Hindawi Publishing Corporation

The Scientific World Journal

Volume 2013, Article ID 693845, 9 pages
http://dx.doi.org/10.1155/2013/693845

Research Article

Hindawi

An Effective Cache Algorithm for Heterogeneous

Storage Systems

Yong Li, Dan Feng, and Zhan Shi

School of Computer Science and Technology, Wuhan National Lab for Optoelectronics, Huazhong University of Science and Technology,
Wuhan 430074, China

Correspondence should be addressed to Yong Li; li.yong.xyz@gmail.com
Received 14 October 2013; Accepted 26 November 2013
Academic Editors: Y. Dong, Y.-B. Yuan, and Y. Zhao

Copyright © 2013 Yong Li et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Modern storage environment is commonly composed of heterogeneous storage devices. However, traditional cache algorithms
exhibit performance degradation in heterogeneous storage systems because they were not designed to work with the diverse
performance characteristics. In this paper, we present a new cache algorithm called HCM for heterogeneous storage systems.
The HCM algorithm partitions the cache among the disks and adopts an effective scheme to balance the work across the disks.
Furthermore, it applies benefit-cost analysis to choose the best allocation of cache block to improve the performance. Conducting
simulations with a variety of traces and a wide range of cache size, our experiments show that HCM significantly outperforms the

existing state-of-the-art storage-aware cache algorithms.

1. Introduction

Data center always uses a flexible approach to build highly
scalable storage systems for rapidly growing data, such as
storage virtualization technology. Such large scalable storage
systems are commonly composed of heterogeneous storage
devices, with a large number of storage devices of different
types like Integrated Drive Electronics (IDE) and Serial AT
Attachment (SATA) and new storage devices added over time
for extending capacity and replacing failed storage devices.
Device with relatively low performance may become the
bottleneck in such a heterogeneous environment, given that
the data placements of these systems are always configured
to stripe pattern for parallelism. However, the parallelism has
a new problem in such heterogeneous storage environment.
If an I/O request accesses multiple disks with different
performance, the response time of the request is close to
the response time on slow disk. That is because the access
to fast devices is faster than access to slow devices. So,
the fast devices have to wait for the completion of the
subrequest accessed on the slow devices, which will introduce
waiting time for fast devices when a request accesses multiple
devices with diverse performance. We illustrate it by an
example shown in Figure 1. In this example, the disk array

is composed of three disks and an accessed request is split
into three subrequests. We assume that the response time
of the fast device is 5ms and the slow device is 10 ms. In
the homogeneous disk array, the finial response time is 5 ms.
However, in the heterogeneous disk array, the final response
time is 10 ms due to waiting for the completion of the access
on the slow devices.

Many cache policies have been widely used to alleviate the
performance gap between I/O systems and processor. Hetero-
geneous storage systems, however, present a new challenge to
those cache policies. Traditional cache algorithms are cost-
oblivious, treating all blocks as if they were accessed with
the same cost. This assumption is far from being valid for
devices of diverse performance characteristics, in which the
requests are more likely to congest in the slowest devices.
Obviously, this will cause an imbalance in a heterogeneous
storage system and will result in the degradation of the overall
performance.

1.1 Background and Motivation. Recently, several cost-aware
algorithms have been proposed to address the above problem,
such as Forney’s algorithm [1] and Liton’s algorithm [2]. Both
of their cache algorithms are based on aggregate partitioning
which assigns one partition to each device. The allocation



2 The Scientific World Journal
Request Request
10 ms 5ms
Subreq. Subreq. Subreq. Subreq. Subreq. Subreq.
A B C
10 ms 5ms 5ms

(a) Heterogeneous disk array

5&¢

(b) Homogeneous disk array

FIGURE 1: The typical I/O request in heterogeneous and homogeneous disk array, respectively.

among the divided partitions is adaptive with the delay of
each partition.

The basic idea of these cost-aware cache algorithms for
heterogeneous storage systems is to decrease access delay of
the bottleneck partition by allocating more cache blocks. The
efficiency of adaptive allocation among divided partitions is
affected by two factors.

(1) Utility of cache block. The relationship between cache
size and hit ratio is not linear after a certain threshold
of cache size [2]. It means that cache hit ratio will
not increase significantly once cache size is beyond
the threshold. In contrast, removing a cache block
from partition below the threshold may significantly
decrease hit ratio. So, how to identify the utility of a
cache block for different partition is very important.

(2) Balance cache blocks across partitions. It is necessary
to maintain balance cache blocks across partitions,
because a partition with small cache size may become
the new slowest partition, which resulted in a decrease
in overall performance. For example, assume there are
two disks with different performance, and the slow
disk is working under sequential workload and the
fast disk is working under random workload. Because
of the workload difference, the slow partition has
smaller delay and gets less cache blocks. However, if
the workload changes from sequential to random, the
cache size of the slow partition will be far below the
demanded size. This will result in sharp increase in
access delay.

However, Forney and Liton’s algorithms focus on only one
of two factors discussed above. Together these two factors
inspire our algorithm to further improve the performance.

1.2. Our Contribution. In this paper, we propose a novel cost-
aware cache algorithm for heterogeneous storage system,
which focuses on both factors discussed above. We apply
cost-benefit analysis to allocate cache blocks where they will
have the greatest utility. Here, cost refers to the increase in
delay of a partition when shrinking a cache block. Benefit

TaBLE 1: Classification of cost-aware cache algorithms for heteroge-
neous storage systems.

Balance cache block Utility of
across partitions cache block
Forney algorithm v
Utility-based algorithm N
HCM algorithm v v/

refers to the decrease in delay of a partition when adding an
extra cache block. The change in utility of allocation can be
described as the difference between benefit and cost value.
We estimate the impact of each alternative allocation on the
divided partitions and then choose the one with the greatest
utility which has maximum benefit and minimum cost.
Furthermore, we propose a simple but effective approach
to address the imbalance problem. The algorithm in this
approach sets a lower bound of cache size for each partition
and dynamically adjusts the lower bound according to the
change of workload. The shrinking of cache block is bounded
by the lower bound. It helps prevent heavy performance
degradation as the change of workload and maintain stable
performance for all partitions. Table 1 summarizes the three
groups of cache algorithms discussed above.

2. The HCM Cache Algorithm

HCM is a partition-based algorithm and divide the cache into
several partitions for different devices which are managed
separately. The key problem in the partition-based algorithm
is how to effectively allocate the cache blocks among the
partitions. In HCM algorithm, there are two schemes to the
allocation of the cache blocks: continuous reallocation and
periodic reallocation scheme. The continuous reallocation
scheme evicts the cache block with minimum utility for
the demand access. Many researches [2-4] had shown that
the relationship between the cache size and hit ratio is
nonlinear if beyond certain threshold. So, the performance
benefit of addition cache blocks depends on the workload



The Scientific World Journal

Requests

) { )
Cache
] 1

l \

@ Disk array @

I Cache block for provenance

|:| Cache block for adjustment

FIGURE 2: The high-level architecture of our algorithm.

characteristics of the class. For example, the cache block
allocated to the frequently accessed block will obtain more
benefit than that allocated to the little accessed block. Thus,
it can be beneficial in terms of performance to allocate
cache blocks by their utility. To determine the utility of
cache blocks, we construct a benefit-cost model based on
access pattern. The periodic reallocation scheme focuses on
how to balance cache blocks across partitions. As discussed
above, the partition size also plays an important role in the
overall performance. The allocated cache blocks will not yield
immediate performance benefits. The performance benefits
come true only if they have cache hits in future. However,
the partition size may sharply decrease as the change of
workload characteristic, like temporal burst of accesses on
other partitions. This will lead to the cache blocks with more
utility which are earlier evicted before being accessed. So, it
is important that maintaining the provision of appropriate
cache blocks for each partition achieves stable performance.

Figure 2 illustrates our high-level architecture. The cache
is explicitly divided into # partitions among disks D, ..., D,,
and then ith disk’s data is only stored in the ith partition.
Partitions are managed separately and possible to employ
any previously cache replacement policies including Least
Recently Used (LRU), Least-Frequently Used (LFU) and
LRU-K [5]. Different policies for different partitions can also
be used. The cache space in the partition is split into two
areas. One is the provision for stable performance, which we
called provision area. The size of provision area is computed
periodically by periodic reallocation scheme. The other part
is called adjustment area. The cache block in the adjustment
area is allocated by the continuous reallocation scheme.
The cache block allocation of the adjustment area is more
active than the provision area. The continuous reallocation
scheme will allocate a cache block to a partition once we
find opportunities to improve the utility of the cache block.
That is because the more early the decision is taken, the more
accuracy the prediction will be. Thus, the size of adjustment

area is adapted dynamically to the change of workload. It
is necessary to carefully determine the size of both areas.
Because a smaller size in provision area may lead to unstable
performance and a smaller size in adjustment area may lead
to low utility of cache blocks. Both of them may make the
degradation of overall performance.

2.1.  Continuous Reallocation. Continuous reallocation
scheme is based on cost-benefit analysis. When cache is full,
the allocation of partition-based scheme should first decide
which partition is the best candidate for eviction and then
use general cache replacement policy to select the evicted
block, such as LRU, Clock. Our algorithm classifies partitions
into two categories according to the delay of partition: con-
sumer that have larger delay and suppliers that have smaller
delay. Consumer takes a cache block from supplier when
the cache is full. Our algorithm estimates the benefit of giv-
ing a cache block to a consumer and the cost of taking a
cache block from a supplier. Here, the benefit refers to the
estimation of performance increase in future with addition
of an extra cache block and cost refers to the estimation of
performance decrease in future with shrinking of a cache
block. The goal of our algorithm is selecting the allocation
with the greatest utility, which refers to the biggest difference
between the benefit and cost.

2.1.1. Estimate Cost. The access delay of an I/O request can
be described as expression (1), where H(n) is the expected
hitratio using #n cache blocks, T, is the time for fetching
from the cache, and Ty, is the time for fetching from disk:

T(n)=H®)Tpme + (1 = H 1)) Tgige- 1)

The shrinking of a partition will decrease the hit ratio and
introduce extra cost because of the increment in number of
I/O operations. The cost can be computed as the difference in
access delay in future accesses, as expression (2) shows. For

simplicity, we ignore T, as it is much smaller than Ty

AT =T (n—1) =T (n) = AH (1) Ty )

where AH (n) is the increase in hit ratio if the cache increases
by a single block. Our algorithm classifies requests into three
access patterns: random, sequential, looping, and computing
AH (n) individually. Similar estimation can be found in [6-
8]. For a random reference with the length of R, it can be
considered as a uniform distribution with R blocks. If the
cache size n > R, the access will be all hit in the cache.
Thus, the hit ratio is 1 and the AH(#n) is 0. If the cache size
n < R, the hit ratio is n/R. Thus, the AH(n) is AH(n) =
n/R — (n — 1)/R = 1/R. For sequential references, any given
block will never be referenced again. So, the hit ratio is 0 and
so is AH(n). For a looping reference with reference length L
and loop length [, the hit ratio is min(l,n)/L. If | > n, the
AH(n) is AH(n) = n/L - (n—-1)/L = 1/Land ifl < n,
AH(n) =1/L-1/L=0.

2.1.2. Estimate Benefit. There are two cases for acquiring of
new cache blocks: (1) a demand access that misses in the



cache; (2) prefetching. Because demand access is undeni-
able, our algorithm assigns its benefit as infinite value. In
sequential access pattern and loop period of lopping access
pattern, blocks are accessed contiguously. A prefetching can
be performed to avoid future access to disks. If the prefetched
data hits, prefetching can save the time of several disk I/O
operations. If the prefetched data do not access, the cost of
prefetching is the time to transfer the prefetched blocks. Thus,
the benefit of prefetching can be describe as expression (3),
where P is the probability of accessing prefetched blocks, m
is the number of access of prefetched blocks, D is the degree
of prefetching, and B is the bandwidth of disk:

benefit=P-m - Tyy — (1 - P) % (3)

2.1.3. Block Replacement. We use the notion of marginal
gains defined in previous works [9] to denote the change of
performance with migration of a cache block which takes

a cache block from supplier to customer. Marginal gain is
defined as

MG (n) = benefit (P;) — cost (Pj) . (4)

The benefit to partition P, (consumer) is computed with
expression (3) and the cost to partition P; (supplier) is
computed according to its access patterns which we discussed
above. When free blocks are available, the free cache blocks
are allocated to partition as requested. When a demand access
miss in the cache and the system has no free cache blocks left,
our algorithm should take a cache block from appropriate
partition. Our algorithm computes marginal gain for each
partition and the partition with the largest marginal gain is
chosen as the victim. To prevent the migration of cache blocks
too frequently, a partition (P,) can consume a cache block

1
from a partition (P;) only when it satisfies the constraint:

MG (n) > 6, (5)

where & is a threshold that should be chosen carefully. If
there is no partition chosen as the victim partition, our
algorithm will choose its own partition as supplier. Then, the
replacement policy is invoked to evict a cache block from the
supplier and allocate this cache block to the consumer.

2.2. Balance Cache Blocks across Partitions. Cache allocation
based on benefit and cost analysis is a very effective approach
to improve the utility of cache blocks. However it does not
consider the effect of the partition size on the performance.
Any supplier may become a new bottleneck partition as a
result of shrinking too much cache blocks and incuring heavy
performance degradation. For example, if a partition is set
too small cache size then it may sharply increase in access
delay as the change of workload characteristic, such as the
workload change from sequence to random. In particular,
it may lead to cache block thrashing. So, it is necessary to
maintain a balance in distribution of cache block for stable
performance. We propose a simple but effective approach to
address this problem. If the workload on partition is growing

The Scientific World Journal

heavy, it should guarantee enough cache space to prevent
rapid increase on access delay. In contrast, if the workload
on partition is growing light, it can supply more cache blocks
to the partition with larger access delay. How the accuracy
estimates the size of cache space required in the next period
is the key problem in the balance scheme. Our algorithm sets
a lower bound of cache size for each partition and denotes it
as B, which is adjusted with the change of workload. Recall
that the partition is split into 2 parts: provision area and
adjustment area. The cache blocks within the size B belong
to the provision area and the other cache blocks belong to
the adjustment area. The cache blocks of the provision area
are provisioned to meet the requirement of minimum cache
size in the next period. So, the shrinking of cache block is
bounded by the lower bound. However, setting lower bound
may reduce flexibility of allocation among partitions. For an
extreme example, if the sum of all partitions’ lower bound
is equal to the total cache size, then there will be no cache
allocation at all. Thus, the lower bound should be subjected
to the following constraint:

N
YBi<a-C, (6)

i=1

where N is total number of partitions, C is total cache size,
and « is a reasonable compromise value, 0 < « < 1.

Our algorithm periodically adjusts lower bound of each
partition. The periodic reallocation scheme triggers adjust-
ment after T requests where T is a parameter of the scheme.
For each adjustment, our algorithm uses a two-step process
to compute the required cache size for provision area: coarse
adjustment and fine adjustment. The responsibility of coarse
adjustment is to determine the direction of adjustment which
refers to adding or shrinking of the cache blocks. The
responsibikity of fine adjustment is to determine the degree
of adding or shrinking for each partition. The computing of
the degree for partitions is to adapt to the changes of the
workload.

In the first phase, our algorithm should identify the
partitions that should be increased of cache space and the
partition that has surplus cache space. The surplus cache
space refers to the cache blocks that if removed from the
partition then it will not lead the access delay to outweigh
the average value. The goal of our algorithm is to make all
partitions achieve approximate access delay and eliminate
the bottleneck partition. Thus, our algorithm classifies the
partitions into suppliers and consumers according to the
delay of those partitions. Partitions with above-average delay
are considered as consumers and their lower bound will
increase by a basic amount of cache blocks denoted as I.
The partitions with below-average delay are considered as
suppliers and their lower bound decreases by I cache blocks.

In the second phase, our algorithm predicts the change of
workload and computes appropriate bound size for provision
area. Our prediction is based on history of accesses. As
locality, we assume that the workload remains unchanged
within a short period. We use the difference in delay (Ad)
between the delay in current period (d,) and the delay in
previous period (d,) to predict the variation of workload



The Scientific World Journal

in the next period. If the difference is positive, it indicates
that the I/O activities of the workload are becoming heavier.
Then, our algorithm enlarges the basic amount of cache
blocks for preventing further degradation of performance.
In contrast, if the difference is negative, it indicates that the
workload is becoming lighter and has surplus cache space
to other partitions. For a partition with heavier workload,
the partition should get more cache blocks for provision.
Our algorithm enlarges adjustment amount by multiplying I
with f,, where f, is scale factor and “+” means the positive
difference, f, € (1,2). The bigger the Ad is, the larger the
f, will be. The larger f, means that the provision area will
increase more cache blocks and the same as the lower bound.
In order to compute the i,h partition’s normalized scale factor
f1, we first select maximum difference in delay Ad,,,, and
minimum difference in delay Ad;, from all partitions. Then
we normalize the difference in delay of i,/ partition Ad; into
£, by the following expression:

. Ad. — Ad..

fi:l+ﬁ, fiew. @
For the partition with lighter workload, our algorithm will
shrink its cache space and compress adjustment amount by
multiplying I with f_, where f_ is scale factor and “~” means
the negative difference, f_ € (0,1). As the f,, the smaller
Ad is, the smaller f_ will be. The smaller f. means that
the partition can supply more surplus cache blocks to other
partitions. Our algorithm normalizes the Ad; into f' by
following expression:

Ad; - Ad,;,
_W) f-€(0,1). (8)

min

f

3. Experiment

This section evaluates our cache algorithm. We use FileBench
[10] to generate synthetic workloads, which is widely used as
benchmark in storage system, such as [11, 12]. We built a sim-
ulator that implements Forney’s algorithm, Liton’s algorithm,
and our algorithm. We also interfaced the Disksim 4.0 [13],
an accurate disk simulator, to simulate the disk behaviors. The
disk drive we modeled is the IBM 9LZX. Asin [1, 2], we age its
performance over a range of years to achieve heterogeneity,
as shown in Table 2. The data layout policy uses RAID-0
(Redundant Array of Independent Disks) with 4 disks.

3.1. Performance Comparison. Figure 3 shows the throughput
of Forney’s, Litons, and HCM algorithms when we vary the
age of a disk ranging from 0 to 10 (step by one). Because the
major effort of our algorithm to improve system performance
is benefit-cost allocation based on reference type, we generate
three types of workloads: random-dominated, sequential-
dominated, and looping-dominated. The percentage of dom-
inated type in workload is 60% and the other two types are
20%, respectively. We selected the cache size to be 100 MB for
all experiments.

The results of Figure 3 show that the HCM algorithm
outperforms Forney’s algorithm and Liton’s algorithm under

TABLE 2: We model different performance of disks based on IBM
9LZX manufactured in progressively order years.

Age Bandwidth Seek avg. Rotation
(years) (MB/s) (ms) avg. (ms)
0 20.0 5.30 3.00
1 14.3 5.89 3.33
2 10.2 6.54 3.69
3 7.29 7.27 4.11
4 5.21 8.08 4.56
5 3.72 8.98 5.07
6 2.66 9.97 5.63
7 1.90 1.1 6.26
8 1.36 12.3 6.96
9 0.97 13.7 773
10 0.69 15.2 8.59

all three workloads. For random-dominated workload, the
HCM algorithm outperforms Forney’s algorithm by 44.8%
to 46.2% in throughput (on average 45.8%) and Liton’s
algorithm by 36.9% o 41.6% in throughput (on average
39.3%). For sequential-dominated workload, the HCM algo-
rithm outperforms Forney’s algorithm by 164.3% to 172.5%
in throughput (on average 170.9%) and Liton’s algorithm
by 13.6% to 67.2% in throughput (on average 39.4%). For
looping-dominated workload, the HCM algorithm outper-
forms Forney’s algorithm by 52.1% to 54.7% in throughput
(on average 53.4%) and Liton’s algorithm by 11.3% to 41.5% in
throughput (on average 28.4%). The major advantage of our
algorithm is that the benefit-cost-aware replacement policy
based on access pattern significantly improves the utility
of the cache blocks. Compared with Forney’s and Litons
algorithms, the HCM algorithm replaces the access delay
with the difference between marginal benefit and cost as the
allocation metric and ensures every allocation with the best
utility. Furthermore, different with the Forney’s and Liton’s
algorithms, the HCM algorithm will perform the prefetching
when detecting sequential accesses. So, the HCM algorithm
can obtain much more improvement under the sequential-
dominated workload than under the random-dominated and
looping-dominated workloads.

To further demonstrate the effect of the HCM algorithm
on utility, we design another set of experiments to compare
the throughput of Forney’s, Liton’s and the HCM algorithms
under different cache sizes. We vary the cache size from
40 MB to 200 MB (step by 40 MB). From the result of
Figure 4, we can observe that the threshold for cache size
exists in all three algorithms. In the HCM algorithm, the
performance shows almost no improvement once cache size
is beyond 160 MB. However, the threshold of the Forney
algorithm is about 80 MB and the Liton algorithm is about
120 MB which is smaller than HCM algorithm. The second
observation we make from Figure 4 is that the HCM algo-
rithm obtains better results in throughput than the other
two algorithms. For random-dominated workload, the HCM



Throughput (MB/s)

(=}
—
[\ )
W
N
w7
()}
~N
[ee)
o)
—
o

Age (years)

3 Forney
Y Liton
HCM

N
N

(a) Random-dominated workload

The Scientific World Journal

7_
6_
5
@
m
2 4
5
=
5 3
e
E

0

I

0 D
o 1 2 3 4 5 6 7 8 9 10
Age (years)
772 Forney
N Liton

HCM

(b) Sequential-dominated workload

7_
6_
z 77
)
2 4
H
? 39
5 \
E o §
N\ N\
\ \
N\ \
\ \
0 1 2 3 4 5 6 7 8 9 10
Age (years)

W72 Forney
N Liton
HCM

(¢) Looping-dominated workload

FIGURE 3: Throughput of the HCM and Forney algorithm with varying ages of the slow disk.

algorithm outperforms Forney’s algorithm by 10.0% (40 MB)
to 46.4% (200 MB) in throughput (on average 25.3%) and
Liton’s algorithm by 5.99% (80 MB) to 39.8% (200 MB) in
throughput (on average 20.0%). For sequential-dominated
workload, the HCM algorithm outperforms Forney’s algo-
rithm by 11.4% (40 MB) to 166.1% (200 MB) in throughput
(on average 93.9%) and Litons algorithm by 2.2% (40 MB)
to 61.4% (160 MB) in throughput (on average 29.9%). For
looping-dominated workload, the HCM algorithm outper-
forms Forney’s algorithm by 5.0% to 52.9% in throughput
(on average 30.4%) and Liton’s algorithm by 2.7% (80 MB)
to 34.8% (200 MB) in throughput (on average 19.2%). From
these results, we can find that the larger the cache is, the more
improvement the HCM algorithm will obtain.

3.2. Effect of Balance Scheme. To demonstrate the effect of
balance scheme on performance improvement, we have com-
pared the throughput under different imbalance workloads
for three algorithms: Forney’s algorithm, the HCM algo-
rithm without balance scheme, and the HCM algorithm with
balance scheme. The imbalance ratio of the workload is
expressed as a percentage. For example, if the imbalance ratio
of aworkload is 20%, then the 20% of the workload will access
to slow devices and the 80% of the workload will access to
fast devices. In these experiments, the imbalance ratio of the
workload is 5%, 15%, 20%, 25%, 30%, 60%, and 90%, resp-
ectively.

We can find several observations from these results which
were given in Figure 5. The first observation is that the



The Scientific World Journal

5_

Throughput (MB/s)

40 80 120 160 200
Cache size (MB)

V772 Forney
Y Liton
B HCM

(a) Random-dominated workload

54

Throughput (MB/s)

V773 Forney
Y Liton
BB HCM

Throughput (MB/s)

40 80 120 160 200
Cache size (MB)
773 Forney

NN Liton
B8 HCMm

(b) Sequential-dominated workload

. s
120 160 200
Cache size (MB)

(¢) Looping-dominated workload

FIGURE 4: Throughput of the HCM and Forney algorithm with varying cache sizes.

HCM algorithm with the balance scheme obtains higher
throughput than the other two algorithms for most work-
loads (only except the 5% case of Forney’s algorithm).
The HCM algorithm with balance scheme outperforms
Forney’s algorithm by —10.9% to 83.4% in throughput (on
average 19.1%) and outperforms the HCM without balance
scheme by 2.5% to 21.3% in throughput (on average 8.9%).
We found that the HCM algorithm with or without bal-
ance scheme obtained worse improvement at the extreme
imbalance ratio (e.g., 5% and 90%) than other imbalance
ratios. That is because in such extreme distribution of
accesses among partitions, the provision cache blocks in
light-loaded partitions are accessed little and decrease the

overall performance. The second observation is that the HCM
algorithm with balance scheme obtains larger improvement
with decrease of imbalance degree. In our experiments,
the disk array was composed of 4 disks. So, the 25%
point is more load balancing than other points. The HCM
algorithm with balance scheme obtained 83.4% improve-
ment in throughput than Forney’s algorithm and 21.3%
than the HCM without balance scheme at the 25% point.
Both improvements are the largest among all imbalance
points. The load balancing algorithms are widely adopted in
the modern storage system to guarantee that the accesses
are balanced distribution among all devices [14-16]. These
experiments proved that the balance scheme can improve



8

2.5 1

2.0

2

S 151

2 7

210/ % é

2 0 1

054 7 / /
A A
11

0.0 -
5 15 20 25 30 60 90

Imbalance ratio (%)

[ Forney
HBM without lower bound
Il HBM with lower bound

FIGURE 5: Throughput of Forney, HCM with and without balance
scheme under imbalance workload.

the performance and is suitable to the practical storage sys-
tems.

4. Related Work

There have been works on cost-aware caching in many areas,
such as web caching and main memory. The web cache
community has widely researched cost-aware caching [17-
19]. In web caching, the data blocks differ from fixed-size
blocks used in storage systems where all data blocks have a
uniform size and uniform cost.

There are also many papers that focus on main memory
adapting to the cost-aware caching. Kim et al. [6] had
proposed a unified buffer management scheme (UBM) for
main memory. The UBM first detects the access pattern and
stores the detected blocks in separate partitions of cache.
The allocation of cache blocks is tackled with the use of the
marginal gains. Choi et al. [7] had proposed similar cache
management scheme with Kim, which also exploits detecting
of the access pattern and analysis of the marginal gain.
Yadgar [8] had proposed Karma, which uses the marginal
gain of cache blocks in multilevel cache. Karma leverages
application hints to analyze the hit ratio (performance) and
make informed allocation and make replacement decisions
in all cache levels.

There are also many papers that focus on the effect of
cache in disk array. Bairavasundaram et al. [20] had proposed
a noninvasive exclusive caching mechanism for raids. X-ray
achieves a high degree of exclusivity by gray-box methods.
Baek and Park [21] had proposed a prefetching scheme with
adaptive cache culling for striped disk arrays. The prefetching
scheme provides low prefetching cost and evicts prefetched
block at proper time by using feedback and maximizes the
hit ratio of prefetched block and caching block. Wan et al. [22]
had proposed an asymmetric cache to boost the performance

The Scientific World Journal

of disk arrays under faulty conditions. The basic idea is to
give higher priority to cache the blocks on the faulty disks
and reduce the I/Os directed to the faulty disks.

5. Conclusion

In this paper, we have identified a series of problems in cache
algorithms in heterogeneous storage systems and proposed a
novel cache algorithm called HCM. It incorporates benefit-
cost analysis in the cache allocation, which aims to maximize
the utilization of caches. Furthermore, it achieves balanced
system utilization through dynamic adjustment of lower
bound of cache size for each partition. Simulation results
show that our algorithm is effective and gives much higher
throughput than Forney’s algorithm.

Acknowledgments

The authors are grateful to the anonymous reviewers who
helped improve the quality of the paper. The authors grate-
fully thank Professor Zhao Zhang for reading the paper
and for his constructive comments. This work was sup-
ported by the National Science Foundation under Grant no.
61025008, the National Basic Research Program of China
(973 Program) under Grant no. 2011CB302301, and the
Fundamental Research Funds for the Central Universities,
HUST: 2013TS043.

References

[1] B.C.Forney, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“Storage-aware caching: revisiting caching for heterogeneous
storage systems,” in Proceedings of the Conference on File and
Storage Technologies (FAST *02), pp. 61-74, 2002.

[2] L.Chakraborty and A. Singh, “A utility-based approach to cost-
aware caching in heterogeneous storage systems,” in Proceedings
of the 2Ist IEEE International Parallel and Distributed Processing
Symposium (IPDPS °07), pp. 1-10, March 2007.

[3] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R. Ganger,
“Argon: performance insulation for shared storage servers,” in
Proceedings of the 5th USENIX Conference on File and Storage
Technologies, 2007.

[4] B. S. Gill and D. S. Modha, “SARC: sequential prefetching
in adaptive replacement cache,” in Proceedings of the USENIX
Annual Technical Conference, pp. 293-308, 2005.

[5] E.J. O'Neil, P. E. O'Neil, and G. Weikum, “LRU-K page replace-
ment algorithm for database disk buffering,” in Proceedings of
the ACM SIGMOD International Conference on Management of
Data, vol. 22, pp. 297-306, May 1993.

[6] J. M. Kim, J. Choi, J. Kim et al., “A low-overhead high-perform-
ance unified buffer management scheme that exploits sequential
and looping references,” in Proceedings of the 4th Conference
on Symposium on Operating System Design and Implementation,
vol. 4, 2000.

[7] J. Choi, S. H. Noh, S. L. Min, and Y. Cho, “Towards applica-
tion/file-level characterization of block references: a case for
fine-grained buffer management,” in Proceedings of the ACM
SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, pp. 286-295, June 2000.



The Scientific World Journal

(8]

(14]

(16

(17

[20]

[22]

G. Yadgar, M. Factor, K. Li, and A. Schuster, “Management of
multilevel, multiclient cache hierarchies with application hints,”
ACM Transactions on Computer Systems, vol. 29, no. 2, article 5,
2011.

R. Ng, C. Faloutsos, and T. Sellis, “Flexible buffer allocation
based on marginal gains,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD
’91), vol. 20, pp. 387-396, 1991.

Sun Microsystems, “Solaris Internals: FileBench,” 2012, http://
sourceforge.net/apps/mediawiki/filebench/index.php?title=
Main_Page.

Y. Zhang, L. P. Arulraj, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “De-indirection for flash-based SSDs with nameless
writes,” in Proceedings of the 10th USENIX conference on File and
Storage Technologies, 2012.

D. Fryer, K. Sun, R. Mahmood et al., “Recon: verifying file
system consistency at runtime,” in Proceedings of the 10th
USENIX Conference on File and Storage Technologies, 2012.

J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R. Ganger, “The
DiskSim Simulation Environment Version 4.0 Reference Man-
ual,” Tech. Rep. CMU-PDL-08-101, Parallel Data Laboratory,
Carnegie Mellon University, Pittsburgh, Pa, USA, 2008.

Y. Gae-won, H. Seung-won, and N. Jain, “Scalable load bal-
ancing in cluster storage systems,” in Proceedings of the 12th
ACM/IFIP/USENIX International Conference on Middleware
(Middleware ’11), December 2011.

A. Gulati, C. Kumar, I. Ahmad, and K. Kumar, “BASIL: auto-
mated IO load balancing across storage devices,” in Proceedings
of the 8th USENIX Conference on File and Storage Technologies,
2010.

H. Hsiao, H. Chung, H. Shen, and Y. Chao, “Load rebalancing
for distributed file systems in clouds,” IEEE Transactions on
Parallel and Distributed Systems, vol. 24, pp. 951-962, 2013.

S.Jin and A. Bestavros, “Popularity-aware greedy dual-size web
proxy caching algorithms,” in Proceedings of the 20th Inter-
national Conference on Distributed Computing Systems (ICDCS
00), pp. 254-261, April 2000.

V.S. Pai, P. Druschel, and W. Zwaenepoel, “IO-Lite: a unified /O

buffering and caching system,” ACM Transactions on Computer
Systems, vol. 18, no. 1, pp. 37-66, 2000.

L. Rizzo and L. Vicisano, “Replacement policies for a proxy
cache” IEEE/ACM Transactions on Networking, vol. 8, no. 2, pp.
158-170, 2000.

L. N. Bairavasundaram, M. Sivathanu, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau, “X-RAY: a non-invasive exclusive
caching mechanism for RAIDs,” in Proceedings of the 3Ist
Annual International Symposium on Computer Architecture, pp.
176-187, June 2004.

S. H. Baek and K. H. Park, “Prefetching with adaptive cache
culling for striped disk arrays,” in Proceedings of the USENIX
Annual Technical Conference on Annual Technical Conference,
pp. 363-376, 2008.

S. Wan, Q. Cao, J. Huang et al., “Victim disk first: an asymmetric
cache to boost the performance of disk arrays under faulty con-
ditions,” in Proceedings of the USENIX Conference on USENIX
Annual Technical Conference, 2011.



Journal of ) )
Industrial Engineering

Applied
Computational
Intelligence and Soft

Computing—

. A International Journal of
The Scientific Dictione. S
World Journal Sensor Networks

Advances in

Fuzzy
Systems

--.------v' ]

Journal of
Computer Networks
and Communications

Journal of

Robotics

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at
http://www.hindawi.com

// Advances in

Artificia
Intelligence

Advances in
Artificial
Neural Systems

5'.

International Journal of
Computer Games . in
Technology S re Engineering

Reconfigurable
Computing

d Computational
Human-Computer Intelligence and Electrical and Computer
Interaction Neuroscience Engineering

Journal of

Ad



