the security of privacy data. To execute various kinds of query operations over the encrypted data efficiently,

the encrypted data would be also augmented with additional feature index, so that as much of each query operation

as possible can be processed on the cloud side without the need to decrypt the data. To this end, we explore how

the feature index of privacy data is constructed, and how a query operation over privacy data is transformed into a

new query operation over the index data so that it can be executed on the cloud side correctly. The effectiveness of

the approach is demonstrated by theoretical analysis and experimental evaluation. The results show that the approach

has good performance in terms of security, usability and efficiency, thus effective to protect personal privacy in the

CloudDB.

Keywords: CloudDB, information system, privacy protection, feature index

1. Introduction

A cloud database (CloudDB) refers to a database deployed on an Internet-based virtual computing environment,

which allows users to store, modify and retrieve data anywhere in the world, as long as they have access to the

Internet [20]. Due to the advantages of pay-on-demand, expand-on-demand and high availability, CloudDB has been

widely used in information systems [10]. However, since a CloudDB is distributed on the cloud side instead of a

local server, it is important how to effectively protect massive information about personal privacy (such as phone

number and personal name) stored in the CloudDB [11]. To ensure the security of personal privacy information, many

strategies have been used in information systems, such as identity authentication, and authorization and access control

[29, 3, 32]. These strategies can prevent illegal users from accessing unauthorized data, consequently, ensuring the

security of personal information to a large extent. However, almost all the strategies are targeted only for external

illegal users of an information system, and they cannot prevent internal users (such as administrators) at the cloud side

from accessing personal information stored in the CloudDB.

A general framework of a CloudDB information system is shown in Figure 1, where (1) external users, who

generally work at client sides, store their data into the CloudDB and use data services supplied by the CloudDB; and

(2) internal users, who work at the cloud side, manage the CloudDB and a large amount of external users’ personal

∗Corresponding Author

Email addresses: zongda1983@163.com (Zongda Wu), guandong.xu@uts.edu.au (Guandong Xu), playnet107@163.com

(Chenglang Lu), enhc@ustc.edu.cn (Enhong Chen), fang.jiang@wzu.edu.cn (Fang Jiang), guiling@cug.edu.cn (Guiling Li)

Preprint submitted to August 4, 2017

Manuscript Click here to download Manuscript 1kbs.pdf

Click here to view linked References

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Figure 1: A general framework of a CloudDB information system

data stored in the CloudDB. In a CloudDB, the client sides are considered to be trusted because existing security

strategies used by database systems can prevent users from accessing unauthorized data. However, the cloud side is

considered to be untrusted [30]. For example, an administrator or a attacker who has broken into the cloud side can

access private data stored in the CloudDB easily. In other words, it is possible for internal users at the cloud side to

access and expose the personal data in the CloudDB, driven by economic interests, thereby leading to the disclosure

of personal information.

1.1. Motivation

It has been reported by iResearch1 that the frequent occurrence of disclosure of personal privacy is making people

become “transparent”, and more than half of the disclosure events are caused by the internal users of a network system.

Therefore, it is very important to supply an effective approach to ensure the security of personal privacy in a CloudDB,

which should be able to prevent the disclosure of personal information caused by internal users at the cloud side, not

just by external users at the client sides. To protect personal privacy in a CloudDB, a straightforward way is to encrypt

personal data, so that even if the encrypted data are exposed, they are difficult to be decrypted [22]. However, in an

information system, generally, there are a large number of database query operations, which are relevant to personal

data (i.e., defined over personal data). Once the private data are encrypted using a traditional encryption algorithm

(e.g., those in [2, 17]), most of the database query operations (such as text similarity queries) will no longer be able to

be executed correctly over the encrypted data in the CloudDB.

To solve the above problem on querying encrypted data, we can transmit the encrypted data (which may be a whole

table) from the cloud side, decrypt the encrypted data and then execute the query operations over the decrypted data.

However, as the cost of transmitting and decrypting an encrypted table is expensive, such a way (i.e., decrypting before

querying) will greatly reduce the execution efficiency of database query operations, resulting in its inapplicability to a

CloudDB. Although the homomorphic encryption techniques [17] can maintain the original order and comparability

of the encrypted data so that a number of database query operations can be executed correctly over the encrypted data,

they are generally of weak security, e.g., the encrypted data are easy to be decrypted by statistical attack, as pointed

out in [13, 33]. Although there are a number of studies on data encryption [16], most of them require to first decrypt

the encrypted data and then execute queries over the decrypted data, consequently, making them difficult to satisfy

the efficiency requirement of a CloudDB. Although there are a small number of data encryption algorithms (see the

related work section for detail) that allow users to query encrypted data directly without the need to decrypt data, they

generally have the disadvantages of weak security or inability to fully support query operations, thereby, making them

difficult to solve the problem on querying encrypted personal data in a CloudDB.

1.2. Contribution

In this paper, we propose a client-based approach to protect personal privacy in a CloudDB. In the approach,

before being submitted to the cloud side, personal data have to be encrypted on a trusted client side using a traditional

encryption algorithm, so as to ensure the security of personal data on the untrusted cloud side. Meanwhile, to exe-

cute various kinds of query operations over the encrypted data efficiently, the approach generates additional feature

information (called feature index) for the encrypted data, which allows a certain amount of query processing to occur

on the cloud side without the need to decrypt the data. Thus, the approach mainly explores how the feature index

1iResearch, a well-known consulting company in China - http://report.iresearch.cn/

2

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

of personal data is constructed, and how each query operation over personal data is transformed into a new query

operation over the feature index so that it can be executed correctly on the cloud side. Specifically, the contributions

of this paper are threefold.

(1) We present a scheme to generate the feature index for personal data, which has not only good security (i.e., it

is difficult to infer the original personal data from the feature index), but also good usability (i.e., it can support

various kinds of database query operations).

(2) We present a scheme to transform each user query relevant to personal data into a cloud-side query relevant to

the feature index, so that the new query can be executed on the cloud side correctly, consequently, improving the

execution efficiency of database query operations.

(3) We demonstrate the effectiveness of our approach by theoretical analysis and experimental evaluation. The results

show that the approach has good performance in terms of security, usability and efficiency, thus it is applicable to

effectively protect personal privacy in a CloudDB.

The rest of this paper is organized as follows. Section 2 surveys related work. Section 3 presents the system model

and the problem studied in this paper, i.e., formally describing what requirements should be satisfied so as to protect

personal privacy effectively in a CloudDB. Section 4 presents a scheme to generate the feature index for personal data,

and analyzes the security of the scheme. Section 5 presents a scheme to map each query over personal data into a

cloud side query over the feature index, and analyzes the usability of the scheme. Section 6 presents the experimental

evaluation to demonstrate the efficiency of our approach. Finally, we conclude this paper in Section 7.

2. Related Work

In this section, we briefly describe some research related to querying encrypted data in outsourced databases. In

[13], Hacigumus et al. first proposed the bucket partitioning idea for querying encrypted data in the database-as-

service model. The basic idea is to divide the attribute domains into multiple buckets and then map bucket identifiers

to random numbers, thereby, protecting the security of sensitive data. Moreover, this makes that much of a query op-

eration over encrypted data can be processed at the database service provider, thereby, improving query performance.

Later, in [14], the authors proposed to use the homomorphism encryption techniques to enhance their approach, so as

to support aggregation queries over encrypted data, and in [15], the authors further discussed an optimization tech-

nique for their approach, i.e., how to use multiple communications between the server and the client to decrease the

workload of the client. In order to better support range queries over encrypted data, Hore et al. [7] explored an opti-

mal approach to partitioning data domain, thereby, improving the precision of range queries. The work presented by

Hacigumus et al. is significant, which presented a basic framework to ensure data security in the database-as-service

model. However, the work did not analyze the security formally for the approach. Besides, the work is valid only for

numerical data without considering text data. Since personal privacy data in an information system are generally of

text type, it is not suitable to apply the above approach to protect personal privacy in a CloudDB.

Recently, many studies on the data security in cloud databases have been presented. Li et al. [18] discussed

the problem about privacy preserving range query processing on clouds, and presented a fast range query processing

scheme by organizing indexing elements in a complete binary tree. Wai et al. [28] addressed security issues in a

cloud database system, and proposed a secure query processing scheme on relational tables and a set of elementary

operators on encrypted data, which allows a wide range of database queries to be processed by the server on encrypt-

ed data. Chen et al. [9] proposed an efficient privacy and integrity preserving scheme for multi-dimensional range

queries over cloud computing. Luca et al. [23] proposed an architecture that integrates cloud database services with

data confidentiality and the possibility of executing concurrent operations on encrypted data. This is the first solution

supporting geographically distributed clients to connect directly to an encrypted cloud database, and to execute con-

current and independent operations. Recent work [6] proposed a general framework for boolean queries of disjunctive

normal form queries on encrypted data. Although all the approaches are proposed for cloud databases, most of them

are targeted for building a secure cloud database. As mentioned above, they are not proposed for a CloudDB, so based

on them, we cannot build an effective CloudDB that can support a variety of database query operations over privacy

data (such as text similarity queries and range queries).

Some researchers also proposed to split sensitive data among multiple servers to ensure data security. In [12], a

scheme for vertical partitioning of relations among multiple untrusted servers was employed, whose privacy goal is to

3

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

prevent access of a subset of attributes by any single server. Aggarwal et al. [1] also used a similar vertical partitioning

scheme which has the same privacy goal but different partitioning and optimization algorithms. Wang et al. [24] used

a salted version of IDA scheme to split encrypted tuple data among multiple servers. In [26], a novel l-diversity

privacy model was proposed for privacy preservation in the release of data for mining purposes. Recently, some

researchers also proposed to use a hardware approach to ensure data security, such as TrustedDB [25], MONOMI [27]

and Cipherbase [4]. The advantages of the hardware approach are that it can provide strong security protection, and

it does not limit query expressiveness. However, the hardware approach needs to reconstruct the system structure of a

CloudDB. In addition, there are also other related encryption techniques for spatial data [8, 21, 34].

From the above, we see that most of existing approaches to data security protection in outsourced databases focus

on constructing a secure framework, without fully taking into consideration the structure and type of sensitive data.

As a result, if we apply these approaches immediately into a CloudDB, it is difficult to support a variety of similarity

queries and range queries over encrypted privacy data. Actually, aiming at the problem of querying encrypted textual

data in a database, there are some related studies. Wang et al. [31] proposed to turn a character string into characteristic

values, so as to support similarity queries. This approach can reduce the scope of data decryption, and thus improve

query performance. However, the approach cannot well solve the similarity queries in the form of “LIKE ‘%s’” and

“LIKE ‘s%’”, and cannot support range queries. Besides, owing to using only one characteristic function, the approach

is difficult to withstand statistics attack or inference attack. By analyzing the traditional order-preserving encryption

approach to numerical data, a fuzzy matching encryption approach aiming at character strings was proposed in [19]. In

this approach, a character string is first transformed to numerical values, and an order-preserving encryption technique

in [14] for numerical data, is then used to encrypt the transformed numerical values. To solve the problem of not

supporting range queries for the approach in [31], Wu et al. [33] defined a structure called n-phase reachability matrix

for a character string and used it as the characteristic index values, and then presented split a database query into its

server-side representation and client-side representation for partitioning the computation of a query across the client

and the server and thus improving query performance. However, it is space-consuming to store a complete reachability

matrix.

3. Problem Statement

3.1. System Model

The system model used by our approach is presented in Figure 2. As shown in Figure 2, the system model consists

of an index generator, a query translator and a query executor, whose processing flows can be briefly described as

follows.

(1) Before being submitted to the cloud side, privacy data u has to be handled by the index generator, so as to

generate the ciphertext E (u) and the feature index X (u), where E and X denote an encryption function and an

index function, respectively.

(2) Each query operation qu relevant to privacy data, before being submitted to the cloud side, has to be transformed

into a new cloud-side query operation qx, which is defined over the feature index so can be executed by the

encrypted CloudDB correctly. This process is completed by the query translator.

(3) The query executor decrypts the temporal result R (qx) returned from the cloud side, which is obtained by

executing the cloud-side query operation qx over the CloudDB; and then executes the user query operation qu
over the decrypted data D (R (qx)) (where D denotes a decryption function), thereby, obtaining the accurate

result R (qu) of qu.

(4) Meanwhile, each client side of a CloudDB also maintains an internal metadata structure that is used to store all

kinds of parameter information for the above components.

It can be seen that the system model is located on a client side (i.e., it is client-based), but it is transparent to the

client side, i.e., it requires no change to existing softwares on the client side. In the system model, a cloud side is

deemed untrusted, i.e., the adversary is located on the cloud side, who has full access to not only the entire CloudDB,

but also all the database query operations from client sides. Thus, the adversary is deemed powerful, who can master

a large quantity of plaintext, ciphertext and feature index information.

4

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Figure 2: The system model used in our approach, where the arrows denote data processing flows.

3.2. Problem Analysis

In the system model, the encryption function E is developed based on an existing data encryption algorithm (e.g.,

AES [5]), so it is almost impossible for the adversary to infer the plaintext u from the encrypted data E (u), i.e., the

security of encrypted data can be well protected in the untrusted cloud side. Thus, this paper non longer pays attention

to the security of the encrypted data. From Figure 2, we know that the feature index is the key to protecting personal

privacy effectively. In general, a good feature index scheme should satisfy the following requirements.

(1) Good security. On the cloud side, the indexes are visible to the adversary, thus the feature indexes should ensure

their own security, i.e., it should be difficult for the adversary to infer the plaintext u from the index X (u).

(2) Good usability. Based on the feature index, each familiar user query qu over privacy data should be able to be

transformed into a cloud-side query qx that can be executed over the encrypted CloudDB. It is required that the

result returned by qx should be a superset of the accurate result of qu, i.e., R (qu) ⊆D (R (qx)).

(3) Good efficiency. On the cloud side, the query qx should be able to filter as many of the non-target tuples (i.e.,

which do not satisfy qu) as possible, making the temporal result R (qx) as close to the accurate result R (qu) as

possible, so as to lighten the computation on a client side, and thus improve the execution efficiency of qu.

However, it is difficult to meet the above requirements simultaneously. On the one hand, good security generally

requires the feature index to describe as little feature information on privacy data as possible, so as to make it difficult

for the adversary to obtain the original plaintext based on the index. On the other hand, good usability and efficiency

require that as much feature information as possible on privacy data can be reflected by the index. Thus, good feature

index should be a reasonable compromise among security, usability and efficiency.

3.3. Problem Definition

To simplify the presentation, below we use a symbol Θ to represent a privacy protection approach that runs on

the system model in Section 3.1, and use XΘ to represent an index function used by the approach Θ. Based on the

analysis given in Section 3.2, we formulate the requirements that the approach Θ has to satisfy so as to effectively

protect personal privacy.

Let U denote the domain of privacy data, and XΘ the domain of index data generated by the approach Θ. Then,

we have XΘ = {x |u ∈ U ∧ x = XΘ(u)}. As we mentioned above, the adversary can master a large quantity of

plaintext and the corresponding feature index. Thus, (1) the prior knowledge that the adversary has mastered can be

defined as a set of two-tuples from privacy data u (u ∈ U) to index data XΘ(u); (2) the limit k∗Θ of prior knowledge of

the adversary can be represented as: k∗Θ = {(u, x) |u ∈ U ∧ x ∈ XΘ ∧ x = XΘ(u)}; and (3) the domain KΘ of prior

knowledge can be represented as: KΘ = 2 k∗

Θ , i.e., the prior knowledge that an adversary has mastered is a subset of

k∗Θ. From experience, we know that, (1) given any index data x (x ∈ XΘ), the probability that the adversary infers

the plaintext from the index data x mainly depends on the prior knowledge kΘ (kΘ ∈ KΘ) that an adversary has

mastered, so we denote it as: Pr(kΘ) (0 < Pr(kΘ) ≤ 1); and (2) Pr(kΘ) ∝ | kΘ |, i.e., the probability of inferring

the plaintext is proportional to the amount of the prior knowledge mastered by the adversary. Now, the security of the

approach Θ can be defined as follows.

5

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Definition 1. Given a threshold λ (0 < λ ≤ 1), an approach Θ meets λ-security, if and only if the prob-

ability that an adversary infers the plaintext from any index data established by Θ is always less than λ, regard-

less of the prior knowledge mastered by the adversary. Formally, an approach Θ meets λ-security, if and only if

∀kΘ (kΘ ∈ KΘ → Pr(kΘ) ≤ λ), i.e., Pr(k∗Θ) ≤ λ (since Pr(kΘ) ∝ | kΘ |).

Let Qu denote the domain of user query operations relevant to privacy data. As mentioned in Section 3.2, good

usability requires that each query qu (qu ∈ Qu) can be transformed into a cloud-side query qx, so that R (qu) ⊆
D (R (qx)). However, it can be seen that Qu is an infinite set. Thus, we first define a core set of user query opera-

tions, and then define the usability of the approach Θ.

Definition 2. Q∗
u is a core set of user queries relevant to privacy data if it meets: (1) Q∗

u ⊆ Qu; (2) ∀q1∃q2(q1 ∈
Qu ∧ q2 ∈ Q

∗
u → R(q1) = R(q2)); and (3) ∀q1∀q2(q1 ∈ Q

∗
u ∧ q2 ∈ Q

∗
u ∧ q1 ̸= q2 → R(q1) ̸= R(q2)).

Definition 3. An approach Θ meets usability, if and only if any user query operation qu (qu ∈ Q
∗
u) can be trans-

formed into a cloud-side query operation qx, which is defined over the feature index XΘ, and the actual result R (qu)
of qu is contained in the temporal result R (qx) returned by qx, i.e., R (qu) ⊆D (R (qx)).

Let T (qu) denote all the tuples in the table related to a query operation qu (qu ∈ Qu) (i.e., the table presented in the

FROM clause of qu). Then, |T (qu)−R(qu) | denotes the number of non-target tuples of qu; and |T (qu)−D(R(qx)) |
(where qx is a cloud-side query transformed from qu by the approach Θ) denotes the number of non-target tuples fil-

tered out on the cloud side by qx. As mentioned above, good efficiency requires that as many of non-target tuples as

possible can be filtered out by qx, i.e., |T (qu) −D(R(qx)) | is as close as possible to |T (qu) − R(qu) |. Below, we

first define filtering rate, and then define the efficiency of the approach Θ.

Definition 4. For any user query operation qu (qu ∈ Q
∗
u), we use qx to denote its cloud-side query opera-

tion generated by the approach Θ. Then, the filtering rate FrΘ (qu) of Θ to non-target tuples of qu is defined as:

FrΘ (qu) =
|T (qu)−D(R(qx)) |
|T (qu)−R(qu) |

.

Definition 5. Given a threshold µ (0 ≤ µ ≤ 1), an approach Θ meets µ-efficiency if and only if the mathematical

expectation
∑

qu∈Q∗

u

Pr (qu) · FrΘ (qu) ≥ µ, wherein, Pr (qu) denotes the probability of a query qu (qu ∈ Q
∗
u)

issued by external users, and
∑

qu∈Q∗

u

Pr (qu) = 1.

Now, based on Definitions 1, 3 and 5, we define the requirements that the approach Θ has to satisfy so as to protect

personal privacy effectively.

Definition 6. Given two thresholds λ (0 < λ ≤ 1) and µ (0 ≤ µ < 1), if an approach Θ meets λ-security,

usability and µ-efficiency, then Θ is effective to protect personal privacy in a CloudDB.

4. Privacy Protection Scheme

In this section, before introducing the approach of encrypting and indexing privacy data, we first show how the

encrypted data and their feature indexes are stored into the CloudDB. Note that in a CloudDB, privacy data such

as identification number, phone number, personal name and bank account are generally stored as a text field (i.e.,

whose field type is CHAR or VARCHAR), so in our work privacy data of any type are treated as text uniformly

(i.e., we take no account of the privacy data of numeric type, which is out of the scope of this paper). We suppose

that there exists one relational table R (A1, A2, ..., Ar, ...) in the CloudDB, where Ar is a field used to store privacy

data thus needs to be encrypted (Ar is called a private field. To simplify presentation, we assume that there is only

one private field Ar in the table R. Then, in the encrypted CloudDB, we will store an encrypted relational table

RE
(
AE , A1, A2, ..., A

X
r , ...

)
instead of R, wherein,

(1) The field AE (called an encrypted field) stores an encrypted binary string (i.e., ciphertext) that corresponds to a

tuple in the table R (we will explain how the encrypted field AE is constructed in Section 4.2).

6

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Algorithm 1: Assigning a group of partition numbers for a given private field.

Input: (1) the character units P1, P2, ..., Pn of a private field Ar; and (2) a security factor ρ.

1 begin

2 foreach Pi (i = 1, 2, ..., n) do num(Pi)← |dom(Pi)|;
3 while ρ

∏n

i=1 num(Pi) >
∏n

i=1 |dom(Pi)| do

4 from the set P = {P1, P2, ..., Pn}, select a subset P∗ of character units of the biggest current partition

number, i.e., P∗ = {P ∗
i |P

∗
i ∈ P ∧ ∀Pj (Pj ∈ P → num (Pj) ≤ num (P ∗

i))};
5 from the set P∗, randomly select a character unit P ∗

i , and reset its current partition number as:

num(P ∗
i)←

⌊
1
2num(P ∗

i)
⌋
;

6 return {num(Pi) | i = 1, 2, ..., n};

(2) The field AX
r (called an index field) corresponds to the feature index for the private field Ar, and the type of AX

r

is identical to that of Ar, i.e., whose type is also CHAR or VARCHAR.

(3) The remaining fields in the encrypted table RE are all consistent with those in the original table R.

Below, we study a privacy protection scheme used in our approach, i.e., study how privacy data are encrypted and

indexed so as to ensure the security of privacy data in the untrusted cloud side. Specifically, we first show how to

construct a feature index function X for privacy data. Second, we show how privacy data are encrypted and indexed,

and then stored into the encrypted CloudDB. Finally, we analyze the security of the privacy protection scheme.

4.1. Feature Index Function

For any value u in the domain of the private field Ar of R, this subsection explains how it is mapped to the feature

index value X(u), so that it can be stored into the index field AX
r of RE , i.e., how the feature index function X is

constructed. For the private field Ar of R, suppose that each value in its domain contains no more than n (n ∈ N)
characters. Then, the private field Ar consists of n character units. Below, we use Pi (i = 1, 2, ..., n) to denote each

character unit of Ar, and dom(Pi) to denote the domain of values of Pi. In order to construct a feature index func-

tion over the private field Ar, we need the following three steps: (1) automatically assigning a number num(Pi) for

each character unit Pi; (2) automatically dividing the domain dom(Pi) into num(Pi) partitions; and (3) automati-

cally assigning a character identification for each partition of Pi. Below, we detail the steps and their implementations.

Step 1. Automatically assign a number num(Pi) (called a partition number) for each character unit Pi (i =
1, 2, ..., n) of the private field Ar, which has to meet the following requirements:

(1) The partition number num(Pi) has to be a positive integer and less than the size of the domain dom(Pi), i.e.,

num(Pi) ∈ N ∧ num(Pi) ≤ |dom(Pi)|.

(2) All the partition numbers from the private field Ar have to meet ρ
∏n

i=1 num(Pi) ≤
∏n

i=1 |dom(Pi)|, where ρ
is a given factor.

In Step 1, ρ is called a security factor and ρ ∈ N ∧ ρ ≤
∏n

i=1 |dom(Pi)|, which is preset for the private field

Ar, and used to control the security of the generated feature index function. In general, the greater the value of ρ, the

safer the generated feature index function X . The detailed analysis of ρ on how to impact the security of X will be

presented in Section 4.3. It can be found that generally there are a large number of solutions that satisfy the require-

ments mentioned in Step 1. In our approach, we use Algorithm 1 to perform Step 1, so as to automatically assign a

group of partition numbers for all the character units of the private field Ar. From Algorithm 1, we can see that the

time complexity of Lines 4 and 5 is O (n) and the loop will terminate after log ρ operations, so the time complexity

of Algorithm 1 is O (n · log ρ).

Example 1. Consider a private field of phone number. Because a phone number in China generally consists of 11

numeric characters, the private field created for storing phone numbers also consists of 11 character units (n = 11).

7

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Algorithm 2: Constructing partitions for each character unit of a private field.

Input: (1) the character units P1, P2, ..., Pn of a given private field Ar; (2) a set {num(Pi) | i = 1, 2, ..., n} of

partition numbers.

1 begin

2 foreach Pi (i = 1, 2, ..., n) do

3 n1 ← ⌊|dom(Pi)|/num(Pi)⌋; n2 ← ⌈|dom(Pi)|/num(Pi)⌉;

4 obtain a solution (x1, x2) of the equation

x1 ∈ N, x2 ∈ N

x1 + x2 = num(Pi)

n1x1 + n2x2 = |dom(Pi)|

5 for (k ← 1;x1 ̸= 0 ∨ x2 ̸= 0; k ← k + 1) do

6 randomly set a variable t as 1 or 2;

7 if (x1 ̸= 0 ∧ t = 1 ∨ x1 ̸= 0 ∧ x2 = 0) then x1 ← x1 − 1, n∗ ← n1;

8 if (x2 ̸= 0 ∧ t = 2 ∨ x2 ̸= 0 ∧ x1 = 0) then x2 ← x2 − 1, n∗ ← n2;

9 from the set dom(Pi), select the smallest n∗ elements to constitute a partition B
(i)
k , and update:

dom(Pi)← dom(Pi)−B
(i)
k ;

10 return {{B
(i)
k | k = 1, 2, ...,num(Pi)} | i = 1, 2, ..., n};

Besides, the first two numeric characters of a phone number can only be ‘13’, ‘15’ or ‘18’, so the domain of each

character unit of the phone field is given as follows:

dom(P1) = {‘1’};dom(P2) = {‘3’, ‘5’, ‘8’};dom(P3) = ... = dom(P11) = {‘0’, ‘1’, ‘2’, ..., ‘9’}

If the security factor ρ is set to 30, then using Algorithm 1, the partition number for each character unit of the

phone field is assigned as follows:

num(P1) = 1;num(P2) = 3;num(P3) = ... = num(P6) = 10;num(P7) = ... = num(P11) = 5

Step 2. Based on num(Pi) assigned by Step 1 for each character unit of Ar, we use some strategy (e.g., Equi-

width or Equi-depth) to divide the domain dom(Pi) of Pi into num(Pi) subsets (called partitions). Let B
(i)
k (k =

1, 2, ...,num(Pi)) denote a partition of Pi. The partitions of Pi have to meet the following requirements:

(1) Each partition B
(i)
k is nonempty, i.e., ∀k(k ∈ N ∧ k ≤ num(Pi)→ B

(i)
k ̸= ⊘).

(2) Each partition B
(i)
k is mutually disjoint with another partition B

(i)
j , i.e., ∀k∀j(k, j ∈ N∧ k, j ≤ num(Pi)∧ k ̸=

j → B
(i)
k ∩B

(i)
j = ⊘).

(3) The union of all the partitions of Pi is dom(Pi), i.e.,
∪num(Pi)

k=1 B
(i)
k = dom(Pi).

(4) Each element in the partition B
(i)
k is greater than each element in B

(i)
k−1, that is, ∀k∀a∀b(k ∈ N ∧ 2 ≤ k ≤

num(Pi) ∧ a ∈ B
(i)
k ∧ b ∈ B

(i)
k−1 → a > b).

In our approach, we use Algorithm 2, which is developed based on an Equi-width strategy, to perform Step 2,

so as to automatically divide the domain dom(Pi) of each character unit Pi of the private field Ar into num(Pi)

partitions. It can be seen that Line 9 of the inner loop needs to scan all the elements in B
(i)
k , so the time complexity

of the inner loop is O (|dom(Pi)|), and hence the time complexity of Algorithm 2 is O (n · α) (where α denotes the

averaged domain size of each character unit).

Example 2. Using the result of Example 1 as input, Algorithm 2 obtains a group of partitions for each character

unit of the telephone number field, which are shown as the columns “partition” in Figure 3. It can be seen that the

units P1 and P2 are divided into 1 and 3 partitions, respectively, and the units P3 to P6 and P7 to P11 are divided into

10 and 5 partitions, respectively.

8

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1

p
a

rtitio
n

id
en

tifier

p
a

rtitio
n

id
en

tifier

p
a

rtitio
n

id
en

tifier

p
a

rtitio
n

id
en

tifier

p
a

rtitio
n

id
en

tifier

p
a

rtitio
n

id
en

tifier

p
a

rtitio
n

id
en

tifier

p
a

rtitio
n

id
en

tifier

p
a

rtitio
n

id
en

tifier

p
a

rtitio
n

id
en

tifier

p
a

rtitio
n

id
en

tifier

0,1 A 0,1 J 0,1 H 0,1 J 0,1 H 0 A 0 J 0 C 0 H 3 B 1 H

2,3 F 2,3 B 2,3 G 2,3 A 2,3 F 1 B 1 I 1 D 1 I 5 F

4,5 G 4,5 C 4,5 B 4,5 F 4,5 D 2 C 2 H 2 E 2 J 8 G

6,7 C 6,7 F 6,7 A 6,7 H 6,7 A 3 D 3 G 3 F 3 A

8,9 D 8,9 I 8,9 J 8,9 I 8,9 J 4 E 4 F 4 G 4 B

 5 F 5 E 5 H 5 C

 6 G 6 D 6 I 6 D

 7 H 7 C 7 J 7 E

 8 I 8 B 8 B 8 F

 9 J 9 A 9 A 9 G

Figure 3: The partitions and identifiers for a private field of telephone number (each number in columns “partitions” denotes a numeric character)

Algorithm 3: Assigning the identifier for each partition of each character unit of a private field.

Input: (1) the partition numbers {num(Pi) | i = 1, 2, ..., n} of all the character units of a private field Ar; and

(2) the partitions {B
(i)
k | k = 1, 2, ...,num(Pi)} of each character unit Pi (i = 1, 2, ..., n).

1 begin

2 generate a random character θ, and store it as metadata;

3 foreach Pi (i = 1, 2, ..., n) do

4 based on the character θ, construct a set of characters as follows:

H ′ = {θ, θ + 1, θ + 2, ..., θ +maxnt=1 (num(Pt)− 1)};

5 foreach B
(i)
k (k = 1, 2, ...,num(Pi)) do

6 from the set H ′, randomly select a character h, and then set: id
(

B
(i)
k

)

← h and update the set:

H ′ ← H ′ − {h};

7 return
{{

id

(

B
(i)
k

)

| k = 1, 2, ...,num(Pi)
}

| i = 1, 2, ..., n
}

;

Step 3. For each partition B
(i)
k constructed by Step 2 for Pi, we determine a character id

(

B
(i)
k

)

as the identifier

of B
(i)
k . It has to meet the following requirements:

(1) The identifiers of any two partitions of each character unit Pi are not equal to each other, that is, ∀k∀j(1 ≤ k, j ≤

num(Pi) ∧ k ̸= j → id
(

B
(i)
k

)

̸= id
(

B
(i)
j

)

).

(2) The identifer of any partition of each Pi belongs to the same range of values (where θ is a randomly generated

character): ∀i∀k(1 ≤ i ≤ n ∧ 1 ≤ k ≤ num(Pi)→ 0 ≤ id

(

B
(i)
k

)

− θ ≤ maxnj=1 (num(Pj)− 1)).

We use Algorithm 3 to perform Step 3, so as to automatically assign a character identifier id
(

B
(i)
k

)

for each B
(i)
k

of each Pi of Ar. It can be seen that the time complexity of the inner loop (Lines 5 to 6) is equal to O (num(Pi)),
so the time complexity of Algorithm 3 is O (n · β) (where β denotes the averaged partition number of each character

unit).

Example 3. Using the results of Examples 1 and 2 as input, Algorithm 3 assigns the identifier for each partition

of each character unit of the telephone field, and the output results are shown as the columns “identifier” in Figure 3

(where θ is set to ‘A’). It can be seen that each partition is set to an identifier within ‘A’ to ‘J’.

9

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Now, based on the above partitions and identifiers presented in Steps 1 to 3, we define n mapping functions:

X(1),X(2), ...,X(n). Given any character ui ∈ dom(Pi), the function X(i) would map ui to the character identi-

fier of the partition which ui belongs to, i.e., X(i)(ui) = id

(

B
(i)
k

)

, where B
(i)
k is the partition which contains ui.

Furthermore, given any character string u = u1u2...um (m ≤ n) in the domain of the private field Ar, we can define

a mapping function to map u to a new character string as: X(u) = X(1)(u1)X
(2)(u2)...X

(m)(um).

Example 4. Based on the partitions and identifiers shown in Figure 3, we can generate a feature index function

X for the telephone number field. Now, given a telephone number u = ‘13587898721’, we can use X to map u to

an index data X(u) = ‘HBCBCIJIABA’. It can be seen that based on our index construction scheme, the index data

will be always of the same type and length with its plaintext data.

4.2. Encryption Storage

Now, we describe how encrypted data and indexed data are stored into the CloudDB. Given any tuple t =
⟨a1, a2, ..., ar, ...⟩ over the relational table R (A1, A2, ..., Ar, ...) (where ar is a privacy data over the private field

Ar), the corresponding encrypted relational table RE
(
AE , A1, A2, ..., A

X
r , ...

)
in the CloudDB stores an encrypted

tuple tE = ⟨E (⟨a1, a2, ..., ar, ...⟩) , a1, a2, ...,X(ar), ...⟩, where E is a function used to encrypt a tuple of the rela-

tional table R. We treat the encryption function as a black box, thus any well-known data encryption technique (e.g.,

AES [5]) can be used.

Example 5. Let us consider a relation as: persons (no, name, phone, ...) (see the left in Figure 4). Then, the

CloudDB stores an encrypted relation as: personsE(tupleE , no, name, phoneX , ...) (see the right in Figure 4), where

the first column “tupleE” stores the binary strings corresponding to the encrypted tuples. For example, the first tuple

in “persons” is encrypted to “110111000011...”, which is obtained by E (⟨1, ‘Ada’, ‘13587898721’, ... ⟩). Moreover,

the column “phoneX” in “personsE” denotes the index field corresponding to the private field “phone” in “persons”.

no name phone � tuple
E
 no name phone

X
 �

1 Ada 13587898721 � 110111000011� 1 Ada HBBBCIJIABA �

2 John 15858213456 � 011101101001� 2 John HFFHBCHABCC �

Figure 4: A translation from a relational table and its encrypted relational table.

Note that in our approach, the tasks such as encrypting privacy data and generating their feature index values are

all completed on a trusted client side by the index generator; and then the encrypted data and their index data are

transmitted through network and stored into the CloudDB (see Figure 2).

4.3. Security Analysis

In this subsection, we firstly demonstrate that our approach can meet λ-security, and then briefly analyze the

security of the index function generated by our approach in terms of two types of common attacks: statistical attack

and known-plaintext attack.

Observation 1. Given a threshold λ (0 < λ ≤ 1), after the security factor ρ of the privacy protection scheme is

set to ⌊1/λ⌋, our approach can meet λ-security.

Rationale. Based on the index function X constructed in Section 4.1, we know that the index function X is a

many-to-one mapping from privacy domain U to index domainX . Moreover, each index value inX would correspond

to ρ privacy values in U . Thus, we conclude that if the security factor ρ of the privacy protection scheme is set to

⌊1/λ⌋, each index value in X corresponds to ⌊1/λ⌋ privacy values in U , i.e., the probability of inferring the plaintext

from any index value is always less than λ, even if an adversary has mastered the index function X . After combining

Definition 1, we know that our approach meets λ-security if the security factor ρ is set to ⌊1/λ⌋.

10

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

The precondition of statistical attack is that an attacker has known a set U∗ of privacy data and a set X ∗ of corre-

sponding index data. Then, the attacker attempts to establish a set of two-tuples from U∗ to X ∗, so as to reconstruct

the index function X . The implementation of statistical attack is based on an observation that the probability of oc-

currences of each u in U∗ is basically consistent with X(u) in X ∗. However, in our approach, each unit of privacy

data is divided into several partitions by some strategy (e.g., Equi-width or Equi-depth), so that many privacy values

would be mapped into the same index value, as a result, lightening the consistency of probability distribution between

privacy data and index data.

The precondition of known-plaintext attack is that an attacker has known a small set of two-tuples from privacy

data U∗ to index data X ∗. Then, the attacker attempts to reconstruct the index function X . From Section 4.1, we

know that to reconstruct X , we need to know the partitions of each unit of privacy data. For the unit Pi of privacy

data, we at least need to know |dom(Pi)| two-tuples from privacy data to index data to reconstruct X(i). Therefore,

we probably need to know at least (
∑n

i=1 |dom(Pi)|) two-tuples from privacy data to index data to reconstruct

X . Finally, it should be pointed out that, it is possible for an attacker to guess the function X using statistical or

known-plaintext attack, especially when the security factor µ is set to a greater value (e.g., equal to 1.0)

However, even if an attacker has completely mastered the index function X based on statistical attack or known-

plaintext attack, it is still difficult for the attacker to guess the corresponding plaintext u from a given index value x.

This is because our approach can meet λ-security, making that the attacker only has a ⌊1/λ⌋ probability to guess the

corresponding plaintext u from the index value x. Besides, based on the index function X constructed in Section 4.1,

we know that although our approach can meet λ-security, the index values generated by our approach still might

reveal some sensitive information to the cloud-side, e.g., the length of the private field since the index field is of the

same length as the corresponding private field. It is our next work how to improve the feature index scheme so as to

make the index safer (not just to meet the λ-security).

5. Privacy Query Scheme

In our approach, privacy data will be encrypted before being stored into the CloudDB, so as to ensure the security.

However, this leads to that a number of user query operations defined over the private field will be no longer able to

be executed correctly on the encrypted CloudDB. In this section, we discuss the privacy query scheme used in our

approach, i.e., how each database query qu over the private field Ar is mapped into a new cloud-side query qx over

the corresponding index field AX
r , so that the query qx can be executed on the CloudDB correctly. To this end, we

first discuss how each type of basic query conditions over the private field is mapped to the cloud-side representation

over the index field. Second, based on the condition mappings, we discuss how a database query qu is transformed to

its cloud-side query qx. Finally, we analyze the usability and efficiency of the proposed privacy query scheme.

5.1. Mapping Query Conditions

A database query operation consists of several basic query conditions. Thus, once we know how each type of

basic query conditions over the private field is mapped correctly into its cloud-side representation, we can know how

a database query operation is mapped into its cloud-side query operation. In this subsection, we consider three main

types of basic query conditions over the private field Ar: (1) equivalent conditions, e.g., R.Ar = ‘123’; (2) sim-

ilarity conditions, e.g., R.Ar LIKE ‘%123%’; and (3) range conditions, e.g., R.Ar > ‘123’. Below, we call the

process of mapping a basic query condition to its cloud-side representation as condition mapping for short, and use

map to denote such a condition mapping. Besides, we use the table in Example 5 and the index function generated

in Example 4 to illustrate the condition mapping.

Mapping 1. R.Ar = u: this is the basic form of an equivalent condition, where u denotes a character string

constant, and R.Ar denotes a private field of a relational table R. If u = u1u2...um(m ≤ n), then the condition

mapping is defined as follows:

map(R.Ar = u)⇒ RE .AX
r = X(u)⇒ RE .AX

r = X(1)(u1)X
(2)(u2)...X

(m)(um).

For example, since ‘13587898721’ would be mapped into ‘HBCBCIJIABA’ by the index function generated in

Section 4, we have a condition mapping as follows:

map (persons.phone=‘13587898721’)⇒ personsE .phoneX = ‘HBCBCIJIABA’

11

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

A similarity query condition generally contains some wildcards, and the similarity wildcards include: (1) ‘%’,

it denotes to match one or more characters; (2) ‘ ’, it denotes to match only one character; and (3) ‘[CharList]’, it

denotes to match any character described in ‘CharList’. Thus, we below present the mappings for three main types of

similarity conditions.

Mapping 2. R.Ar LIKE u v: this is the basic form of a similarity condition based on the wildcard ‘ ’, where u
and v represent two character string constants. If u = u1u2...um and v = v1v2...vk (m+ k ≤ n− 1; 0 ≤ m; 0 ≤ k),

then the condition mapping is defined as follows:

map(R.Ar LIKE u v)⇒ RE .AX
r LIKE uX vX , where

{

uX = X(1)(u1)...X
(m)(um)

vX = X(m+2)(v1)...X
(m+k+1)(vk)

For example, we have a mapping of similarity condition as follows:

map (persons.phone LIKE ‘1358789 721’)⇒ personsE .phoneXLIKE ‘HBCBCIJ ABA’

Mapping 3. R.Ar LIKE u[l]v: this is the basic form of a similarity condition based on the wildcard ‘[]’, where

u and v denote two character string constants, and l denotes a character list. If l = l1l2...lt, u = u1u2...um and

v = v1v2...vk (m+ k ≤ n− 1; 0 ≤ m; 0 ≤ k; 0 ≤ t), then the condition mapping is defined as follows:

map (R.Ar LIKE u[l]v)⇒ RE .AX
r LIKE uX [lX]vX , where

uX = X(1)(u1)...X
(m)(um)

lX = X(m+1)(l1)...X
(m+1)(lt)

vX = X(m+2)(v1)...X
(m+k+1)(vk)

For example, since each character in the list ‘[789]’ is respectively mapped to ‘H’, ‘I’ and ‘I’ by the index function

X , we have a condition mapping as follows:

map (persons.phone LIKE ‘1358789[789]721’)⇒ personsE .phoneXLIKE ‘HBCBCIJ[HII]ABA’

Mapping 4. R.Ar LIKE u%v: this is the basic form of a similarity condition based on the wildcard ‘%’, where

u = u1u2...um and v = v1v2...vk (m+k ≤ n−1; 0 ≤ m; 0 ≤ k). Since the wildcard ‘%’ represents to match one or

more characters, it is equivalent to ‘ ’ (i.e., one character), ‘ ’ (i.e., two characters) etc., and the maximum number of

‘ ’ is not more than (n−m− k). Based on such an observation, with the help of Mapping 3, the condition mapping

is defined as follows:

map (R.Ar LIKE u%v)⇒
n−m−k

OR
i=1

RE .AX
r LIKEuX

i
︷︸︸︷... vXi , where

{

uX = X(1)(u1)...X
(m)(um)

vXi = X(m+i+1)(v1)...X
(m+i+k)(vk)

Specially, if k = 0, then the condition mapping can be defined as follows:

map (R.Ar LIKEu%)⇒ RE .AX
r LIKEX(1)(u1)...X

(m)(um)%

Specially, if m = 0, then the condition mapping can be defined as follows:

map (R.Ar LIKE%v)⇒ RE .AX
r LIKE%X(n−k+1)(v1)...X

(n)(vk)

For example, we have three mappings about similarity condition as follows:

map (persons.phone LIKE ‘135%’)⇒personsE .phoneXLIKE ‘HBC%’

map (persons.phone LIKE ‘%721’)⇒personsE .phoneXLIKE ‘%ABA’

map (persons.phone LIKE ‘135%898721’)⇒personsE .phoneXLIKE‘HBC BJJHGJ’ OR

personsE .phoneXLIKE ‘HBC IJIABA’

12

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Mapping 5. R.Ar ≥ u: this is the basic form of a range query condition. Without loss of generality, we assume

that u = u1u2...um(m ≤ n) and note vi as a character of the greatest value in the character unit Pi(i = 1, 2, ..., n),
i.e., ∀v∗(v∗ ∈ dom(Pi) → v∗ ≤ vi). Then, any character string u∗ = u∗

1u
∗
2...u

∗
h(1 ≤ h) is greater than u, if and

only if it satisfying that: (u1 = u∗
1, u2 = u∗

2, ..., um = u∗
m,m ≤ h); or (u1 ≤ u∗

1 + 1); or (u1 = u∗
1, u2 ≤ u∗

2 + 1; or

...; or (u1 = u∗
1, u2 = u∗

2, ..., uk−1 = u∗
k−1, uk ≤ u∗

k + 1), where k is equal to m (if m ≤ h) or h (if m > h). Based

on such an observation, the range condition mapping is defined as follows:

map (R.Ar ≥ u)⇒
m

OR
i=1

map (R.Ar LIKE u1u2...ui−1[(ui + 1)− vi])%ORmap (R.Ar LIKE u)%

For example, we have a mapping about range query condition as follows:

map (persons.phone ≥ ‘13587’)⇒personsE .phoneXLIKE ‘HBCBC%’ OR

personsE .phoneXLIKE ‘H[FG]%’ OR

personsE .phoneXLIKE ‘HB[DEFG]%’ OR

personsE .phoneXLIKE ‘HBC[A]%’ OR

personsE .phoneXLIKE ‘HBCB[BA]%’

Besides, we can define a similar mapping for another range condition: R.Ar < u.

Above, we describe the condition mappings for three main types of basic query conditions defined over privacy

data. It can be seen that all the cloud-side condition representations are defined over the index field RE .AX
r , thus

can be executed on the encrypted CloudDB. Besides, it can be noted that each cloud-side representation px is a

sufficient condition of the corresponding query representation pu over privacy data, i.e., the result of executing px on

the CloudDB would be a superset of that of pu (i.e., R(pu) ⊆D(R(px))).

5.2. Privacy Query Processing

For any SELECT query operation from a client side, from the WHERE clause of the query, we can first obtain

all the relevant basic query conditions defined over the privacy field. Second, based on the condition mappings (i.e.,

Mappings 1 to 5) mentioned above, we map each basic query condition into a new condition representation defined

over the corresponding index field of the CloudDB. Finally, we combine all the new condition representations to form

a new cloud-side query operation. Note that all the works are completed by the query translator running on a trusted

client side (see Figure 2).

Example 6. Consider the relation “persons” and the encrypted relation “personsE” mentioned in Example 5. First,

we present a SQL query operation (qu.) as follows:

SELECT p.no, p.name FROM persons p WHERE p.phone=‘15858707069’ OR p.phone LIKE ‘1358789 721’.

Then, based on the condition mappings, the query operation qu can be mapped into a new cloud-side query

operation (qx) defined over the index field “personsE .phoneX”:

SELECT p.tupleE FROM personsE p WHERE p.phoneX=‘HFFHBCHABCC’ OR p.phoneX LIKE ‘HBCBCI-

J ABA’.

Finally, the cloud-side query qx will be submitted to the cloud side, instead of the query qu. After the query qx is

executed by the CloudDB, a set R(qx) of encrypted tuples will be returned to the client side, which is a superset of

the result R(qu) of qu. Then, on the client side, the query executor will decrypt the set R(qx) of encrypted tuples, and

execute the original query qu over the decrypted tuples again, so as to obtain the accurate query result R(qu).
From above, we can see that, for a user query qu, its corresponding cloud-side query qx and the intermediate

query result R(qx) are both revealed to the untrusted cloud-side. However, the cloud-side query qx and the query

result R(qx) are not plaintext, where the query result R(qx) are in the form of ciphertext, and the conditions of qx
are defined over the index fields. Therefore, although R(qx) and qx are visible to the cloud-side, it is difficult for the

cloud-side to guess the private information from them.

13

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

5.3. Usability and Efficiency Analysis

In this subsection, based on Definitions 2 and 3, we use some observations to demonstrate the usability and effi-

ciency of our proposed approach.

Observation 2. Let Pu denote a set of all the basic query conditions defined over the private field R.Ar. Then,

any query requirement that is relevant to the private field R.Ar can be described using a logical operation (i.e., an

expression connected by NOT, AND and OR) among the basic query conditions in Pu.

Observation 3. Let p1 and p2 denote two basic query conditions over the private field R.Ar, and p∗1 and p∗2 two

cloud-side query representations corresponding to p1 and p2. Then, the result of executing the AND condition “p∗1
AND p∗2” on the CloudDB will be a superset of that of “p1 AND p2” (i.e., R(p1 AND p2) ⊆ D(R(p∗1 AND p∗2))).
Similarly, we have R(p1 OR p2) ⊆D(R(p∗1 OR p∗2)).

Rationale. The two observations mentioned above can be easily demonstrated by the fundamentals of the logic

algebra and the relation algebra.

In Observation 3, we have not mentioned the NOT condition. Actually, based on Mappings 1 to 5, we know that

R(NOT p1) * D(R(NOT p∗1)), that is, our approach cannot support NOT logical operations. However, for any NOT

condition, we generally can generate an equivalent positive condition. For example, “NOT p.phone > 13587898721”

is equivalent to “p.phone <= 13587898721”. Thus, based on Observation 2 and 3, we have an observation as follows.

Observation 4. The privacy query scheme used in our approach can meet usability, i.e., any user query operation

qu over private data can be transformed into a cloud-side query operation qx, which is defined over the corresponding

index data, and the result R(qu) of qu is contained in the result R(qx) returned by qx, i.e., R(qu) ⊆D(R(qx)).

Observation 5. Given any threshold µ (0 < µ ≤ 1), after setting a suitable value for the security factor ρ of the

privacy protection scheme, our approach can meet µ-efficiency.

Rationale. Let us consider an extreme case where the security factor ρ = 1. At this time, the index function

become an one-to-one mapping, and thus all the non-target tuples can be filtered out by cloud-side query operations,

i.e., at this time, our approach can meet 1.0-efficiency. Thus, for any given threshold µ (0 ≤ µ ≤ 1), our approach

can meet µ-efficiency.

Based on Observation 1 and Observation 5, we can conclude that the security factor ρ is proportional to the security

of our approach, but is inversely proportional to the efficiency of our approach.

6. Experiment Evaluation

In Section 4.3, we have demonstrated the efficiency of our approach by theoretical analysis. In this section, we

evaluate the efficiency of our approach by experiments, i.e., to evaluate the filtering rate (refer to Definition 4) of

cloud-side query operations generated by our approach to filter out non-target tuples in the CloudDB.

6.1. Experimental Setup

Before the experimental evaluation,we briefly describe the experimental setup, including the dataset preparation,

user queries and system configuration.

(1) Dataset preparation. To perform the experiments, we in advance constructed a database, which only contains

one relational table “persons”. The schema of the table “persons” is similar to that shown as Example 5, but it

contains two private fields “phone” and “name”. Table 1 presents some information related to the two private

fields. Then, we randomly generated a million of tuples for the table “persons” (i.e., the database size is about one

million orders of magnitude), where the privacy field values were generated based on the two regular expressions

presented in the fifth column of Table 1. As shown in Table 1, each value of the field “name” is defined over a set

of 100 Chinese characters, and consists of at least three but up to five characters.

14

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

(2) User query operations. Table 2 presents the basic query conditions used in our experiments. Table 2 shows the

general cases for two main types of basic queries (i.e., basic similarity queries and basic range queries) over the

private field “phone” or “name”. It should be noted that equivalent queries can be considered as a special kind of

similarity queries. In addition, other more complex similarity queries or range queries can be generated based on

these basic query operations.

(3) System configuration. The experiments were conducted over two Lenovo personal computers with an Intel (R)

Core (TM) I7-4510U CPU and 8 GB RAM, where one of the two computers performed as the cloud-side, and

the other as the client side. The network speed between computers is about 2.0 MB/s, and the disk speed is about

200 MB/s. In addition, we used Microsoft Windows 7 as the operating system, and MySQL (version 5.7.17) as

the database system.

Table 1: The information about the private field that needs to be encrypted.

table name private field data type tuple number regular expression

persons phone CHAR (11) 1,000,000 [1][358][0-9]{9}

persons name CHAR (5) 1,000,000 [\u4e00-\u5200]{3,5}

Table 2: The similarity and range conditions used in the experiments, where A1, A2 and A3 denote three characters.

symbols LIKE conditions symbols range conditions

PL1 phone LIKE “%A1” PR1 phone ≥ “15A1”

PL2 phone LIKE “%A1A2” PR2 phone ≥ “15A1A2”

PL3 phone LIKE “%A1A2A3” PR3 phone ≥ “15A1A2A3”

NL1 name LIKE “%A1” NR1 name ≥ “A1”

NL2 name LIKE “%A1A2” NR2 name ≥ “A1A2”

NL3 name LIKE “%A1A2A3” NR3 name ≥ “A1A2A3”

6.2. Efficiency Evaluation and Analysis

Table 3: The Fr values for different similarity query conditions over the private field “phone” or “name” (ρ is set to 2
9
− 2

21).

Factor (ρ) ρ = 2
9 ρ = 2

11 ρ = 2
13 ρ = 2

15 ρ = 2
17 ρ = 2

19 ρ = 2
21

PL1 0.88889 0.83951 0.79012 0.74074 0.69136 0.64198 0.59259

PL2 0.96970 0.94974 0.92580 0.89787 0.86594 0.83003 0.79012

PL3 0.99299 0.98638 0.97687 0.96393 0.94703 0.92566 0.89927

NL1 0.97374 0.96566 0.95758 0.94949 0.94141 0.93333 0.92525

NL2 0.99880 0.99816 0.99740 0.99650 0.99548 0.99432 0.99304

NL3 0.99995 0.99992 0.99986 0.99978 0.99969 0.99956 0.99941

In the experiments, we used the metric Fr (i.e., the filtering rate defined in Section 3.3) to evaluate the efficiency

of the approach. Aiming at similarity queries, we conducted two groups of experiments over the private fields “phone”

and “name”, respectively, by setting different values for the security factor ρ. The experimental results are shown in

Table 3, where each value was obtained by performing 10 experiments and then computing their average value.

From Table 3, we have the following four observations. First, with the increasing of the security factor ρ, the Fr

value decreases, i.e., the effectiveness of the cloud-side query operations to filter non-target tuples is reduced, and

thus the efficiency of the approach is also reduced accordingly. The reason is that with the increasing of ρ, it would

increase the number of different privacy field values mapped into the same index field value by the index function,

consequently, decreasing the probability of non-target tuples being filtered. Second, different similarity conditions

15

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Table 4: The Fr values for different range query conditions over the private field “phone” or “name” (ρ is set to 2
9
− 2

21).

Factor (ρ) ρ = 2
9 ρ = 2

11 ρ = 2
13 ρ = 2

15 ρ = 2
17 ρ = 2

19 ρ = 2
21

PR1 0.80000 0.75556 0.71111 0.66667 0.62222 0.57778 0.53333

PR2 0.81818 0.79798 0.77778 0.75758 0.73737 0.71717 0.69697

PR3 0.85586 0.84585 0.83584 0.82583 0.81582 0.80581 0.79580

NR1 0.96400 0.95600 0.94800 0.94000 0.93200 0.92400 0.91600

NR2 0.98090 0.97630 0.97158 0.96673 0.96176 0.95666 0.95143

NR3 0.99521 0.99283 0.99036 0.98779 0.98511 0.98231 0.97939

(a) The execution times over the private field “phone”. (b) The execution times over the private field “name”.

Figure 5: The execution times for performing similarity and range queries over the private field “phone” or “name”.

lead to the different change trends of Fr values, and the Fr values would increase with the increasing of quantity

of information contained by the similarity matching conditions (PL1−PL3 and NL1−NL3). This is because the

increasing of quantity of information in the matching conditions would decrease the number of tuples returned by the

cloud-side query (i.e., R(qx) in Definition 4), resulting in the increasing of the Fr values. Third, each Fr value related

to “name” is generally greater than that related to “phone”, which is caused by the larger value domain of the private

field “name”. Finally, we find that the mathematical expectation of the Fr values for the similarity query operations

over the private field “phone” is equal to 0.86222 (we assume the same probability of occurrence of each similarity

query operation); and the mathematical expectation over “name” is equal to 0.98183. As a result, this would reduce

the number of encrypted tuples transmitted from the cloud side to the client, thereby, improving the efficiency of

similarity query operations.

Aiming at range queries, we also conducted two groups of experiments over the private fields “phone” and “name”,

respectively. The experimental results are presented in Table 4. In general, the experimental results are similar to

those of similarity queries: (1) the increasing of the security factor ρ decreases the effectiveness of the cloud-side

query operations to filter non-target tuples of the CloudDB, thereby, decreasing the efficiency of the approach; (2) the

greater value domain of the private field “name” makes that each Fr value of “name” is generally greater than that

of “phone”; and (3) the mathematical expectations over “phone” and “name” are respectively equal to 0.75003 and

0.96468, i.e., most of non-target tuples generally can be filtered by the cloud-side query operations, consequently,

improving the efficiency of range query operations.

In addition, we have also conducted experiments to evaluate the actual execution performance of our approach. In

the experiments, we compared our approach (below, denoted by “We”) with the following two ways: (1) decrypting

the encrypted data before querying them (denoted by “Bw”); and (2) querying data without encryption (denoted by

“Bn”, i.e., directly storing plaintext into the CloudDB). In the experiments, the execution performance of our approach

is computed by adding: (1) the time of executing a cloud-side query on the CloudDB, and transmitting the encrypted

data from the cloud-side to the client, i.e., the time consumed on the cloud-side; and (2) the time of decrypting and

querying the data on the client, i.e., the time consumed on the client-side. The experiments were performed based

on the basic similarity queries “PL2” and “NL2”, and the basic range queries “PR2” and “NR2”. The experimental

results are shown in Figure 5, where the security factor ρ is set to 215. From the two subfigures, we see that based

16

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

�✁ ✂✄ ✂☎ ✆✝

✂✞�✟

✠✡☎☎✟ ✠✡☎☎✁ ✠✡☛✠☞ ✠✡✁☎✁

� � ✠✡✄☞✁ ✠✡✄✟✁

✠✡☎☎☎ ✠✡☎☎☎ ✠✡✌☛ ✠✡☎☎✄

� � ✠✡✁☎☎ ✠✡☎✌✄

(a) The Fr values over the private field “phone”/“name”.

�✁ ✂✄ ✂☎ ✆✝

✂✞�✟

�☎ �☎ ✂✄ ✂�

✠✡ ✠✟ ✠☎ ✠☛

�✟ �☛ ✂✠ �☛

✠✂ ✠✂ ✡� ✠✠

(b) The execution times over the private field “phone”/“name”.

Figure 6: The efficiency comparisons between our approach and other existing ones.

on the feature index generated by our approach, the overall execution performance of similarity and range queries

over the private fields can be improved effectively: compared with those of “Bw”, the overall execution time of a

basic similarity query is decreased to about 0.3, and the execution time of a range query is decreased to about 0.6. In

addition, we also see that the execution performance of our approach is almost twice that of “Bn”, which is mainly

because the volume of the encrypted tuples is greater than the volume of the original tuples (i.e., the tuples without

encryption).

Finally, based on the above experimental results, we conclude that the increasing of the security factor ρ would

decrease the efficiency of the proposed approach, i.e., it would decrease the effectiveness of the cloud-side query

operations generated by our approach to filter non-target tuples of the CloudDB.

6.3. Effectiveness Comparison and Analysis

From the related work section, we know that there have been many approaches to database encryption, but most

of them were not designed for personal privacy protection in a CloudDB, thereby, making them difficult to be applied

into a CloudDB. In this subsection, we compare our approach with three existing ones proposed in [19], [31], and

[33], respectively. It should be pointed out that all the approaches were not designed for a CloudDB. For comparison,

we have re-implemented the approaches over our prototype experimental system.

First, we make an effectiveness comparison in terms of efficiency (i.e., Definition 4). In the experiments, (1) for

our approach, the security factor ρ is set to 215; (2) for the approach in [31], the number of bits of characteristic index

field is set to 32 (that is recommended by the authors); and (3) for the approach in [33], the size of an index matrix

is set to 8 (for the private field “phone”) or 20 (for the private field “name”). The experiments were performed based

on the basic similarity queries “PL2” and “NL2”, and the basic range queries “PR2” and “NR2”. The experimental

results are shown in Figure 6, where “AP-1”, “AP-2” and “AP-3” denotes the approaches presented in [19], [31], and

[33], respectively, and “AP-We” denotes our approach. From Figure 6, we see that, our approach has nearly the same

running efficiency to the approaches presented in [19] and [31], and has better running efficiency than that presented

in [33].

Table 5: The effectiveness comparison, where “low” denotes non-support, “high” denotes good support, and “medium” denote some support

Approach in [19] in [31] in [33] of ours

Similarity queries Medium Medium High High

Range queries Low Low High High

Security Medium Medium High High

Efficiency High High Medium High

Second, based on the above results and the results mentioned in [19], [31], and [33], we make an overall effective-

ness comparison in terms of security (i.e., Definition 1), usability (i.e., Definition 3) and efficiency (i.e., Definition 4).

The comparison results are shown in Table 5. From Table 5, we can see that, compared to the other approaches, our

approach not only has better usability better, namely, which can support all kinds of query operations over text private

17

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

fields (including similarity queries and range queries), but also has better security, enabling us to prevent attackers

from attacking, thus, better ensuring the security of personal privacy in a CloudDB. Overall, our approach has a better

overall effectiveness in terms of security, usability and efficiency than the other approaches.

7. Conclusion

In this paper, we proposed a client-based approach to protect personal privacy in a CloudDB. The approach

presents a privacy protection scheme and a privacy query scheme, which can ensure not only good security of privacy

data, but also good efficiency of query operations over privacy data. Moreover, we demonstrated the effectiveness

of the approach by theoretical analysis and experimental evaluation. The results show that: (1) the feature index

constructed by the approach has good security, i.e., it is difficult to infer the plaintext from the feature index data; (2)

the approach has good usability, i.e., with the help of the feature index, each type of familiar query operations over

privacy data can be transformed into a cloud-side query operation that can be performed correctly at the cloud-side;

and (3) the approach has good efficiency, i.e., with the help of a cloud-side query operation, most of non-target tuples

can be filtered out at the cloud-side, consequently, improving the execution efficiency of a client-side query operation

over privacy data.

However, the approach proposed in this paper is not the end of our work. As the future work, we will try to further

study some problems, e.g., (1) how to establish a solution to automatically determine the security factor ρ based on

the characteristics of users’ privacy data, instead of being preset by users; (2) how to improve the approach, so as to

support more privacy data types, not just text data type; and (3) the practical implementation of this approach in a

CloudDB. In addition, in this work, we only focus on the protection of users’ privacy data; however, in a CloudDB,

users’ behaviour may potentially pose a threat to personal privacy. Therefore, it is also our future work of how to

protect the privacy behind users’ behaviour.

8. Acknowledgements

We would like to thank anonymous reviewers for their valuable comments. The work is supported by the National

Social Science Fund of China (No. 17CTQ011).

References

[1] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-molina, K. Kenthapadi, R. Motwani, U. Srivastava, D. Thomas, Y. Xu, Two can keep a secret:

A distributed architecture for secure database services, in: Proc. of the CIDR, 2005.

[2] N. Ahituv, Y. Lapid, S. Neumann, Processing encrypted data, Commun. ACM 30 (9) (1987) 777–780.

[3] B. Alfred, Z. Melissa, Database Security, Delmar Cengage Learning, 2011.

[4] A. Arvind, B. Spyros, E. Ken, J. Manas, K. Raghav, K. Donald, R. Ravi, U. Prasang, Secure database-as-a-service with cipherbase, in: Proc.

of the SIGMOD, 2013.

[5] M. D. Ashwini, S. D. Mangesh, N. K. Devendra, Fpga implementation of aes encryption and decryption, in: Proc. of the 2009 International

Conference on Control, Automation, Communication and Energy Conservation, 2009.

[6] S. Bharath, J. Wei, B. Elisa, Privacy-preserving complex query evaluation over semantically secure encrypted data, in: Proc. of the ESORICS,

2014.

[7] H. Bijit, M. Sharad, T. Gene, A privacy-preserving index for range queries, in: Proc. of the VLDB, 2007.

[8] W. Boyang, L. Ming, W. Haitao, L. Hui, Circular range search on encrypted spatial data, in: Proc. of the ICDCS, 2015.

[9] F. Chen, A. X. Liu, Privacy and integrity preserving multi-dimensional range queries for cloud computing, in: Proc. of the IFIP, 2014.

[10] K. Chen, Z. Weimin, Cloud computing: System instances and current research, Journal of Software 20 (5) (2010) 1137–1148.

[11] D. Feng, M. Zhang, Y. Zhang, Z. Xu, Study on cloud computing security, Journal of Software 22 (1) (2011) 71–83.

[12] V. Ganapathy, D. Thomas, T. Feder, H. Garcia-Molina, R. Motwani, Distributing data for secure database services, in: Proceedings of the 4th

International Workshop on Privacy and Anonymity in the Information Society, ACM, 2011.

[13] H. Hacigümüş, B. Iyer, C. Li, S. Mehrotra, Executing sql over encrypted data in the database-service-provider model, in: Proc. of the ACM

SIGMOD, 2002.

[14] H. Hacigümüş, B. Iyer, S. Mehrotra, Efficient execution of aggregation queries over encrypted relational databases, in: Proc. of the DASFAA,

2004.

[15] H. Hacigümüş, B. Iyer, S. Mehrotra, Query optimization in encrypted database systems, in: Proc. of the DASFAA, 2005.

[16] L. Huang, M. Tian, H. Huang, Preserving privacy in big data: A survey from the cryptographic perspective, Journal of Software 26 (4) (2015)

777–780.

[17] D. F. Josep, A new privacy homomorphism and applications, Information Processing Letters 60 (5) (1996) 227–282.

18

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

[18] R. Li, A. X. Liu, A. L. Wang, Fast range query processing with strong privacy protection for cloud computing, Proc. VLDB Endow. 7 (14)

(2014) 1953–1964.

[19] Y. Li, G. Liu, Encryption method for character data in the database, Computer Engineering 33 (6) (2007) 120–124.

[20] Z. Lin, Y. Lai, C. Lin, Y. Xie, Z. Quan, Research on cloud databases, Journal of Software 23 (5) (2012) 1148–1166.

[21] A. Liu, K. Zheng, L. Li, G. Liu, X. Zhou, Efficient secure similarity computation on encrypted trajectory data, in: Proc. of the ICDE, 2015.

[22] B. Luc, P. Philippe, Chip-secured data access: Confidential data on untrusted servers, in: Proc. of the VLDB, 2002.

[23] F. Luca, C. Michele, M. Mirco, Distributed, concurrent, and independent access to encrypted cloud databases, IEEE Transactions on Parallel

and Distributed Systems 25 (2) (2014) 437–450.

[24] W. Shiyuan, A. Divyakant, E. A. Amr, A comprehensive framework for secure query processing on relational data in the cloud, in: Proc. of

the VLDB workshop on Secure Data Management, 2011.

[25] B. Sumeet, S. Radu, Trusteddb: A trusted hardware-based database with privacy and data confidentiality, IEEE Transactions on Knowledge

and Data Engineering 26 (3) (2014) 752–768.

[26] X. Sun, M. Li, H. Wang, A family of enhanced (ℓ, α)-diversity models for privacy preserving data publishing, Future Generation Computer

Systems 27 (2011) 348–356.

[27] S. Tu, M. F. Kaashoek, S. Madden, N. Zeldovich, Processing analytical queries over encrypted data, Proc. VLDB Endow. 6 (5) (2013)

289–300.

[28] K. W. Wai, K. Ben, W. L. C. David, L. Rongbin, M. Y. Siu, Secure query processing with data interoperability in a cloud database environment,

in: Proc. of the SIGMOD, 2014.

[29] H. Wang, J. Cao, Y. Zhang, A flexible payment scheme and its role-based access control, IEEE Transactions on knowledge and Data Engi-

neering 27 (2005) 332–348.

[30] H. Wang, Y. Zhang, , J. Cao, Effective collaboration with information sharing in virtual universities, IEEE Transactions on Knowledge and

Data Engineering 21 (2009) 840–853.

[31] Z. Wang, W. Wang, B. Shi, Fast query over encrypted character data in database, Communications in Information and Systems 4 (4) (2004)

289–300.

[32] S. William, Cryptography and Network Security: Principles and Practice, Sixth Edition, Pearson Education Limited, 2013.

[33] Z. Wu, G. Xu, Y. Zong, X. Yi, E. Chen, Y. Zhang, Executing sql queries over encrypted character strings in the database-as-service model,

Knowledge-Based Systems 35 (2012) 332–348.

[34] H. Xu, S. Guo, K. Chen, Building confidential and efficient query services in the cloud with rasp data perturbation, IEEE Transactions on

Knowledge and Data Engineering 26 (2) (2014) 232–246.

19

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

