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Accurate cost estimates are vital to the effective realisation of construction projects. Extended knowledge, wide-ranging in-
formation, substantial expertise, and continuous improvement are required to attain accurate cost estimation. Cost estimation at
the preliminary phase of the project is always a challenge as only limited information is available. Hence, rational selection of input
variables for preliminary cost estimation could be imperative. A systematic input variable selection approach for preliminary
estimating using an integrated methodology of factor analysis and fuzzy AHP is presented in this paper. First, the factor analysis is
used to classify and reduce the input variables and their variable coefficients are determined. Second, fuzzy AHP based on the
geometric mean method is employed to determine the weights of input variables in a fuzzy environment where the subjectivity
and vagueness are handled with natural language expressions parameterized by triangular fuzzy numbers. ,en, the input
variables are suggested to be selected starting with those having high coefficient and high importance weight. A set of three
variables, one from each group, can be added to the estimating model at a time so that the problem of collinearity can vanish and
good accuracy of the estimate can be ensured. ,e proposed approach enables cost estimators to better understand the complete
input variable selection process at the early stage of project development and provide a more accurate, rational, and systematic
decision support tool.

1. Introduction

Construction project success can be attained through the
good performance of indicators of the project such as time,
cost, quality, and customer satisfaction [1]. In construction
industry, one of the critical factors of a feasibility study in the
early planning and design phase of a project is the early

understanding of the cost of the construction project [2–4].
Several studies have also stated that the failure or success of a
certain construction project largely depends on the accuracy
of various estimations prepared throughout the project
lifecycle [2, 3, 5–9]. However, establishing a more realistic
and accurate cost estimate for a certain project at its pre-
liminary phase is one of the most difficult tasks. Because
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preparation of preliminary cost estimation (PCE) must be
done before the detail design of the project is completed [3]
as there exist lack of detail information, high complexity, and
uncertainty [10]. ,erefore, it is required to have a sys-
tematic way of exploring the cost-estimate accuracy factors
which can be used for preliminary cost estimation of con-
struction projects. In this regard, there are several studies
that explored the techniques for identification of input cost
factors for the PCE model in highway construction industry
[7, 11–15]. ,ese literature studies identified quantitative
and qualitative cost data which can be classified as numerical
or categorical data, respectively. However, there are some
limitations with existing techniques or methods that affect
the quality of cost estimation.

,e first deficiency of the published paper is the absence
of dealing with the correlation between input variables (cost
factors) that will result in multicollinearity problems as
multicollinearity is an issue for developing a model [16].
Multicollinearity among cost data will give the same effect
on the estimation outcomes because of trade-offs and re-
petitive errors [17]. Second, during the factor selection
process, in most cases, the large number of input variables
was considered for estimation purpose, which requires high
computational requirements. ,is also makes the developed
cost model more complex and time-consuming as far as the
formulation of the historical database is concerned. Finally,
there are few fuzzy logic approaches, in the literature, aimed
at evaluating the relative importance and influence of cost
factors though the use of fuzzy set theory is the hot research
topic. ,e expert evaluation of qualitative cost attributes is
always subjective and imprecise and vague [18]. In such a
situation, fuzzy set theory is a suitable and powerful tool in
dealing with the uncertain environment with vagueness,
imprecision, and ambiguity. ,us, this study integrated a
factor analysis and a fuzzy analytical hierarchy process
(fuzzy AHP) approach and provides a rational and sys-
tematic input variable selection process for cost estimators to
estimate the more realistic preliminary cost of highway
construction projects while filling the knowledge gaps
mentioned above.

,e rest of this paper is organized as follows. Section 2
provides the cost-estimation accuracy factors or input
variables and their selection process. Section 3 presents how
the integratedmethodology of factor analysis and fuzzy AHP
can be adopted. Section 4 shows numerical analysis and
results of factor analysis and fuzzy AHP and presents how
the input variables can be selected. Section 5 presents dis-
cussions, contributions, and managerial implications. Fi-
nally, general conclusions and remarks are then drawn in
Section 6.

2. Literature Review

Preliminary or conceptual cost estimation is commonly used
to predict the cost at an earlier stage in the project devel-
opment [19]. It is a greatly experience-based process and
involves the assessment of several multifaceted relationships
of cost-influencing factors [20].,e first step in estimating the
preliminary cost of the project is selection of the appropriate

input factors, and it is vital for attaining good cost-estimation
performance or improving the prediction capability of the
model [12, 21, 22]. Accordingly, in the realm of estimation,
many studies have applied various factor selection techniques,
including both statistical and nonstatistical, in order to
identify and select the most significant cost factors that are
required for estimating the preliminary cost of projects in the
highway construction industry [12, 13, 21, 23–25]. In the
following paragraphs, the most cost-influencing factors and
the way they are identified and selected for preliminary or
top-down cost-estimation purpose are described.

Swei et al. [15] presented an alternative approach for
preliminary cost estimates through the combination of a
maximum likelihood estimator to search for an optimal data
transformation combined with least angle regression for
input variable selection/dimensional reduction. Gardner
et al. [23] quantified the effort expended to carry out con-
ceptual estimates using highway agency data and concluded
that input variables require a low amount of effort and that
have a high influence on the final predicted cost are desired
in data-driven conceptual cost-estimating models for the
highway agency studied. Elfaki et al. [26] conducted an
extensive review of literature and finally explored the most
significant cost-estimation factors such as type of project,
type of client, ground conditions, material costs, size of the
project, likely design and scope changes, duration, contract
type, tendering method, and estimator-specific factors as a
benchmark to compare between the cost-estimation pro-
posals. ,e input data set that contains 12 years cost of
different construction items were analysed through graph
plotting, which shows the relationship between the year and
cost for the purpose of forecasting the future cost of con-
struction projects [19]. In the study conducted by Ma et al.
[27], the proficiency of estimators on specifications for
construction cost estimation was mentioned as a significant
factor that affects the accuracy and efficiency of cost esti-
mation. Hyari et al. [28] identified the factors that could
influence engineering services’ bids for construction pro-
jects. ,ey used five factors including project type, engi-
neering services category, project location, construction
costs, and project scope for the development of conceptual
cost-estimation model for engineering services.

Kim and Shin [22] identified the types of critical factors
required for estimating the cost of a building project using
mean value and standard deviation after conducting a
thorough literature review and expert interview. Yu and
Skibniewski [29] utilised foundation type, structural type,
floor area, number of base floors, and number of total floors
as an influential attribute in estimating the cost of residential
building construction projects in China. Arabzadeh et al.
[30] considered variables consisting of thickness, tank di-
ameter, and length of the weld to forecast the construction
cost of spherical storage tank projects. Bayram et al. [31]
used the approximate cost, total construction area, number
of floors, building height, and a contract value as an input
parameter for estimate the cost of building construction
projects. Shutian et al. [24] identified 10 parameters through
the Pearson correlation coefficient for predicting the cost of
construction projects.
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Zhu et al. [25] obtained the key market drivers which
affect cost items based on their priorities through parallel
Monte Carlo simulation and Likert scale analysis for the
purpose of estimating the cost of the chemical engineering
construction project. ,is study identified four key factors,
which include technology and specification standard,
vender list, target market and economy, and the condition
of the project site. Agyekum—Mensah [32] examined the
degree of accuracy and factors that influence the un-
certainty of cost estimates in the construction sector. ,is
author identified the main determinant factors for project
cost estimates including terms and conditions of payments,
type of client, experience, availability of cost information, a
guarantee of the job, and repeated work. Zhang and
Minchim [33] selected factors such as number of bids,
contract days, location, and contract type as predictor
variables to develop cost-estimation models for resurfacing
projects. Pesko et al. [34] analysed the major group of
works in urban road construction and stated that the works
on roadway construction and landscaping are cost-
significant items according to “Pareto” distribution, i.e.,
distribution of 20/80. In their study, 12 inputs (work items)
were identified for the purpose of estimating the cost of
urban road construction.

Gransberg et al. [21] identified 13 input variables on the
bases of their influence on cost and effort required to collect
data for the purpose of conceptual cost estimation of
highway projects. ,ese input variables include project lo-
cation (rural or urban), site topography, project size, design
AADT, typical section, design speed(s), intersection sig-
nalization and signage, traffic control, curb and gutter and
sidewalk, contract time, letting date, geotechnical-
subsurface and slope recommendations, and extent of
utility relocations and costs.

3. Methodology

,e overall framework and steps of the newly proposed
input variable selection approach for PCE based on the
integration of factor analysis and fuzzy AHP are shown in
Figure 1.

3.1. Factor Analysis Technique. Factor analysis is a statistical
technique for identifying groups and clusters of variables
that can be used to characterize the relationships among sets
of many interrelated variables [35, 36]. ,is technique has
three key uses: (i) to understand the structure of a set of
variables; (ii) to construct a questionnaire to measure an
underlying variable; and (iii) to reduce a data set to a more
manageable size without much loss of the original in-
formation [13, 17, 35]. ,e present study applied factors
analysis to combine, categorize, and reduce the collected
factors through a questionnaire survey. To apply the factor
analysis based on principal component analysis, the fol-
lowing main steps were carried out. ,e SPSS version 24 was
employed to perform the analysis: (i) testing for the ap-
propriateness of using factor analysis; (ii) extraction of
principal components or factors with eigenvalues more than

1, known as Kaiser’s criteria [35]; and (iii) factor rotation,
principal components rotate about the original variable’s
axis. In doing so, varimax with the Kaiser normalization
method of orthogonal rotation is applied to preserve the
principal components due to its simplicity in the in-
terpretation of the factors [37] and also a new trans-
formation matrix is formed. ,is method minimizes the
number of variables that have high loadings on each factor.
,emethod of maximum variance, which is most commonly
used, causes multiple rotations, and with each rotation, a
new variable or factor is created.,e newly created factors or
principal components are uncorrelated with each other.
,us, by the use of factor analysis based on principal
component analysis, the dimensionality of the data is re-
duced and the multicollinearity is eliminated [17]. So far,
very few studies have been carried out on the application of
factor analysis (and principal components analysis) to
eliminate multicollinearity and select the appropriate input
variables (factors) for the purpose of preliminary cost es-
timation at the early stages of project development in the
highway construction industry.

3.2. Fuzzy Sets and Fuzzy Numbers. ,e theory of fuzzy set
was first introduced by Zadeh [38] to tackle the vagueness
and uncertainty during the decision-making process in
practice. ,e concept of fuzzy set theory is an extension of
the classical notion of set, and he defined it as a “class of
objects with a continuum of grades of membership” [38, 39].

Definition 1. A fuzzy set in R is a function μ: R⟶ [0, 1],
with the following properties [39, 40]:

(1) x is convex, i.e., μ(x)≥min μ(s), μ(r)􏼈 􏼉, for s≤x≤ r;
(2) x is normal, i.e., (∃)t0 ∈ R: μ(x0) � 1;

(3) x is upper semicontinuous, i.e.,

(∀)t εR, (∀α ∈ (0, 1) : μ(x)< α,
(∃)δ > such that|s− t|< δ⇒ μ(s)< α.

(1)

Remark 1. A fuzzy number 􏽥A is a triangular fuzzy number if
its membership function μ􏽥A: R⟶ [0, 1] is equal to fol-
lowing [41]:

μ􏽥A(x) �
x− 1
m− 1, 1≤x≤m,

u−x
u−m, m≤x≤ u,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2)

where the parameters l and u represent the lower and upper
bounds of fuzzy number 􏽥A, and m is the modal value for 􏽥A.
,e triangular fuzzy numbers can be symbolised by 􏽥A �
(l, m, u) (see Figure 2).
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3.3. Fuzzy AHP Method. A fuzzy AHP method is selected as
a factor-weighting model because studies have declared its
effectiveness in prioritizing and ranking of factors, criteria,
alternatives in construction management, and other various
disciplines [42–50]. Fuzzy AHP can be applied in several
ways. In this study, Buckley’s geometric mean method is
used because it is easy to extend to the fuzzy case, of its

computational easiness, and guarantees a unique solution
[41, 51].

3.3.1. Geometric Mean Analysis on Fuzzy AHP. Buckley [51]
introduced the geometric mean method to extend the hi-
erarchical analysis to the situation of using linguistic vari-
ables.,e geometric mean method is applied to compute the
fuzzy weights for each fuzzy comparison matrix.

,e steps for the fuzzy AHP analysis based on the
geometric mean method are summarized as follows
[40, 41, 51].

Step 1. Construct a fuzzy pairwise comparison matrix,􏽥A � [􏽥aij] (see equation (3)) ,e fuzzy pairwise com-
parison matrices among all the input variables in the
variable groups of the hierarchy system and each de-
cision maker allot linguistic variable represented by
triangular fuzzy numbers to the pairwise comparison
among all input variables.

Carry out review literature and expert interview

Identify the cost estimation accuracy factors (input 
variables

Design and distribute the questionnaire with 5-
Likert scale to assess variable’s influence on cost

Group the input variables through factor analysis 
and determine factor (variable) coefficients

Develop a decision hierarchical structure based on 
the grouped factors resulted from factor analysis

Define the linguistic terms & determine the fuzzy 
scale for importance weight of input variables

Make a fuzzy judgemental/comparison matrix by 
decision makers

Calculate the local weights of the input variable 
groups and individual input variables using 

geometric mean method of fuzzy AHP

Calculate the Euclidean distance of input variables 
based on coefficient and BNP

Preferred order of the input variables based on 
Euclidean distance results

Phase 3. Euclidean distance

Phase 3. Fuzzy AHP

Phase 3. Factor analysis

Figure 1: ,e steps for the proposed input variable selection approach.

x0

1

µ
M~

(x
)

l m u
Fuzzy numbers

x x

Figure 2: ,e membership functions of the triangular fuzzy
numbers.
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􏽥A �
1, 1, 1 􏽥a12 · · · 􏽥a1n
􏽥a21 1, 1, 1 · · · 􏽥a2n
⋮ ⋮ ⋱ ⋮

􏽥an1 􏽥an2 · · · 1, 1, 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

1, 1, 1 􏽥a12 . . . 􏽥a1n
1, 1, 1􏽥a12 1, 1, 1 . . . 􏽥a2n
⋮ ⋮ ⋱ ⋮

1, 1, 1􏽥a1n
1, 1, 1􏽥a2n . . . 1, 1, 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(3)

,e judgment comparison matrix 􏽥A is an n × n fuzzy
matrix containing fuzzy numbers 􏽥aij.
where 􏽥aij ⊗ 􏽥aji ≈ 1 and 􏽥aij � wi/wj, i, j � 1, 2, . . . , n.
Meaning that 􏽥aij is the importance of input variable Vi
with respect to subfactor Vj.

Step 2. Compute the fuzzy geometric mean value. ,e
fuzzy geometric mean value 􏽥ri, for each subfactor i is
computed as follows:

􏽥ri � 􏽥αi1 ⊗ 􏽥αi2 ⊗ · · · ⊗ 􏽥αin􏼂 􏼃1/n. (4)

Step 3. Calculate the fuzzy weight. ,e fuzzy weight 􏽥wi
for each subfactor i is calculated as follows:

􏽥wi � 􏽥ri ⊗ 􏽥r1 ⊕ 􏽥r2 ⊕ · · · ⊕ 􏽥rn( 􏼁−1, (5)

where 􏽥rk � (lk, mk, uk) and (􏽥rk)−1 � (1/uk, 1/mk, 1/lk).

Step 4. Defuzzify the fuzzy weights. ,e fuzzy weights􏽥wi � (li, mi, ui) can be defuzzified by any defuzzified
method. In this study, the Center of Area (CoA)
method [52, 53] is applied to compute the best non-
fuzzy performance (BNP) value of the fuzzy weights of
each input variable and it is calculated as follows:

􏽥w � 􏽥w1, 􏽥w2, . . . , 􏽥wn􏼂 􏼃,
BNPwi �

uwi − lwi( 􏼁 + mwi − lwi( 􏼁􏼂 􏼃
3

+ Lwi.

(6)

3.3.2. Fuzzy Comparison Matrix for Input Variables. So as to
take the vagueness of evaluation on the pairwise comparison
of input variables into consideration, the triangular fuzzy
numbers (􏽥1∼􏽥9) are utilised to characterize the evaluation
from “equally important to absolute important.” Table 1
depicts the linguistic terms and triangular fuzzy numbers.

3.4. InputVariable SelectionApproach. In order to meet dual
objectives during PCE, it was proposed that input variables
be opted starting with those that have a high coefficient,
obtained from factor analysis, but also have a high

importance weight (or BNP value), obtained from fuzzy
AHP. Accordingly, the input variables suggested to be
preferred and opted are located in the top right-hand
quadrant as shown in Figure 3.

4. Case Study: Numerical Analysis

4.1. Initial Identification of Input Variables. At this stage, the
factors affecting the accuracy of the cost estimate, input
variables, are identified and defined through intensive lit-
erature review and expert interview for the required nu-
merical analysis. ,e study on various literature studies
relevant to the cost estimation of highway construction
project explored the most influential cost-estimation accu-
racy factors or input variables [7, 12, 23, 25, 33, 54–56]. It is
not necessarily true that increasing the number of input
variables in an early estimate may seem to improve the
accuracy of the estimate [23]. Moreover, increasing the
number of factors results in several questions when making
pairwise judgmental or comparison matrices and lowers the
efficiency of the analytical hierarchy process (AHP) model
[57]; hence, using interviews with highway engineers along
with review of literature studies, the final set of 12 input
variables were identified that have an influence on the cost of
highway construction projects in the case of Ethiopian
Highway Construction Industry; these are shown in Table 2.
To select these input variables, variable’s significant influ-
ence on cost based on Engineer’s opinion, variable’s fre-
quency in the literature, and variable whose information is
available at an earlier stage are considered as the criteria.

4.2. Factor Analysis Results. Based on the determined fac-
tors, the first questionnaire was developed to collect data for
factor analysis. ,e survey was distributed to 105 highway
professionals and academicians, who have had sufficient
work experience in the highway construction industry in
Ethiopia, via e-mail and physical presence. Respondents of
the survey were asked to answer “how influential/impact do
you perceive this factor/variable is on the construction cost
of a project?” on each of the 12 variables identified under a
five-point Likert scale, i.e., 5—very high, 4—high,
3—moderate, 2—low, and 1—not at all. A total of 70 re-
sponses were received with three incomplete responses.
Results from the survey indicated that the majority of re-
spondents (87%) who responded for the survey were
highway engineers and practitioners from various con-
struction organizations and Ethiopian Road Authority who
had had significant participation in the planning, designing,
and implementing of various types of highway construction
projects, and the rest 13% of respondents were academicians
from higher institutions.

To test the reliability of the data set, Cronbach’s α co-
efficient method was used. Cronbach’s α coefficient for the
data set is more than 0.7, is a recommended threshold value
[35] i.e. 0.716. ,erefore, the data set is considered reliable.
In addition, the Kaiser–Meyer–Olkin (KMO) and Bartlett’s
test were conducted as a preliminary analysis to check the
suitability the data set collected through the questionnaire
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surveys for running the factor analysis [13]. Consequently,
the KMO measure verified the sampling adequacy for the
analysis, KMO� 0.603, which is well above the acceptable
limit of 0.5. According to Field [35], Bartlett’s test of
sphericity should be significant (the value of Sig. should be
less than 0.05). For these data, Bartlett’s test is highly sig-
nificant since the significance (p) is 0.001, indicating that
there exist some relationships between the variables.
,erefore, the results of KMO and Bartlett’s test revealed
that factor analysis is appropriate. An initial analysis was run
to find eigenvalues for each variable group in the data set.
,ree variable groups or principal components have had

eigenvalues 1, which is Kaiser’s criterion and all together
explained 58.568% of the variance.

Factor coefficients are then computed after orthogonal
rotation (varimax) to determine the contribution of each
input variable with respect to the variable group or principal
component it belongs to. In doing so, variable group
loadings less than ±0.40 should be removed due to their
insignificance for variable group interpretation [37]. In other
words, input variables within a variable group with loading
values above ±0.40 are considered as substantive values and
involved in the calculations of the variable coefficients. ,e
variable loadings are used to compute the variable co-
efficients. ,ese coefficients are computed by dividing a
loading value of each input variable in the variable group by
the sum of the variable group loadings of all input variables
within the same variable group [37]. It can be noticed that an
input variable with the largest variable loading values in a
certain variable group would have the greatest effect on the
variable group value. Table 3 depicts the three variable
groups and the related input variable coefficients. ,ese
coefficients are then considered for as one element for the
input variable selection process.

4.3. Fuzzy AHP Results. ,e variable groups and input
variables resulting from the factor analysis (see Table 3) are
converted to the hierarchical structure to transform these
clustered input variables as the schematic structure depicted
(see Figure 4). ,e hierarchical structure of the decision
problem is shown in Figure 4, and its ultimate goal is to
select the input variables for preliminary cost estimation
based on the relative importance weight of the input vari-
ables, which is placed in the first level in the hierarchical
structure based on the pairwise comparison. ,e three
variable groups and twelve input variables are located in the
second and third levels, respectively.

At this phase, to define and compute the importance
weights of variable groups and individual input variables
under each variable group, the fuzzy AHP method based on
geometric mean analysis was applied. Succeeding the
hierarchical structure, the experts or decision makers are
required to fill the evaluation matrix. ,e overall

Table 1: Linguistic terms and triangular fuzzy numbers.

Linguistic terms Fuzzy number Triangular fuzzy numbers

Equal important (EI) 􏽥1 (1, 1, 1)
Equal to moderate important (intermediate) (E-MI) 􏽥2 (1, 2, 3)
Moderate important (MI) 􏽥3 (2, 3, 4)
Moderate to strong important (intermediate) (M-SI) 􏽥4 (3, 4, 5)
Strong important (SI) 􏽥5 (4, 5, 6)
Strong to very strong important (intermediate)
(S-VSI)

􏽥6 (5, 6, 7)

Very strong important (VSI) 􏽥7 (6, 7, 8)
Very strong to absolute important (intermediate)
(VS-AI)

􏽥8 (7, 8, 9)

Absolute important (AI) 􏽥9 (8, 9, 10)

High coefficient;
Low BNP

Low coefficient;
Low BNP

High coefficient;
High BNP

High coefficient;
High BNP

V
ar

ia
b

le
 c

o
ef

fi
ci

en
t

Best nonfuzzy performance (BNP)

Figure 3: Input variable selection to meet the dual objectives of
PCE.

Table 2: Identified input variables.

Input variables References

Project type [12, 54]
Project complexity [7, 10]
Project location [10–12, 21, 28, 33, 54, 58]
Project scope [7, 11, 12, 26, 54]
Project size [8, 11, 12, 21, 26, 54]
Site topography [12, 21, 25, 56, 59]
Bridge type [21, 23]
Number of bridges [12, 21, 23]
Existence of groundwater [12]
Soil type [12, 26, 56, 60]
Inflation rate [11, 12, 54]
Project duration [7, 10, 12, 21, 26]
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computational procedures to determine the weights of
variable groups placed at the second level and input variables
located at the third level in the hierarchy are demonstrated as
follows:

(a) First, the decision-making committee consisted of
thirteen highway experts use the triangular fuzzy
numbers tabulated in Table 1 to compare the im-
portance or preference of variable group or input
variable over another with the help of the ques-
tionnaire. Linguistic preferences of the decision

makers or experts were transformed into triangular
fuzzy numbers.

(b) Fuzzy-integrated pairwise comparison weights for
the variable group in the hierarchy were computed
through combining the collected data from all ex-
perts by using a geometric mean method, that is,􏽥aij � (􏽥a1ij ⊗ 􏽥a2ij ⊗ . . . ⊗ 􏽥a13ij ).
As a sample calculation, the fuzzy-integrated pair-
wise comparison value for the variable group (V) are
shown in the following matrix 􏽥A.

Table 3: Variable groups and coefficients.

Variable group Eigenvalue Variance (%) Input variables Variable coefficients

Variable group (V1) 4.0420 25.8079

Project size 0.1525
Project type 0.1499

Project complexity 0.1417
Project scope 0.1274

Project duration 0.1253
Project location 0.1044
Bridge type∗ 0.0923

Number of bridges∗ 0.1064

Variable group (V2) 1.8707 17.5530

Existence of groundwater 0.3191
Bridge type 0.2804

Number of bridges 0.2436
Soil type∗ 0.1570

Variable group (V3) 1.1155 15.2073

Project location∗ 0.1739
Inflation rate 0.3409

Site topography 0.2657
Soil type 0.2195

∗Input variables which are clustered more than one variable group.

Selection of input 
variables for 

conceptual cost 
estimation

Variable group (V1)

Project size (V11)

Project type (V12)

Project complexity (V13)

Project scope (V14)

Project duration (V15)

Project location (V16)

Variable group (V2)

Existence of groundwater (V21) 

Bridge type (V22)

Bridge numbers (V23)

Variable group (V3)

Inflation rate (V31)

Site topography (V32)

Soil type (V33)

Figure 4: A hierarchical structure for input variable importance weight determination.
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A
~

=

V1 V2 V3

V1 (1, 1, 1) (3.2169, 4.0179, 5.0104) (3.5137, 4.6915, 5.7851)

V2 (0.1996, 0.2489, 0.3109) (1, 1, 1) (1.0173, 1.4336, 2.0138)

V3 (0.1729, 0.2132, 0.2846) (0.4966, 0.6976, 0.9830) (1, 1, 1)

(c) Calculating the consistency index and consistency
ratio. Consistencies of the pairwise comparison re-
sults were measured using the approach adopted by
Chan et al. [61] to specify whether or not the targets
can be arranged in a suitable order of ranking and
how consistent the pairwise judgmental or com-
parison matrices are. ,e consistency index (C.I.)
and the consistency ration (C.R.) for a comparison
matrix are calculated using the following equations.

C.I. �
λmax − n( 􏼁
(n− 1) , (7)

C.R. �
C.I.

RI(n)
􏼠 􏼡100%, (8)

where, in this case,n is the number of variable groups to
be compared, λmax is the largest eigenvalue of the
comparison or judgmental matrix, and RI(n) is the
random index based on n. Following this computation,
it can be decided that if the C.R. of a certain comparison
matrix is less than 0.1 (10%), the consistency of the
judgment is considered to be acceptable [61].

For instance, taking a fuzzy pairwise comparison
matrix of the variable group, the associated crisp matrix
was obtained using a defuzzied method followed by
Chan et al. [61], that is, 􏽥Mcrisp � (l + 4m + u)/6.

where 1, m, and u denote triangular fuzzy numbers.

M
~

crisp =

V1 V2 V3

V1 1 4.0498 4.6775

V2 0.251 1 1.4609

V3 0.2183 0.7116 1

λmax � 3.0309, n � 3, and RI(n�3) � 0.58 [43].

,erefore, the C.I., using equation (7), and the C.R.,
using equation (8), of the pairwise judgmental matrix
can be calculated as follows: C.I. � (3.0309− 3)/
(3− 1) � 0.0155 C.R. � 0.0155/0.58 � 0.0267< 0.1
,us, the judgmental matrix is acceptable.

,e consistency ratios of all other matrices are
shown in Tables 4–6. It was found that all ratios are
less than 10%.,us, all the judgments are consistent.

(d) In order to obtain the fuzzy weights of variable
groups, the fuzzy geometric mean value 􏽥ri, for each
variable group i is first computed using equation (4)
from the matrix 􏽥A.

􏽥r1 � 􏽥α11 ⊗ 􏽥α12 ⊗ 􏽥α13􏼂 􏼃1/3
�(1 × 3.2169 × 3.5137)1/3

(1 × 4.0179 × 4.6915)1/3

(1 × 5.0104 × 5.7851)1/3

�(2.2442, 2.6614, 3.0718).

(9)

Likewise, the remaining 􏽥ri values are obtained as fol-
lows: 􏽥r2 � (0.5878, 0.7093, 0.8554). 􏽥r3 � (0.4411,
0.5298, 0.6540)

To determine the fuzzy weight of each variable group,
equation (5) is applied.
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􏽥w1 � 􏽥r1⊗ 􏽥r1 ⊕ 􏽥r2 ⊕ 􏽥r3( 􏼁−1

�(2.2442, 2.6614, 3.0718)⊗

1

(3.0718 + 0.8554 + 0.6540)

1

(2.6614 + 0.7093 + 0.5298)

1

(2.2442 + 0.5878 + 0.4411)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�(0.4999, 0.6823, 0.9385).

(10)

Similarly, the remaining fuzzy weights 􏽥wi are computed
as

􏽥w2 �(0.1283, 0.1818, 0.2614),􏽥w3 �(0.0963, 0.1358, 0.1998).
(11)

(e) Computing the BNP value of the fuzzy weights of
each variable dimension using COA method. For
instance, to find the BPN, the value of the weight of
the variable group (V1) is calculated using equation
(6) as follows:

BNPw1 �
uw1 − lw1( 􏼁 + mw1 − lw1( 􏼁􏼂 􏼃

3
+ lw1

�
[(0.9385− 0.4999) +(0.6825− 0.4999)]

3
+ 0.4999

� 0.1837.

(12)
In a similar fashion, the BNP value of the other two

variable groups can be found, and the results are shown in
Table 7. Table 7 also shows the relative fuzzy weight (score),
as well as of the total integral crisp values of each variable
group obtained by fuzzy AHP based on geometric mean
value analysis.

According to Table 7, the first variable group (V1) ex-
hibits the highest importance in comparison with the other
two variable groups (V2 and V3). Certainly, V1 ranks almost
3.08 times more important than V2 and nearly 7.01 times
more important than V3.

Following a similar computational procedure, the rela-
tive weights of the input variables placed at the third level in
the hierarchy structure can be obtained (see Tables 4–6).

4.4. Input Variable Selection Process. Input variables are
suggested to be used in the PCE model, one at a time,
starting with the input variable closest to the most preferred
to the least preferred input variables as shown in Figure 5.
So, to give preference for input variables, Euclidean distance
was adopted to calculate each distance [23, 62]. ,e formula
to find each distance to ideal input (points) is shown as
follows:

distance to ideal input variable �

������������������
Ci −X( 􏼁2 + Wi −Y( 􏼁2􏽱

,

(13)
where Ci� the variable coefficient obtained from factor
analysis, X� 1, the ideal maximum variable coefficient based
on the coefficient analysis and the ideal value as shown in
Figure 5, Wi� the relative importance weight (BNP value)
obtained from fuzzy AHP, Y� 1, the ideal maximum weight
(BNP value) based on fuzzy AHP analysis and the ideal value
as shown in Figure 5, and i� the input variables being
evaluated.

Applying equation (11), the proposed input variable
preference order is found based on the distance to the ideal
input variable and shown in Table 8.

5. Discussions and Contributions

,e selection of the appropriate input variables can improve
the accuracy of the cost estimate, particularly at the early
stages of the project development. In this study, a set of 12
input variables or attributes were considered. ,is study
explored the appropriate set of input variables for the
purpose of PCE in highway construction projects in the case
of the Ethiopian construction industry. ,e hybrid

Table 4: ,e weight of the input variables with respect to the
variable group (V1).

Input
variable (VIJ)

Fuzzy weight
Crisp weight

(BNP)

Project size (0.1659, 0.2662, 0.4180) 0.2834
Project type (0.0735, 0.1182, 0.1965) 0.1294
Project complexity (0.1453, 0.2396, 0.3910) 0.2586
Project scope (0.1068, 0.1717, 0.2772) 0.1853
Project duration (0.0708, 0.1127, 0.1811) 0.1216
Project location (0.0573, 0.0916, 0.1496) 0.0995

Table 5: ,e weight of input variables with respect to the variable
group (V2).

Input variable (VIJ) Fuzzy weight
Crisp weight

(BNP)

Existence of groundwater (0.2100, 0.3240, 0.4839) 0.3393
Bridge type (0.1802, 0.2626, 0.3974) 0.2801
Number of bridges (0.2753, 0.4134, 0.6211) 0.4366

Table 6: ,e weight of input variables with respect to the variable
group (V3).

Input variable (VIJ) Fuzzy weight
Crisp

weight (BNP)

Inflation rate (0.2234, 0.3438, 0.5199) 0.1293
Site topography (0.2951, 0.4322, 0.6333) 0.1442
Soil type (0.153, 0.2241, 0.3347) 0.0798
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methodology of factor analysis and fuzzy AHP are used to
supplement the rational input variable selection process.
,e input variable coefficient and weight (BNP value) are
shown in Table 8 along with the computed distance to the
ideal input variable shown in Figure 5. ,e PCE model can
use the input variables by selecting them in the order
beginning with the shortest distance from the ideal input
to the largest distance (applying this for each variable
group). Hence, each time, a new set of three input vari-
ables, one from each variable group, can be selected and
added to the model. In order to verify the practicability on
the proposed input variable selection approach, the pro-
cess can be repeated in the reverse order, meaning starting
with the input variable having the largest distance from the
ideal input variable. According to the results of the dis-
tance computed shown in Table 8, the PCE model de-
velopment can start with a set of three input variables, one
from each variable group, such as project size, number of
bridges, and inflation rate. ,ese three input variables
exhibit a short distance from the ideal input variable
(point). ,is implies that these input variables are pre-
ferred first because of their high influence on construction
cost as well as high relative importance when compared to
other variables for PCE.

,is proved that this study has validity in preliminary
or conceptual cost-estimation practice as “project size” is
found to be the most significant and important input
variable (from the first variable group (V1)), in the case of
highway construction projects. In regard to project size or
length, it can be generalized that, the larger the project, the
more expensive it will be. ,is finding can be supported by
other researchers [23, 63]. Elfaki et al. [26] also proved that
the project size and the number of labours have a strong
correlation. Looking into the second variable group, it can
be straightforwardly found out that “number of bridges”

has been evaluated as the first preferred input variable. ,e
bridge construction becomes the major part of construc-
tion projects, particularly in highway projects, where
waterbody exists. ,e number of bridges in the project
scope greatly affects the cost of construction and has a
direct relationship with the construction cost as it enlarges
the overall scope of the project. In the third variable group,
inflation was also the most preferred input variable for PCE
of highway construction projects. So, this input variable
should be a serious concern while estimating and managing
the cost of highway projects in the case organization. ,is
finding can be justified as it is in line with the findings of
previous studies [60]. It is pretty much factual as inflation
increases the original estimate of construction project
costs. During the planning and design stage of project
development, fluctuations in the rate of inflation can lead to
underestimation of project costs. Inflation may have been
taken into account in the original cost estimates; however,
if the inflation rate increases beyond the forecasted level
during project implementation, then the original estimate
will be surpassed.

5.1. Elimination of Multicollinearity among Input Variables.
In the realm of model development, multicollinearity can be
described as a condition that one or more of the cost factors
be interrelated with each other [17]. If the predictors or input
variables are highly correlated, in the case of models in-
volving more than one input variable, each account for a
similar variance in the outcome. So, input variables should
not negatively or positively correlate too highly [16]. Table 9
shows the SPSS output of the correlation matrix (R-matrix).
It contains the Pearson correlation coefficient between all
pairs of input variables. ,e results demonstrate that mul-
ticollinearity exists among most of the input variables as
there is a relatively strong positive and negative relationship
between them. ,e existence of multicollinearity will not
only cause repeatability errors and trade-offs but also makes
it difficult to assess the individual importance of an input
variable or predictor [16, 17, 64].

To overcome collinearity problems in the model, e.g.,
multiple regression, a factor analysis based on principal
component analysis was carried out on the input variables to
reduce them to a subset of uncorrelated variables. In the
present study, the SPSS software was run to perform a factor
analysis and the input variables causing the multicollinearity
were combined to form a component or variable group. One
of the purposes of applying factor analysis in this study was
to vanish the problem of multicollinearity. To ensure that the
components are uncorrelated, the Anderson–Rubin method
was used while carrying out factor analysis to determine the
variable group scores which were later used to calculate the
variable coefficients [65].

Furthermore, the correlation and covariance among the
three variable groups were performed as shown in Table 10.
Table 10 shows that the three variable groups or components
have no correlations, with 0 Pearson correlation coefficient,
and are independent from each other. ,erefore, the above
discussion can securely prove that the applying factor

Table 7: ,e weight of variable groups with respect to the goal.

Variable
group (VI)

Fuzzy weight
Crisp weight

(BNP)

Variable group (V1) (0.4999, 0.6823, 0.9385) 0.1837
Variable group (V2) (0.1283, 0.1818, 0.2614) 0.0597
Variable group (V3) (0.0963, 0.1358, 0.1998) 0.0462
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Figure 5: Preference for selecting input variables.
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analysis based on the principal component analysis in the
process of input variable selection can overcome the
problem of collinearity among the input variables.

5.2. Dimensional Reduction and Categorization of the Input
Variables. During the PCE process, utilizing a large amount
of input variables makes the process very complicated.
Moreover, Gransberg et al. [21] also stated that the data-
driven conceptual cost-estimation models do not require to
incorporate a large number of project attributes or variables
to predict the cost of construction to reasonable accuracy at
the early phase of project development. In the present study,
a set of thirteen input variables was initially identified that
can be used as model variables for PCE. If all these input
variables are considered in the estimation process, it be-
comes time-consuming to collect the required data and

formulate the historical database as well as requires a large
amount of effort in realising a realistic cost estimate.
However, by applying the factor analysis in the input var-
iable selection process, only a few variables can replace the
large portion of the set of 12 variables so that the di-
mensionality of the data set can be reduced without sig-
nificant loss of the information and simplicity to the whole
process can be realised as well. Field [16] declared that any
further analysis can be carried out on the variable group
scores rather than the original data. ,e elements’ factor
(variable) loadings for a given variable group are used to
calculate the input variable coefficients. ,erefore, in this
study, the determination of the coefficient of each input
variable under each variable group was performed (see
Table 3). ,e coefficient of a given input variable under a
certain variable group indicates the level of effect on that
variable group. At this stage, only three input variables, one

Table 8: Selection order of input variables and distance to ideal input.

Variable
group (V1)

Symbol Coefficient BNP
Euclidean
distance

Preferred
order

Project size V11 0.1525 0.2834 1.1099 1
Project complexity V13 0.1417 0.2586 1.1341 2
Project scope V14 0.1274 0.1853 1.1938 3
Project type V12 0.1499 0.1294 1.2168 4
Project duration V15 0.1253 0.1216 1.2396 5
Project location V16 0.1044 0.0995 1.2701 6

Variable group (V2)
Number of bridges V23 0.2436 0.4366 0.9432 1
Existence of
groundwater

V21 0.3191 0.3393 0.9488 2

Bridge type V22 0.2804 0.2801 1.0179 3

Variable group (V3)
Inflation rate V31 0.3409 0.1293 1.0921 1
Site topography V32 0.2657 0.1442 1.1276 2
Soil type V33 0.2195 0.0798 1.2066 3

Table 9: Correlation matrix of the 12 input variables.

V12 V13 V16 V14 V11 V32 V22 V23 V21 V33 V31 V15

V12 1.000
V13 0.545 1.000
V16 0.287 0.270 1.000
V14 0.381 0.317 0.380 1.000
V11 0.425 0.338 0.347 0.713 1.000
V32 0.092 −0.001 0.249 0.247 0.102 1.000
V22 0.336 0.314 0.472 0.444 0.341 0.222 1.000
V23 0.405 0.360 0.394 0.438 0.383 0.242 0.768 1.000
V21 0.023 0.043 0.216 0.325 0.132 0.325 0.526 0.353 1.000
V33 0.000 0.059 0.113 0.164 0.079 0.324 0.181 0.225 0.388 1.000
V31 −0.059 −0.100 0.337 0.159 −0.006 0.306 0.122 0.092 0.136 0.349 1.000
V15 0.248 0.314 0.234 0.206 0.362 0.202 0.273 0.285 −0.013 0.025 0.083 1.000

Table 10: Variable group score correlation and covariance matrix.

VI

Correlation matrix Covariance matrix

V1 V2 V3 V1 V2 V3

V1 1 1.000
V2 0.000 1 0.000 1.000
V3 0.000 0.000 1 0.000 0.000 1.000
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from each variable group, having high coefficient could be
selected as input variables for PCE as they are not un-
correlated with each other. However, further analysis was
still continued to deal with incomplete and uncertain
knowledge and information during input variable evalua-
tion, which enables it to meet the dual-objective goal pro-
posed in this study.

5.3. Handling Uncertainty and Vagueness. In most cases,
fuzziness and uncertainty exist in practice. ,us, fuzzy set
theory integrated with AHP was used to effectively handle
subjective perceptions and impreciseness, allowing the ap-
propriate expression of linguistic evaluation. In this study,
fuzzy AHP based on the geometric mean method was
employed to determine the relative importance weight of the
input variables with respect to each variable group in a fuzzy
environment where the subjectivity and vagueness are
handled with natural language expressions parameterized by
triangular fuzzy numbers. ,is makes the input variable
selection process more rational and effective in PCE.

6. Conclusions and Remarks

,e aim of this study is to present a rational and systematic
input variable selection approach for the PCE model in the
highway construction industry. A set of 12 input variables in
three categories, resulting from factor analysis, were in-
volved in variable coefficient determination. In addition,
these input variables located under each category were also
evaluated by highway experts (decision makers) in terms of
their relative impotence, and the subjectivity and uncertainty
of human assessment are taken into account through the
fuzzy set theory in a fuzzy environment. ,e proposed
approach in this study was aimed to meet the dual-objective
goal during PCE and it was proposed that input variables be
selected beginning with those which have high coefficient
but also have high relative importance weight. ,is was
realised by the use of Euclidean distance to calculate each
distance from an ideal input variable. Based on the distance
results, the input variables are suggested to be selected for
the PCEmodel development to predict the construction cost
in the order of starting with the shortest distance from the
ideal input variable to the largest distance. Accordingly, each
time as a new set of three input variables, one from each
group, can be added to the PCE model. Based on the results
of this study, particularly distance results, variables such as
project size, number of bridges, and inflation rate from
variable groupsV1,V2, andV3, respectively, were found to be
the first preferred input variables, and the PCE model can
start with these three variables. As explained in the previous
sections, the input variables which are categorized in the
different group are not correlated with each other to realise
the more accurate estimate. ,is is the reason why one input
variable from each variable group is suggested to be selected
at a time.

,e proposed input variable selection approach in this
study is just a tailor-made method for the highway con-
struction projects which intends to present the ideas about

how to fix up the combined factor analysis and fuzzy AHP.
When it is supposed to be applied to other projects or
construction sectors, it is required to first study the project’s
characteristics and the sector’s requirements. ,e integrated
input variable selection process is designed to provide
practitioners with a fuzzy point of view to the traditional
variable selection technique for dealing with imprecision.
,e proposed method enables cost estimators or decision
analysts to better understand the comprehensive input
variable selection process. Moreover, this approach provides
a more accurate, systematic, and rational decision support
tool. In the end, further study can apply the other factor
prioritization techniques under fuzzy environment and the
results can be compared with the present method. ,e
proposed input variable selection process has not been
validated in this study. ,e practicability and validation of
the proposed model will be verified upon the completion of
the undergoing study by the present authors.
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