
Research Article

An Effective Chaos-Based Image Encryption Scheme Using
Imitating Jigsaw Method

Zhen Li ,1,2 Changgen Peng ,1 Weijie Tan ,1 and Liangrong Li 2

1College of Computer Science and Technology, State Key Laboratory of Public Big Data, Guizhou University,
Guiyang 550025, China
2College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China

Correspondence should be addressed to Changgen Peng; cgpeng@gzu.edu.cn

Received 20 August 2020; Revised 25 September 2020; Accepted 6 February 2021; Published 20 February 2021

Academic Editor: Jesus M. Muñoz-Pacheco

Copyright © 2021 Zhen Li et al.,is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, an efficient chaos-based image encryption scheme is proposed, which uses the imitating jigsaw method containing
revolving and shifting operations. In this scheme, there are three processes in encryption: preprocessing, encryption process, and
postprocessing. In the preprocessing, the original image is partitioned into 64× 64 pixel image blocks and then randomly revolved
and shifted under control sequences which are generated by the hyperchaotic Lorenz system whose initial conditions are
calculated by original image and keys. ,erefore, the preprocessing is sensitive to plain image against differential attacks. In the
encryption process, the after-preprocessing image is partitioned into 32× 32 pixel image blocks; next they are randomly revolved
and encrypted by control sequence and key blocks which are generated by the skew tent map. In postprocessing, the after-
encryption image is partitioned into 16×16 pixels’ image blocks, and they are randomly revolved and shifted again under control
sequences which are related with encrypted image and keys. ,e postprocessing further increases the diffusion characteristics.
Moreover, the test experiment and security analyses are given; the results show that our proposed cryptosystem has both security
and speed performance.

1. Introduction

With the rapid development of electronic technology, digital
information is being applied in all the fields in the society.
Digital image is becoming the most widely used information
carrier in our daily life with many advantages, such as in-
tuition and vividness. At the same time, a series of security
problems of image information threaten the safety of peo-
ples’ life and property.,erefore, the information security of
digital image has become a research focus in recent years.
Because the image data has many special characteristics
which are different from text structure data, such as high
redundancy, strong correlation, and bulk data capacity,
traditional text encryption algorithms usually have low ef-
ficiency on image encryption [1]. ,erefore, the image en-
cryption scheme must be designed by considering those
characteristics.

Since the chaos theory was first proposed by Lorenz [2],
many chaotic phenomena were found inmany fields, such as

physics, astronomy, chemistry, biology, and medicine. In
recent years, the chaotic encryption attracts more and more
researcher’s attention. After Matthews [3] using the chaotic
system to design the first image encryption scheme, many
chaotic image encryption schemes are proposed in the recent
years [3–38]. Fridrich [26] gave a two-dimensional chaotic
symmetric ciphers scheme. Lian et al. [27] proposed a block
cipher using a chaotic standard map. At the same period,
many chaotic encryption schemes were put forward, such as
[19–24]. Many of these schemes have been proved to have
some security problems, such as weak plaintext sensitivity,
small key space, and easy statistical attack.

In the past five years, many splendid image encryption
schemes were presented. Hu et al. [4] proposed a chaotic
image cipher scheme by using a plaintext-related permu-
tation mechanism. In [5], an image encryption scheme was
presented by using chaos sequence to control the encoding
plain image to DNA sequence, and then they were encrypted
by cycle operation of DNA sequence. In [6], Hua et al.

Hindawi
Complexity
Volume 2021, Article ID 8824915, 18 pages
https://doi.org/10.1155/2021/8824915

mailto:cgpeng@gzu.edu.cn
https://orcid.org/0000-0003-1691-3384
https://orcid.org/0000-0001-8733-4596
https://orcid.org/0000-0001-6590-5757
https://orcid.org/0000-0001-7760-9146
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8824915

proposed a new 2D logistic-sine-coupling map and then
designed an image encryption scheme using this chaotic
system. In [7], Gao et al. gave a new 2D logistic ICMIC
cascade map and then proposed a bit-level image encryption
algorithm based on this map. Chai et al. [8] used the
memristive chaotic system, elementary cellular automata,
and compressive sensing to design an image encryption
cryptosystem. Ye et al. [9] proposed an image encryption
scheme by using SHA-3 hash function and double Arnold
chaotic maps. Luo et al. [10] designed a plain image-related
cryptosystem by using the tent map to generate two ergo-
dicity sequences to control the permutation and diffusion
processes. In [11], Hua et al. proposed an image encryption
scheme for medical image by using high-speed scrambling
and pixel adaptive diffusion. Khelifi et al. [12] presented an
encryption scheme for image data sharing in cloud. In [13],
Wang and Zhang used the hyperchaotic system to design an
image encryption scheme which expanded the plain image
into two compound images and then diffused them at the bit
level. In [14], an image encryption scheme was presented
which encrypted the image from four directions by inter-
weaving pairs of rows and columns. In [15], an image en-
cryption scheme was designed by using rows and columns
switch. In [16], Liu et al. designed a self-adaptive selective
permutation and inter-intra-block feedback diffusion and
then used them by designing an image encryption scheme.
Wu et al. [17] proposed a color image encryption scheme
using the nonlinear chaotic algorithm (NCA) map-based
coupled map lattice (CML) and DNA operation. Wang et al.
[18] used chaos and simulated annealing algorithm to design
the image encryption scheme. Li et al. [29] proposed a
plaintext related image encryption scheme based on the
hyperchaotic system and hash function. In [30], Wu et al.
proposed an image encryption algorithm by using Henon-
Sine map and DNA approach. Ye et al. [31] proposed an
image encryption scheme by using quaternion discrete
fractional Hartley transform and an improved pixel adaptive
diffusion. In [32], Zhu et al. use block compressive sensing
and singular value decomposition embedding to balance the
security, compression, and robustness. In [33], an image
encryption scheme is proposed by using 2D multiple pa-
rameter fractional discrete Fourier transform and 3DArnold
transform. You et al. [34] proposed a parallel image en-
cryption scheme and implemented by OpenCL. Ouyang
et al. [35] proposed a method of impulsive synchronization
of coupled delayed neural networks with actuator saturation
and designed an image encryption scheme by using this
method. In [36], a compressed sensing strategy based on a
semitensor product was proposed and a visual security
image encryption scheme was designed. In [37], an image
encryption scheme was proposed by using compressive
sensing and random number insertion. Zhang et al. [38]
proposed a plaintext-related image encryption scheme by
using perceptron-like network. Li et al. [39] proposed an
efficient bit-level permutationmethod and designed a chaos-
based color image encryption scheme. Yavuz et al. [40]
proposed an effective image encryption algorithm using two
independent chaotic functions and some logical operations.
Yavuz [41] proposed a content sensitive dynamic function

and used this mechanism to design an image encryption
scheme. Amina et al. [42] proposed an image encryption
scheme using logistic-tent system. Ravichandran et al. [43]
presented an image encryption scheme based on combined
logistic-tent system. Lakshmi et al. [44] proposed a Hopfield
attractor-based image encryption scheme using neural
networks. Banu et al. [45] proposed an image encryption
based on chaotic attractors on frequency domain by integer
wavelet transform (IWT) and fused with deoxyribonucleic
acid (DNA) sequence on the spatial domain. Alawida et al.
[46] proposed a new chaotification method which combined
two chaotic maps and designed an image encryption scheme
using this method. Alawida et al. [47] used a deterministic
finite state machine to enhance chaotic properties of tent
map and proposed an image encryption scheme using this
new chaotic system. Artiles et al. [48] combined the block
cipher and chaotic system to design an image encryption
scheme; the drawback of this scheme is less efficiency. Wang
et al. [49] proposed an image encryption algorithm using
logistic-dynamic mixed linear-nonlinear coupled map lat-
tices. Luo et al. [50] presented an image encryption scheme
using improved baker map and logistic map.

As we all know, a good image encryption scheme not
only should have an excellent security performance but also
need to have an outstanding encryption speed performance.
,e main contributions of our work are as follows:

(1) We proposed an efficient image encryption scheme
based on chaos theory and imitating jigsaw operation

(2) We give a complete security analysis and perfor-
mance analysis

(3) ,e proposed scheme is proved to have good en-
cryption and decryption efficiencies compared with
those of others’ works

,e organization of this paper is as follows: in Section 2,
we give a detailed description of the encryption and de-
cryption algorithms. In Section 3, we simulate our proposed
cryptosystem and use some security analyses to prove our
work is secure. Section 4 concludes this paper.

2. Encryption and Decryption Algorithms

In our proposed image cryptosystem, there are three pro-
cesses in both encryption and decryption algorithms: pre-
processing process, encryption or decryption process, and
postprocessing process. In preprocessing and postprocessing
processes, we use the hyperchaotic Lorenz system to gen-
erate the control sequences of revolving and shifting image
blocks. In the encryption or decryption process, we use the
skew tent system to generate the control sequence of re-
volving image blocks and the security key for encryption or
decryption.

Remark 1. In our proposed scheme, we use the hyperchaotic
system and skew tent map to control the encryption process.
However, the other chaotic systems can also be extended in
our scheme, and the only difference is the size of the key
space.

2 Complexity

,e hyperchaotic Lorenz system [51] is given by

_x � a(y − x) + w,

_y � cx − y − xz,

_z � xy − bz,

_w � −yz + cw,

(1)

where a, b, c, and c are the parameters of the system. When
a� 10, b� 8/3, c� 28, and c ∈ [−1.52,−0.06], the system goes
into chaos. Figure 1 shows attractors of the hyperchaotic
Lorenz system.

,e skew tent system [52] is given by

tn+1 �

tn
p
, tn ∈ (0, p),

1 − tn()(1 − p), tn ∈ [p, 1),

 (2)

where p is the parameter of the skew tent system.
Whenp ∈ (0, 0.5)∪ (0.5, 1), the system can generate a
chaotic sequencetn ∈ (0, 1).

2.1. Encryption Algorithm. ,e whole encryption scheme as
shown in Figure 2 has two parts: image data processing
before encryption part and encryption algorithm part. ,e
purpose of data processing before encryption is to make
input images suitable for processing rules of encryption
algorithms. ,e details are as follows:

Step 1: we supposed the inputted image IM is an
M0 × N0 8 bit gray image and check whether M0 and
N0 can be divided exactly by 64.

Step 2: if M0 cannot be divided exactly by 64, but N0
can, then execute Step 3a. If N0 cannot be divided
exactly by 64, but M0 can, then execute Step 3b. And, if
both M0 and N0 cannot be divided exactly by 64, then
execute Step 3c (only one of the Steps 3a, 3b, and 3c can
be executed).

Step 3a: take an integer number between 0 and 63 and
denote it as nm, to make M0 + nm to be divided exactly
by 64. Build an nm×N0 matrix NBM whose each
element is equal nm.Combine the twomatrixes IM and
NBM to be a new (M0 + nm)×N0 matrix, as shown in
Figure 3.

Step 3b: take an integer number between 0 and 63 and
denote it as nn, to make N0 + nn to be divided exactly
by 64. Build a M0 × nn matrix NBN whose each ele-
ment is equal nn. Combine the two matrixes IM and
NBN to be a new M0× (N0 + nn) matrix, as shown in
Figure 3.

Step 3c: take an integer number between 0 and 63 and
denote it as nm, to make M0 + nm to be divided exactly
by 64. Take an integer number between 0 and 63 and
denote it as nn, to make N0 + nn to be divided exactly
by 64. Generate a new (M0 + nm)× (N0 + nn) matrix
by IM, NBN, NBM, and NBT as Figure 3, where el-
ements in matrix NBM are equal to nm, elements in

matrix NBN are equal to nn, and elements in matrix
NBT are equal to nm + nn.

Step 4: finish the data processing with outputting
M×N image matrix IM1.

After data processing, we put the outputted-image
matrix into encryption algorithm. ,ere are three processes
in encryption algorithm: preprocessing process, encryption
process, and postprocessing process. ,e encryption algo-
rithm is shown in Algorithm 1.

,e detailed description of encryption algorithm is as
follows:

Step 1: input the data processed image IM1 and initial
key k1, k2, . . . , k9 into the encryption algorithm.

Step 2: the preprocessing process begins. IM1 is par-
titioned as 64× 64 pixels image blocks, and there are
BN1 � (M/64) × (N/64) blocks; they are denoted as
preBlock (1), preBlock (2), . . ., preBlock (BN1).

Step 3: add all the gray values of pixels of the IM1, and
the summation is denoted as S1. ,e initial conditions
of the hyperchaotic Lorenz system are generated by
equations (3)–(6):

x0 � mod k1 × S1, 80() − 40() × k2 + k6, (3)

y0 � mod k2 × S1, 80() − 40() × k3 + k7, (4)

z0 � mod k3 × S1, 80() + 1() × k4 + k8, (5)

w0 � mod k4 × S1, 500() − 250() × k5 + k9, (6)

where mod (a, b) means the remainder of a/b (similarly
hereinafter).

Step 4: under initial conditions which are generated in
Step 3, equation (1) is iterated by using the fourth-order
Runge-Kutta method with 0.002 step size. ,e re-
volving control sequence RS1 and the shifting control
sequence XS1 are generated by equations (7) and (8),
respectively:

RS1 � mod floor (y + 100) × 108, 4()(, (7)

XS1 � mod floor (x + 100) × 108,BN1() + 1(, (8)

Step 5: image blocks are revolved by using the following
equation:

preBlock(i) � imrotate(preBlock(i), 90 × RS1(i)),

(9)

where imrotate(P,m) means image P is rotated m
degrees in the anticlockwise direction (similarly
hereinafter) andiis the serial number of elements in the
sequences preBlock and RS1.

Step 6: remove the repeated elements from XS1 and
then put the absent numbers at the end to generate a
new sequence X1.

Complexity 3

–10

–10

0

0

10

10

20

20

x
–20

–20

y

(a)

–10 0 10 20

x

–20

z

10

20

30

40

(b)

x

0 20–20

w

–100

0

100

200

(c)

z

w

–100

0

100

200

10 20 30 40

(d)

0 20–20

y

w

–100

0

100

200

(e)

–10 0 10 20–20

y

z

10

20

30

40

(f)

Figure 1: Hyperchaotic attractors in (a) x-y plane, (b) x-z plane, (c) x-w plane, (d) z-w plane, (e) y-w plane, and (f) y-z plane.

(1,1) (1,N0)

(M0,1)

(M0 + nm,1)

IM

NBM

(a)

(1,1) (1,N0)

(M0,1)

(1,N0 + nn)

IM NBN

(b)

(1,1) (1,N0) (1,N0 + nn)

IM NBN

NBM

(M0,1)

(M0 + nm,1)

NBT

(c)

Figure 3: ,e rules of matrix combination.

Plain
image

Cipher
image

Chaotic
system 1

Chaotic
system 2

Chaotic
system 3

Partitioning image as
32×32 pixels blocks

Revolve
image blocks

Shi�ing
image blocks

k1, k2, k3, k4, k5, k6, k7, k8, k9

Partitioning image as
16×16 pixels blocks

Revolve
image blocks

Shi�ing
image blocks

Partitioning image as
64×64 pixel blocks

Encryption
key

Encryption
image

Revolve
image blocks

Preprocessing process

Data
processing

Encryption process Post-processing process

Figure 2: Encryption scheme.

4 Complexity

Input: image IM1 and initial key [[k1, k2, . . . , k9]]
(1) [M N]⟵ size (IM1);
(2) Partitioning IM1 as 64× 64 pixels image blocks

[preBlock (1), preBlock (2), . . ., preBlock (BN1)], where BN1 � (M/64) × (N/64)
(3) S1⟵ SUM(IM1)
Generate initial conditions of the hyperchaotic Lorenz system:

x0⟵ (mod(k1 × S1, 80) − 40) × k2 + k6;y0⟵ (mod(k2 × S1, 80) − 40) × k3 + k7;
z0⟵ (mod(k3 × S1, 80) + 1) × k4 + k8;w0⟵ (mod(k4 × S1, 500) − 250) × k5 + k9;

(4) Iterate equation (1) withx0, y0, z0,w0.
Generate revolving control sequence RS1⟵mod(floor((y + 100) × 108, 4)

Generate shifting control sequence XS1⟵mod(floor((x + 100) × 108,BN1) + 1
(5) fori � 1 toBN1then

preBlock(i)⟵ imrotate(preBlock(i), 90 × RS1(i))
end for

(6) Generate a new sequence X1 by removing repeated elements from XS1 and putting the absent numbers at the end.
(7) fori � 1 toBN1/2then

preBlock(X1i)↔preBlock(X1BN1−i+1)

end for
(8) Restructure preBlock to an image matrix IM2
(9) Partitioning IM2 as 32× 32 pixels’ image blocks

[encBlock (1), encBlock (2),. . ., encBlock (BN2)], where BN2 � (M/32) × (N/32)
(10) Generate system parameter p and initial condition t0 of skew tent map:

p⟵mod((k1 + k2 + k3) × k4 + k5, 1);t0⟵mod((k5 + k6 + k7) × k8 + k9, 1)
(11) Iterate equation (2) withp, t0.
Generate revolving control sequence RS2⟵mod(floor((t + 100) × 108, 4)

Generate key sequence KS⟵mod(floor(t × 1012), 256)
(12) Reshape key sequence KS to be a 32× 32 blocks

[keyBlock (1), keyBlock (2),. . ., keyBlock (BN2)]
(13) for i � 1 toBN2then

encBlock(i)⟵ imrotate(encBlock(i), 90 × RS2(i))
end for

(14) cBlock(1)⟵ encBlock(1)⊕keyBlock(1)
fori � 2 toBN2then

cBlock(i)⟵ encBlock(i)⊕keyBlock(i)⊕cBlock(i − 1)
end for

(15) Restructure cBlock to an image matrix IM3
(16) Partitioning IM3 as 16×16 pixels’ image blocks:

[postBlock (1), postBlock (2),. . ., postBlock (BN3)], where BN3 � (M/16) × (N/16)
(17) S2⟵ SUM(IM3)

Generate initial conditions of hyper-chaotic Lorenz system:
x0⟵ (mod(k6 × S2, 80) − 40) × k4 + k1;y0⟵ (mod(k7 × S2, 80) − 40) × k3 + k2;
z0⟵ (mod(k8 × S2, 80) + 1) × k2 + k3;w0⟵ (mod(k9 × S2, 500) − 250) × k1 + k4;
(18) Iterate equation (1) withx0, y0, z0,w0.

Generate revolving control sequence RS3⟵mod(floor((y + 100) × 108, 4)
Generate shifting control sequence XS2⟵mod(floor((x + 100) × 108,BN3) + 1

(19) for i � 1 toBN3 then
postBlock(i)⟵ imrotate(postBlock(i), 90 × RS3(i))

end for
(20) Generate a new sequence X2 by removing repeated elements from XS2, and putting the absent numbers at the end.
(21) for i � 1 toBN3/2then

postBlock(X2i)↔postBlock(X2BN3−i+1)

end for
(22) Restructure postBlock to an image matrix CM

Output: cipher image CM

ALGORITHM 1: Encryption algorithm.

Complexity 5

Step 7: substitute preBlock(X1i) withpreBlock(X
1BN1−i+1), wherei � 1, 2, . . . ,BN1/2.

Step 8: generate a new image IM2 by restructuring
preBlock. ,e preprocessing process is finished.

Step 9: ,e encryption process begins. IM2 is parti-
tioned as 32× 32 pixels image blocks, and there are
BN2 � (M/32) × (N/32) blocks; they are denoted as
encBlock (1), encBlock (2),. . ., encBlock (BN2).

Step 10: generate system parameter p and initial con-
dition t0 of skew tent map by equations (10) and (11),
respectively:

p � mod k1 + k2 + k3() × k4 + k5, 1(), (10)

t0 � mod k5 + k6 + k7() × k8 + k9, 1(), (11)

Step 11: equation (2) was iterated under system pa-
rameter p and initial condition t0.,e revolving control

sequence RS2 and the key sequence KS are generated
by equations (12) and (13), respectively:

RS2 � mod floor (t + 100) × 108, 4()(, (12)

KS � mod floor t × 1012(), 256(). (13)

Step 12: reshape key sequence KS to be BN2 key blocks
with 32× 32 and denote them as keyBlock (1), key-
Block (2),. . ., keyBlock (BN2).

Step 13: Revolve the image blocks by using the fol-
lowing equation:

encBlock(i) � imrotate(encBlock(i), 90 × RS2(i)).

(14)

Step 14: encrypt image blocks by the following
equation:

cBlock(i) � encBlock(i) ⊕ keyBlock(i), i � 1,

cBlock(i) � encBlock(i) ⊕ keyBlock(i) ⊕ cBlock(i − 1), 2≤ i≤BN2.
{ (15)

Step 15: generate a new image IM3 by restructuring
cBlock. ,e encryption process is finished.

Step 16: the postprocessing process begins. IM3 is
partitioned as 16×16 pixels image blocks, and there are
BN3 � (M/16) × (N/16) blocks; they are denoted as
postBlock (1), postBlock (2), . . ., postBlock (BN3).

Step 17: add all the gray values of pixels of the IM3, and
the summation is denoted as S2. ,e initial conditions
of the hyperchaotic Lorenz system are generated by the
following equations:

x0 � mod k6 × S2, 80() − 40() × k4 + k1, (16)

y0 � mod k7 × S2, 80() − 40() × k3 + k2, (17)

z0 � mod k8 × S2, 80() + 1() × k2 + k3, (18)

w0 � mod k9 × S2, 500() − 250() × k1 + k4. (19)

Step 18: under initial conditions which are generated in
Step 17, equation (1) is iterated by using the fourth-
order RungeKutta method with 0.002 step size. ,e
revolving control sequenceRS3 and the shifting control
sequence XS2 are generated by equations (20) and (21),
respectively:

RS3 � mod floor (y + 100) × 108, 4()(, (20)

XS2 � mod floor (x + 100) × 108,BN3() + 1((21)

Step 19: image blocks are revolved by the following
equation:

postBlock(i) � imrotate(postBlock(i), 90 × RS3(i)).

(22)

Step 20: remove the repeated elements from XS2 and
then put the absent numbers at the end to generate a
new sequence X2.

Step 21: substitute postBlock(X2i)

withpostBlock(X2BN3−i+1), wherei � 1, 2, . . . ,BN3 /2.

Step 22: generate cipher image CM by restructuring
postBlock. ,e postprocessing process is finished.

Step 23: output the cipher image, and the encryption
algorithm is finished.

2.2. DecryptionAlgorithm. ,e decryption scheme as shown
in Figure 4 has two parts as encryption: the decryption
algorithm part and data processing part. ,e decryption
algorithm is the inverse process of the encryption algorithm
and also has three processes: preprocessing process, de-
cryption process, and postprocessing process. ,e decryp-
tion algorithm is shown in Algorithm 2.

,e detail description of the decryption algorithm as
follows:

Step 1: input cipher image CM1 and initial key
k1, k2, . . . , k9 into decryption algorithm, and the cipher
image is supposed to be M×N 8 bit gray image.

Note: inputted security keys are defined
ask1, k2, . . . , k9 ∈ (0, 1), which are used to generate
parameter and initial values of the hyperchaotic Lorenz
system and skew tent map. To avoid weak key problem
[53], we require each input key to be 15 decimal places.

Step 2: the preprocessing process begins. Partition CM1
as 16×16 pixels image blocks, and there are BN4 �

6 Complexity

Cipher
image

Chaotic
system 3

Partitioning image as
16×16 pixels blocks

Revolve
image blocks

Shi�ing
image blocks

Chaotic
system 2

Partitioning image as
32×32 pixels blocks

Decryption
key

Decryption
image

Chaotic
system 1

Revolve
image blocks

Shi�ing
image blocks

Partitioning image as
64×64 pixels blocks

Plain
image

Revolve
image blocks

k1, k2, k3, k4, k5, k6, k7, k8, k9

Preprocessing process

Data
processing

Decryption process Post-processing process

Figure 4: Decryption scheme.

Input: cipher image CM1 and initial key [[k1, k2, . . . , k9]]
(1) [M N]⟵size (CM1);
(2) Partitioning CM1 as 16×16 pixels image blocks:

[preCBlock (1), preCBlock (2), . . ., preCBlock (BN4)], where BN4 � (M/16) × (N/16)
(3) S3⟵ SUM(CM1)

Generate initial conditions of the hyperchaotic Lorenz system:
x0⟵ (mod(k6 × S3, 80) − 40) × k4 + k1;y0⟵ (mod(k7 × S3, 80) − 40) × k3 + k2
z0⟵ (mod(k8 × S3, 80) + 1) × k2 + k3;w0⟵ (mod(k9 × S3, 500) − 250) × k1 + k4

(4) Iterate equation (1) withx0, y0, z0,w0.
Generate revolving control sequence RS4⟵mod(floor((y + 100) × 108, 4)
Generate shifting control sequence XS3⟵mod(floor((x + 100) × 108,BN4) + 1

(5) Generate a new sequence X3 by removing repeated elements from XS3 and putting the absent numbers at the end.
(6) fori � 1 toBN4/2then

preCBlock(X3i)↔preCBlock(X3BN4−i+1)

end for
(7) fori � 1 toBN4then

preCBlock(i)⟵ imrotate(preCBlock(i), −90 × RS4(i))
end for

(8) Restructure preCBlock to an image matrix CM2
(9) Partitioning CM2 as 32× 32 pixels’ image blocks:

[decCBlock (1), decCBlock (2),. . ., decCBlock (BN5)], where BN5 � (M/32) × (N/32)
(10) Generate system parameter p and initial condition t0 of skew tent map:

p⟵mod((k1 + k2 + k3) × k4 + k5, 1);t0⟵mod((k5 + k6 + k7) × k8 + k9, 1)
(11) Iterate equation (2) withp, t0.

Generate revolving control sequence RS5⟵mod(floor((t + 100) × 108, 4)
Generate key sequence KS1⟵mod(floor(t × 1012), 256)

(12) Reshape key sequence KS1 to be a 32× 32 blocks
[keyCBlock (1), keyCBlock (2),. . ., keyCBlock (BN5)]

(13) fori � BN5 to 2 step − 1then
pBlock(i)⟵ de cCBlock(i)⊕keyCBlock(i)⊕pBlock(i − 1)

end for
pBlock(1)⟵ de cCBlock(1)⊕keyCBlock(1)

(14) fori � 1 toBN5then
de cCBlock(i)⟵ imrotate(de cCBlock(i),−90 × RS5(i))

end for
(15) Restructure pBlock to an image matrix CM3
(16) Partitioning CM3 as 64× 64 pixels’ image blocks:

[postCBlock (1), postCBlock (2), . . ., postCBlock (BN6)], where BN6 � (M/64) × (N/64)
(17) S4⟵ SUM(CM3)

Generate initial conditions of the hyperchaotic Lorenz system:
x0⟵ (mod(k1 × S4, 80) − 40) × k2 + k6;y0⟵ (mod(k2 × S4, 80) − 40) × k3 + k7;
z0⟵ (mod(k3 × S4, 80) + 1) × k4 + k8;w0⟵ (mod(k4 × S4, 500) − 250) × k5 + k9;

(18) Iterate equation (1) with x0, y0, z0,w0.
Generate revolving control sequence RS6⟵mod(floor((y + 100) × 108, 4).
Generate shifting control sequence XS4⟵mod(floor((x + 100) × 108,BN6) + 1

ALGORITHM 2: Continued.

Complexity 7

(M/16) × (N/16) blocks; and they are denoted as
preCBlock (1), preCBlock (2), . . ., preCBlock (BN4).

Step 3: add all the gray values of pixels of the CM1, and
the summation is denoted as S3. ,e initial conditions
of the hyperchaotic Lorenz system are generated by
equations (23)–(26):

x0 � mod k6 × S3, 80() − 40() × k4 + k1, (23)

y0 � mod k7 × S3, 80() − 40() × k3 + k2, (24)

z0 � mod k8 × S3, 80() + 1() × k2 + k3, (25)

w0 � mod k9 × S3, 500() − 250() × k1 + k4. (26)

Step 4: under initial conditions which are generated in
Step 3, equation (1) is iterated by using the fourth-order
Runge-Kutta method with 0.002 step size. ,e re-
volving control sequence RS4 and the shifting control
sequence XS3 are generated by equations (27) and (28),
respectively:

RS4 � mod floor (y + 100) × 108, 4()(, (27)

XS3 � mod floor (x + 100) × 108,BN4() + 1((28)

Step 5: remove the repeated elements from XS3 and
then put the absent numbers at the end to generate a
new sequence X3.

Step 6: substitute preCBlock(X3i) withpreCBlock
(X3BN4−i+1), wherei � 1, 2, . . . ,BN4/2.

Step 7: image blocks are revolved by the following
equation:

preCBlock(i) � imrotate(preCBlock(i),−90 × RS4(i)).

(29)

Step 8: generate a new image CM2 by restructuring
preCBlock. ,e preprocessing process is finished.

Step 9: the decryption process begins. Partition CM2 as
32× 32 pixels image blocks, and there are
BN5 � (M/32) × (N/32) blocks; denote them as
decCBlock (1), decCBlock (2),. . ., decCBlock (BN5).

Step 10: generate system parameter p and initial con-
dition t0 of skew tent map by equations (30) and (31),
respectively:

p � mod k1 + k2 + k3() × k4 + k5, 1(), (30)

t0 � mod k5 + k6 + k7() × k8 + k9, 1(). (31)

Step 11: iterate equation (2) under system parameter p
and initial condition t0. ,e revolving control sequence
RS5 and the key sequence KS1 are generated by
equations (32) and (33), respectively:

RS5 � mod floor (t + 100) × 108, 4()(, (32)

KS1 � mod floor t × 1012(), 256(). (33)

Step 12: reshape key sequence KS1 to be BN5 key
blocks with 32× 32 and denote them as keyCBlock (1),
keyCBlock (2),. . ., keyCBlock (BN5).

Step 13: decrypt the image blocks by the following
equation:

pBlock(i) � de cCBlock(i)⊕keyCBlock(i), i � 1,

pBlock(i) � de cCBlock(i)⊕keyCBlock(i)⊕pBlock(i − 1), 2≤ i≤BN5.
{ (34)

Step 14: revolve the image blocks by using the following
equation:

de cCBlock(i) � imrotate(de cCBlock(i),−90 × RS5(i)).

(35)

Step 15: generate a new image CM3 by restructuring
pBlock. ,e decryption process is finished.

Step 16: the preprocessing process begins. Partition
CM3 as 64× 64 pixels image blocks, and there are
BN6 � (M/64) × (N/64) blocks; denote them as

(19) Generate a new sequence X4 by removing repeated elements from XS4 and putting the absent numbers at the end.
(20) fori � 1 toBN6/2then

postCBlock(X4i)↔postCBlock(X4BN6−i+1)

end for
(21) fori � 1 toBN6then

postCBlock(i)⟵ imrotate(postCBlock(i),−90 × RS6(i))
end for

(22) Restructure postCBlock to an image matrix PM
Output: plain image PM

ALGORITHM 2: Decryption algorithm.

8 Complexity

postCBlock (1), postCBlock (2), . . ., postCBlock
(BN6).

Step 17: add all the gray values of pixels of theCM3, and
the summation is denoted as S4. ,e initial conditions
of the hyperchaotic Lorenz system are generated by the
following equations:

x0 � mod k1 × S4, 80() − 40() × k2 + k6, (36)

y0 � mod k2 × S4, 80() − 40() × k3 + k7, (37)

z0 � mod k3 × S4, 80() + 1() × k4 + k8, (38)

w0 � mod k4 × S4, 500() − 250() × k5 + k9. (39)

Step 18: under initial conditions which are generated in
Step 18, iterate equation (1) by using the fourth-order
RungeKutta method with 0.002 step size. ,e revolving
control sequence RS6 and the shifting control sequence
XS4 are generated by equations (7) and (8),
respectively:

RS6 � mod floor (y + 100) × 108, 4()(, (40)

XS4 � mod floor (x + 100) × 108,BN6() + 1((41)

Step 19: remove the repeated elements from XS4 and
then put the absent numbers at the end to generate a
new sequence X4.

Step 20: substitute postCBlock(X4i)

withpostCBlock(X4BN6−i+1), where i � 1, 2, . . . ,BN
6/2.

Step 21: revolve the image blocks by the following
equation:

postCBlock(i) � imrotate(postCBlock(i),−90 × RS6(i)).

(42)

Step 22: generate plain image PM by restructuring
postCBlock. ,e postprocessing process is finished.

Step 23: output image matrix PM, and the decryption
algorithm is finished.

After decryption algorithm part, we also need to run data
processing to get the plain image.,e purpose of this section
is to remove the pixels when added by data processing before
the encryption part; the detailed description is as follows:

Step 1: check the relationship of three pixels’ value
which are located in (1, N), (M, 1), and (M, N). We
denote these three pixel value as nn, nm, and nt, re-
spectively. If nt is not equal to nn, nm, or nn + nm, then
execute Step 2a. If nt is equal to nn, then execute Step
2b. If nt is equal to nm, then execute Step 2c. If nt is
equal to nm + nn, then execute Step 2d (only one of the
Steps 2a, 2b, 2c, and 2d can be executed)

Step 2a: do nothing with PM, and the matrix DPM will
be equal to PM.

Step 2b: check some elements’ value in matrix PM
which locate from rows 1 to M and columns N-nn + 1
to N. If all those elements’ value are equal to nn, then
matrix DPM is equal to a part of matrix PM from rows
1 to M and columns 1 to N-nn. Otherwise, the matrix
DPM is equal to PM.

Step 2c: check some elements’ value in matrix PM
which locate from rows M-nm + 1 to M and columns 1
to N. If all those elements’ value are equal to nm, then
matrix DPM is equal to a part of matrix PM from rows
1 to M-nm and columns 1 to N. Otherwise, the matrix
DPM is equal to PM.

Step 2d: check some elements’ value in matrix PM
which locate from rows M-nm + 1 to M and columns
N-nn + 1 to N. If all those elements’ value are equal to
nm + nm, then matrix DPM is equal to a part of matrix
PM from rows 1 to M-nm and columns 1 to N-nn.
Otherwise, the matrix DPM is equal to PM.

Step 3: output the plain image DPM, and the whole
decryption scheme is finished.

3. Simulation and Security Analysis

In this section, we evaluated our proposed scheme by software
simulation running inMATLAB 2015b.,e systemparameters
which are given in equation (1) are a� 10, b� 8/3, c� 28, and
c� -1, and the inputted keys are k1� 0.132312432152369,
k2� 0.723357645512358, k3� 0.234342634695632, k4� 0.4
32313435498574, k5� 0.832312114474569, k6� 0.64231
2345436958, k7� 0.532345341689841, k8� 0.9323786
47316581, and k9� 0.232373784321657. ,e test images are
512× 512 pixels with 8 bit gray level, and the simulation results
are shown in Figure 5. In following subsections, many com-
monly used security analyses will be discussed.

3.1. Key Space Analysis. ,e key space of a cryptosystem is
the very important factor on security when brute-force at-
tack is happening. In our scheme, the cryptosystem needs
input k1, k2, k3, k4, k5, k6, k7, k8, and k9 ∈∈(0, 1) as security
key. If we supposed the change step of each inputted key
are 10− 15, then the total key space is calculated as
S � (105)9 ≈ 2455, which is larger enough on security [4–6].

3.2.DifferentialAttack. To resist differential attack, an image
cryptosystem is required to have a good plaintext sensitivity.
If the inputted image has only one-bit changed, the corre-
sponding encrypted image is totally different, then the
cryptosystem is considered to have enough plaintext sen-
sitivity to resist differential attack. To measure the difference
between two image, NPCR (number of pixels change rate)
and UACI (unified average changing intensity) are put
forward [8–11].

Complexity 9

,e NPCR and UACI are given by

NPCR �
∑Mi�1∑Nj�1D(i, j)

M ×N
× 100%,

D(i, j) �
0, C1(i, j) � C2(i, j),

1, C1(i, j)≠C2(i, j),

UACI �

1

M ×N
∑M
i�1

∑N
j�1

C1(i, j) − C2(i, j)
∣∣∣∣ ∣∣∣∣

255
 × 100%,

(43)

where C1(i, j) and C2(i, j) represent two cipher-images
obtained from encrypting two one-pixel different images.M
andN represent the height and width of images, respectively.

,e NPCR means the percentage of different pixels at
same position between two corresponding encrypted images
which are obtained by two images with one-bit difference,
and the UACI represents the average intensity of the dif-
ference between two same position’s pixels which are ob-
tained from two cipher images.

In order to evaluate whether the NPCR and UACI
images passed the tests, the critical values of NPCR and
UACI are defined [54, 55]. For a significance level α, a critical
NPCR score N

∗
α is obtained by

N
∗
α �

Q −Φ− 1(α)
����
Q/H
√

Q + 1
, (44)

where H is the total number of pixels in an image and Q
represents the largest allowed pixel value in the image. An
image encryption scheme can be considered to pass the
NPCR if the obtained NPCR is larger than N

∗
α .

,e critical UACI interval (U∗−α ,U∗+α) can be calculated
by

U
∗−
α � μ

U
−Φ− 1 α

2
()σU,

U
∗+
α � μ

U
+Φ− 1 α

2
()σU,

(45)

where

μ
U
�
Q + 2

3Q + 3
,

σU �

������������������
(Q + 2) Q2

+ 2Q + 3()
18(Q + 1)2QH

√√
.

(46)

If the obtained UACI falls into range (U∗−α ,U∗+α), the
corresponding encryption algorithm is considered to have a
high security level. For images with size 512× 512, when we

(a) (b) (c)

(d) (e) (f)

Figure 5: ,e simulation results of encryption and decryption: (a, d) plain images; (b, e) cipher images; (c, f) decrypted images.

10 Complexity

set the significance level α � 0.05, the critical value of NPCR
is N

∗
0.05 � 99.5893% and (U∗−0.05,U

∗+
0.05) � (33.3730%,

33.5541%).
In this section, the NPCR and UACI are calculated by

two cipher images obtained by encrypting two images, the
one obtained by random changing one pixel of another. We
tested NPCR and UACI 100 times, and the results are shown
in Table 1. According to the results in Table 1, it is no doubt
that our cryptosystem is plaintext sensitive enough on
resisting the differential attack.

3.3. Statistical Analysis

3.3.1. Histogram Analysis. If the histogram of the corre-
sponding cipher image shows uniform distribution, the
cryptosystem has good ability on resisting the statistical
attack. In other words, there is no obvious statistical dis-
tinction of the count of pixels in each gray level. ,e dis-
tribution of plain images’ histograms and cipher images’
histograms is shown in Figure 6. We use the chi-squared test
to evaluate the uniformity of encrypted image’s histogram
[43, 56]. When we set the significance level α � 0.05, the chi-
squared test results of cipher images is given in Table 2. ,e
histogram analysis result shows that our proposed crypto-
system has good diffused property on resisting the statistical
attack.

3.3.2. Correlation Coefficient. As we all know, the adjacent
pixels in plain image have a strong correlation. However,
there is less correlation among adjacent pixels in cipher
image [5–10].

,e correlation coefficient is given by

rab �
cov(a, b)���������
D(a)D(b)
√ , (47)

where a and b are two adjacent pixels gray values, and

E(a) �
1

N
∑N
i�1

ai,

D(a) �
1

N
∑N
i�1

ai − E(a)()2,

cov(a, b) �
1

N
∑N
i�1

ai − E(a)() bi − E(b)().

(48)

In this test, 10000 pairs of adjacent pixels are randomly
selected for calculating the correlation coefficient. ,e
correlation coefficient results are shown in Table 2, and the
correlation distribution of image “Lena” is shown in Figure 7
and Table 3

3.4. Key Sensitivity Analysis. ,e key sensitivity analysis is
considered to be a measurement of the diffusion property of
the cryptosystem. In our proposed scheme, there are nine
inputted keys: k1, k2, k3, k4, k5, k6, k7, k8, and k9 ∈∈(0, 1).

In this test, the plain image ‘Lena’ is first time encrypted with
initial keys which are assigned at the beginning of Section 3,
the second time encrypted with modifying k1’ � k1 + 10− 15,
and the third time encrypted with modifying
k2’ � k2 + 10− 15. And then, the differences between the
ciphers encrypted by modified keys and initial keys are
figured. ,e test result is shown in Figure 8, and the NPCR
and UACI between ciphers generated by different keys are
shown in Table 4. ,e result of test clearly shows that our
proposed cryptosystem has good key sensitivity on resisting
the exhaustive attack.

3.5. Information Entropy Analysis

3.5.1. Global Information Entropy. ,e global information
entropy is used to indicate the uncertainty degree of image
information [9, 57]. ,e global information entropy can be
calculated by

H(s) � ∑2K−1
i�0

P si()log2 1

Psi
, (49)

where K is the image bit depth, e.g., K� 8, for an 8 bit gray
image, and P(si)means the probability of si.,e ideal case of
8 bit gray image information entropy is H(s) � 8 bits. ,e
entropy test result is shown in Table 5. According to the test
results, our entropies are very close to the ideal value 8.,us,
our cryptosystem shows good performance on resisting the
entropy attack.

3.5.2. Local Shannon Entropy. Global Shannon entropy
reflects the total randomness of image, and it has certain
limitations in some occasions. ,erefore, local Shannon
entropy (LSE) was proposed by Wu et al. [58, 59]. To
measure local entropy, we first randomly select k non-
overlapping image blocks B1, B2, . . . , Bk with TB pixels from
image I; then, the LSE is given by

Hk,TB
(I) �∑k

i�1

H Bi()
k

, (50)

where H(Bi) is the Shannon entropy of image blockBi and
can be calculated by equation (49).

For our tests, we select parameters (k, TB) � (30, 1936),
and then the ideal value of LSE is 7.902469317. ,e sig-
nificance α � 0.05, and we consider the tests passed when the
test LSE values fall into (7.901901305, 7.903037329).,e LSE
test results are shown in Table 6.

3.6. NIST SP800-22 Tests. In our scheme, control sequences
are generating by the hyperchaotic Lorenz system (HCLS)
and skew tent map (STM). ,erefore, the randomness of
iterative sequences which generated by these two chaotic
system is directly affecting the performance of the image
cryptosystem. Here, we use SP800-22 [60] to test the ran-
domness of binary sequences generated by the hyperchaotic
Lorenz system and skew tent map.,e test results are shown
in Table 7.

Complexity 11

3.7. Performance Analysis and Comparisons. ,e simulation
and tests are implemented in MATLAB R2015b, which is
worked on a MacBook with Inter (R) Core i7, CPU 1.4GHz,
and 16GB memory, and the software running system is
macOS (High Sierra 10.13.1). As we all known, there are
many factors affecting the speed of encryption and

decryption except algorithm itself, such as operating system,
hardware environment, programming language, and code
optimization. ,us, in this performance comparison, we not
only give the comparison of time cost but also give the
comparison of other correlation factors. Furthermore, we
also give the comparison of encryption throughput and

Table 1: ,e results of NPCR and UACI.

Image
NPCR (%) UACI (%)

Min Max Average Std. N
∗
0.05 99.5893 Min Max Average U

∗+
0.05 � 33.5541

Lena 99.5935 99.6326 99.6161 0.0123 Pass 33.3918 33.5717 33.4709 Pass
Baboon 99.5943 99.6342 99.6109 0.0129 Pass 33.3932 33.5913 33.4792 Pass
Pepper 99.5912 99.6391 99.6090 0.0121 Pass 33.3985 33.5574 33.4664 Pass
Airplane 99.5962 99.6323 99.6095 0.0131 Pass 33.3805 33.5353 33.4593 Pass
Boat 99.5931 99.6399 99.6101 0.0147 Pass 33.3746 33.5546 33.4654 Pass

500 100 150 200 250

0

500

1000

1500

2000

2500

3000

(a)

500 100 150 200 250 300

0

200

400

600

800

1000

1200

(b)

500 100 150 200 250

0

500

1000

1500

2000

2500

3000

(c)

500 100 150 200 250 300

0

200

400

600

800

1000

1200

(d)

Figure 6: Histograms of (a, c) plain images ”Lena” and “Baboon” and (b, d) their corresponding cipher images.

Table 2: Histogram uniformity evaluation by the chi-squared test.

Images P value Decision (H� 0 or 1) α � 0.05

Lena 0.1888141 0; Accept
Baboon 0.1117246 0; Accept

12 Complexity

500 100 150 200 250

Pixel gray value on location (x, y)

0

50

100

150

200

250
P

ix
el

 g
ra

y
va

lu
e

o
n

 lo
ca

ti
o

n
 (

x
+

 1
, y

)

(a)

500 100 150 200 250

Pixel gray value on location (x, y)

0

50

100

150

200

250

P
ix

el
 g

ra
y

va
lu

e
o

n
 lo

ca
ti

o
n

 (
x,

 y
 +

 1
)

(b)

500 100 150 200 250

Pixel gray value on location (x, y)

0

50

100

150

200

250

P
ix

el
 g

ra
y

va
lu

e
o

n
 lo

ca
ti

o
n

 (
x

+
 1

, y
 +

 1
)

(c)

500 100 150 200 250

Pixel gray value on location (x, y)

0

50

100

150

200

250

P
ix

el
 g

ra
y

va
lu

e
o

n
 lo

ca
ti

o
n

 (
x

+
 1

, y
)

(d)

500 100 150 200 250

Pixel gray value on location (x, y)

0

50

100

150

200

250

P
ix

el
 g

ra
y

va
lu

e
o

n
 lo

ca
ti

o
n

 (
x,

 y
 +

 1
)

(e)

500 100 150 200 250

Pixel gray value on location (x, y)

0

50

100

150

200

250

P
ix

el
 g

ra
y

va
lu

e
o

n
 lo

ca
ti

o
n

 (
x

+
 1

, y
 +

 1
)

(f)

Figure 7: Correlation distributions of the (ac) plain image and (df) cipher image. (a) Figure 4(d) in the horizontal direction, (b) Figure 4(e)
in the vertical direction, (c) Figure 4(f) in the diagonal direction.

Complexity 13

Table 3: Correlation coefficients.

Images
Horizontal Vertical Diagonal

Plain Cipher Plain Cipher Plain Cipher

Lena 0.9845 −0.0013 0.9699 0.0005 0.9585 0.0016
Baboon 0.7608 0.0032 0.8618 0.0012 0.7238 −0.0004

(a) (b) (c)

(d) (e) (f)

Figure 8: Key sensitivity analysis in encryption. (a) Original image. (b) Encrypted image with initial keys. (c) Encrypted image with
modifying k1’ � k1 + 10− 15. (d) Cipher image with modifying k2’ � k2 + 10− 15. (e) Image of |b-c|. (f) image of |b-d|.

Table 4: Results of NPCR and UACI between ciphers.

Ciphers NPCR (%) N
∗
0.05 99.5893 UACI (%) U

∗−
0.05 � 33.3730 U

∗+
0.05 � 33.5541

Figures 8(b) and 8(c) 99.6063 Pass 33.4369 Pass
Figures 8(b) and 8(d) 99.6120 Pass 33.4494 Pass

Table 5: ,e global entropy test results.

Images Lena Baboon Pepper Airplane Boat

Entropy 7.9993420 7.9993005 7.9993824 7.9993269 7.9994635

Table 6: ,e local Shannon entropy test results.

Images Lena Baboon Pepper Airplane Boat

LSE 7.90278317 7.90294534 7.90219342 7.90265212 7.90301576
(7.901901305, 7.903037329) Pass Pass Pass Pass Pass

14 Complexity

number of cycles to make a more intuitive performance
description. ,e speed analysis result is shown in Table 8,
and the security comparisons with other works are shown in
Table 9. ,e speed test and the comparisons show that our
proposed cryptosystem not only has good speed on en-
cryption but also has good security performance.

4. Conclusions

We proposed an efficient chaos-based image encryption
scheme using the jigsaw method which contains two op-
erations of image blocks: revolving and shifting. In the
proposed encryption scheme, the preprocessing makes sure

Table 7: NIST SP800-22 test results.

Test items
HCLS Result STM Result
P value ≥0.01 P value ≥0.01

Frequency 0.43304 Pass 0.32631 Pass
Block frequency 0.93008 Pass 0.88263 Pass
Runs 0.86392 Pass 0.75258 Pass
Longest runs 0.97571 Pass 0.89365 Pass
Binary matrix rank 0.50984 Pass 0.71245 Pass
Discrete Fourier transform 0.16365 Pass 0.32123 Pass
Nonoverlapping template 0.28953 Pass 0.12545 Pass
Overlapping template 0.57548 Pass 0.36585 Pass
Maurer’s universal statistical 0.38361 Pass 0.45852 Pass
Linear complexity 0.63612 Pass 0.23562 Pass
Serial∗ 0.13252 Pass 0.31142 Pass
Approximate entropy 0.83427 Pass 0.63253 Pass
Cumulative sums∗ 0.99253 Pass 0.85652 Pass
Random excursions∗ 0.71533 Pass 0.35262 Pass
Random excursions variant∗ 0.56579 Pass 0.45253 Pass
∗,e average values of multiple tests.

Table 8: Speed comparison.

Algorithms CPU speed (GHz) Memory size (GB) Program language
Encryption time
(ms) (512× 512)

Encryption
throughput (MBps)

Number of cycles

Our work 1.4 16 Matlab 138 1.811 1682
Ref [61] 2.5 4 Matlab 613 0.408 5846
Ref [42] 3.0 8 C 139 1.799 1591
Ref [62] 2.7 16 C 166 1.506 1710
Ref [28] 3.0 8 C 390 0.641 4463
Ref [6] 2.6 8 Matlab 484 0.517 4800
Ref [63] 2.4 8 C 203 1.232 1859
Ref [41] 2.4 8 C 85 2.941 778

Table 9: Security comparison.

Algorithms
Cipher correlation coefficients

Global entropy Local entropy Key space
Plaintext sensitivity

Horizontal Vertical Diagonal NPCR (%) UACI (%)

Our work −0.0013 0.0005 0.0016 7.9993 7.902783 2455 99.61 33.47
Ref. [28] 0.0010 0.0054 0.0056 7.9992 - 2520 99.60 33.50
Ref. [15] −0.0331 0.0057 0.0169 7.9972 - 290 99.61 33.40
Ref. [10] 0.0064 0.0078 0.0029 7.9993 - 1015× 2256 99.59 33.46
Ref. [18] 0.0026 0.0019 0.0028 7.9992 7.902552 2640 99.60 33.48
Ref. [40] −0.02887 0.01459 0.03658 7.9993 - 2582 99.62 33.41
Ref. [41] 0.001987 0.00449 −0.0087 7.9993 7.901558 2572 99.63 33.48
Ref. [42] 0.0119 0.0092 0.0013 7.9993 - 1030× 2384 99.64 33.61
Ref. [44] 0.003 0.0018 0.0006 7.997 7.9024 10112 99.62 33.44
Ref. [45] 0.00193 0.0018 0.00342 7.998 - 10238 99.68 33.47
Ref. [46] −0.0017 −0.0084 −0.0019 7.9975 7.9051 2312 99.62 33.50
Ref. [47] −0.000026 −0.00031 −0.021 - 7.9028 - 99.96 33.69
Ref. [49] 0.004851 −0.0020 −0.00270 7.9993 7.902481 2250 99.565 33.450
Ref. [50] 0.00058 0.00061 −0.0003 7.9974 - 2532 99.60 33.49

Complexity 15

our scheme has enough plain image sensitivity on resisting
differential attack. ,e encryption process guarantees our
cryptosystem has full diffusion on resisting the statistical
analysis. ,e postprocessing process further increases the
diffusion characteristic. In addition, some common security
analyses and speed comparisons show that our image
cryptosystem has both security and speed performance.

Data Availability

,e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

Acknowledgments

Our research was supported by the National Natural Science
Foundation of China (U1836205, 61662009, and 61772008),
the open Foundation of Guizhou Provincial Key Laboratory
of Public Big Data (2017BDKFJJ023 and 2017BDKFJJ026),
the Science and Technology Foundation of Guizhou
(Guizhou Science-Contract-Major-Program [2018]3001,
Guizhou-Science-Contract-Major-Program [2018]3007,
Guizhou-Science-Contract-Major-Program [2017]3002,
Guizhou-Science-Contract-Support [2019]2004, Guizhou-
Science-Contract-Support [2018]2162, Guizhou-Science-
Contract-Support [2018]2159, Guizhou-Science-Contract
[2017]1045, Guizhou-Science-Contract 1049, and Guizhou-
Science-Contract [2019]1249), and the Scientific Research
Foundation of Guizhou province, China (QKHPTRC[2017]
5788). ,e work was also supported by the cultivation
project of Guizhou University ([2019] 56), the Project of
Innovative Group in Guizhou Education Department
([2013]09), and the Youth Science and Technology Talents
Growth Project of the Guizhou Provincial Department of
Education (Guizhou-Education-Contract-KY-Word [2018]
260).

References

[1] Y. Zhang, “Test and verification of AES used for image en-
cryption,” 3D Research, vol. 9, no. 1, 2018.

[2] E. Lorenz, “Deterministic non-period flow,” Journal of the
Atmospheric Sciences, vol. 20, no. 3, pp. 130–141, 1963.

[3] R. Matthews, “On the derivation of a “chaotic” encryption
algorithm,” Cryptologia, vol. 13, no. 1, pp. 29–42, 1989.

[4] G. Hu, D. Xiao, Y. Zhang, and T. Xiang, “An efficient chaotic
image cipher with dynamic lookup table driven bit-level
permutation strategy,” Nonlinear Dynamics, vol. 87, no. 2,
pp. 1359–1375, 2016.

[5] T. Hu, Y. Liu, L.-H. Gong, and C.-J. Ouyang, “An image
encryption scheme combining chaos with cycle operation for
DNA sequences,” Nonlinear Dynamics, vol. 87, no. 1,
pp. 51–66, 2016.

[6] Z. Hua, F. Jin, B. Xu, and H. Huang, “2D Logistic-Sine-
coupling map for image encryption,” Signal Processing,
vol. 149, pp. 148–161, 2018.

[7] C. Cao, K. Sun, and W. Liu, “A novel bit-level image en-
cryption algorithm based on 2D-LICM hyperchaotic map,”
Signal Processing, vol. 143, pp. 122–133, 2018.

[8] X. Chai, X. Zheng, Z. Gan, D. Han, and Y. Chen, “An image
encryption algorithm based on chaotic system and com-
pressive sensing,” Signal Processing, vol. 148, pp. 124–144,
2018.

[9] G. Ye, H. Zhao, and H. Chai, “Chaotic image encryption
algorithm using wave-line permutation and block diffusion,”
Nonlinear Dynamics, vol. 83, no. 4, pp. 2067–2077, 2015.

[10] Y. Luo, L. Cao, S. Qiu, H. Lin, J. Harkin, and J. Liu, “A chaotic
map-control-based and the plain image-related cryptosys-
tem,”Nonlinear Dynamics, vol. 83, no. 4, pp. 2293–2310, 2015.

[11] Z. Hua, S. Yi, and Y. Zhou, “Medical image encryption using
high-speed scrambling and pixel adaptive diffusion,” Signal
Processing, vol. 144, pp. 134–144, 2018.

[12] F. Khelifi, T. Brahimi, J. Han, and X. Li, “Secure and privacy-
preserving data sharing in the cloud based on lossless image
coding,” Signal Processing, vol. 148, pp. 91–101, 2018.

[13] X. Wang and H. L. Zhang, “A novel image encryption al-
gorithm based on genetic recombination and hyper-chaotic
systems,” Nonlinear Dynamics, vol. 83, no. 1-2, pp. 333–346,
2015.

[14] X. Wang, C. Liu, and H. Zhang, “An effective and fast image
encryption algorithm based on Chaos and interweaving of
ranks,” Nonlinear Dynamics, vol. 84, no. 3, pp. 1595–1607,
2016.

[15] X. Wang, Q. Wang, and Y. Zhang, “A fast image algorithm
based on rows and columns switch,” Nonlinear Dynamics,
vol. 79, no. 2, pp. 1141–1149, 2014.

[16] D.-d. Liu, W. Zhang, H. Yu, and Z.-l. Zhu, “An image en-
cryption scheme using self-adaptive selective permutation
and inter-intra-block feedback diffusion,” Signal Processing,
vol. 151, pp. 130–143, 2018.

[17] X. Wu, K. Wang, X. Wang, H. Kan, and J. Kurths, “Color
image DNA encryption using NCAmap-based CML and one-
time keys,” Signal Processing, vol. 148, pp. 272–287, 2018.

[18] X.Wang, C. Liu, D. Xu, and C. Liu, “Image encryption scheme
using chaos and simulated annealing algorithm,” Nonlinear
Dynamics, vol. 84, no. 3, pp. 1417–1429, 2016.

[19] A. Akhshani, A. Akhavan, S.-C. Lim, and Z. Hassan, “An
image encryption scheme based on quantum logistic map,”
Communications in Nonlinear Science and Numerical Simu-
lation, vol. 17, no. 12, pp. 4653–4661, 2012.

[20] A. Kanso, “Self-shrinking chaotic stream ciphers,” Commu-
nications in Nonlinear Science and Numerical Simulation,
vol. 16, no. 2, pp. 822–836, 2011.

[21] A. Akhavan, A. Samsudin, and A. Akhshani, “A symmetric
image encryption scheme based on combination of nonlinear
chaotic maps,” Journal of the Franklin Institute, vol. 348, no. 8,
pp. 1797–1813, 2011.

[22] L. Zhang, X. Liao, and X. Wang, “An image encryption ap-
proach based on chaotic maps,” Chaos, Solitons & Fractals,
vol. 24, no. 3, pp. 759–765, 2005.

[23] W. Zhang, K.-W. Wong, H. Yu, and Z.-L. Zhu, “An image
encryption scheme using reverse 2-dimensional chaotic map
and dependent diffusion,” Communications in Nonlinear
Science and Numerical Simulation, vol. 18, no. 8, pp. 2066–
2080, 2013.

[24] G. Alvarez and S. Li, “Some basic cryptographic requirements
for chaos-based cryptosystems,” International Journal of Bi-
furcation and Chaos, vol. 16, no. 08, pp. 2129–2151, 2006.

[25] A. A. A. El-Latif, L. Li, N. Wang, Q. Han, and X. Niu, “A new
approach to chaotic image encryption based on quantum

16 Complexity

chaotic system, exploiting color spaces,” Signal Process,
vol. 93, no. 11, pp. 2986–3000, 2013.

[26] J. Fridrich, “Symmetric ciphers based on two-dimensional
chaotic maps,” International Journal of Bifurcation and Chaos,
vol. 08, no. 06, pp. 1259–1284, 1998.

[27] S. Lian, J. Sun, and Z. Wang, “A block cipher based on a
suitable use of the chaotic standard map,” Chaos, Solitons &
Fractals, vol. 26, no. 1, pp. 117–129, 2005.

[28] A. Souyah and K. M. Faraoun, “An image encryption scheme
combining chaos-memory cellular automata and weighted
histogram,” Nonlinear Dynamics, vol. 86, no. 1, pp. 639–653,
2016.

[29] Z. Li, C. Peng, L. Li, and X. Zhu, “A novel plaintext-related
image encryption scheme using hyper-chaotic system,”
Nonlinear Dynamics, vol. 94, no. 2, pp. 1319–1333, 2018.

[30] J. Wu, X. Liao, and B. Yang, “Image encryption using 2D
Hénon-Sine map and DNA approach,” Signal Processing,
vol. 153, pp. 11–23, 2018.

[31] H. S. Ye, N. R. Zhou, and L. H. Gong, “Multi-image com-
pression-encryption scheme based on quaternion discrete
fractional Hartley transform and improved pixel adaptive
diffusion,” Signal Processing, vol. 175, 2020.

[32] L. Y. Zhu, H. S. Song, X. Zhang et al., “A robust meaningful
image encryption scheme based on block compressive sensing
and SVD embedding,” Signal Processing, vol. 175, 2020.

[33] A. B. Joshi, D. Kumar, A. Gaffar, and D. C. Mishra, “Triple
color image encryption based on 2D multiple parameter
fractional discrete Fourier transform and 3D Arnold trans-
form,” Optics and Lasers in Engineering, vol. 133, 2020.

[34] Y. Lin, E. Yang, and G. Y. Wang, “A novel parallel image
encryption algorithm based on hybrid chaotic maps with
OpenCL implementation,” Soft Computing, vol. 24,
pp. 12413–12427, 2020.

[35] D. Ouyang, J. Shao, H. Jiang, S. K. Nguang, and H. T. Shen,
“Impulsive synchronization of coupled delayed neural net-
works with actuator saturation and its application to image
encryption,” Neural Networks, vol. 128, pp. 158–171, 2020.

[36] W. Y. Wen, Y. K. Hong, Y. M. Fang, M. Li, and M. Li, “A
visually secure image encryption scheme based on semi-
tensor product compressed sensing,” Signal Processing,
vol. 173, 2020.

[37] G. D. Ye, P. Chen, X. D. You, S. Yang, and X. L. Huang,
“Image encryption and hiding algorithm based on com-
pressive sensing and random numbers insertion,” Signal
Processing, vol. 172, 2020.

[38] Y. Zhang, A. Chen, Y. Tang, J. Dang, and G.Wang, “Plaintext-
related image encryption algorithm based on perceptron-like
network,” Information Sciences, vol. 526, pp. 180–202, 2020.

[39] Z. Li, C. Peng, W. Tan et al., “A novel chaos-based color image
encryption scheme using bit-level permutation,” Symmetry,
vol. 121497 pages, 2020.

[40] E. Yavuz, R. Yazıcı, M. C. Kasapbaşı, and E. Yamaç, “A chaos-
based image encryption algorithm with simple logical func-
tions,” Computers & Electrical Engineering, vol. 54,
pp. 471–483, 2016.

[41] E. Yavuz, “A novel chaotic image encryption algorithm based
on content-sensitive dynamic function switching scheme,”
Optics & Laser Technology, vol. 114, pp. 224–239, 2019.

[42] S. Amina and F. K.Mohamed, “An efficient and secure chaotic
cipher algorithm for image content preservation,” Commu-
nications in Nonlinear Science and Numerical Simulation,
vol. 60, pp. 12–32, 2018.

[43] D. Ravichandran, P. Praveenkumar, J. B. Balaguru Rayappan,
and R. Amirtharajan, “Chaos based crossover and mutation

for securing DICOM image,” Computers in Biology and
Medicine, vol. 72, pp. 170–184, 2016.

[44] C. Lakshmi, K. ,enmozhi, J. B. B. Rayappan, and
R. Amirtharajan, “Hopfield attractor-trusted neural network:
an attack-resistant image encryption,” Neural Computing and
Applications, vol. 32, no. 15, pp. 11477–11489, 2020.

[45] S. A. Banu and R. Amirtharajan, “A robust medical image
encryption in dual domain: chaos-dna-iwt combined ap-
proach,” Medical & Biological Engineering & Computing,
vol. 58, pp. 1–14, 2020.

[46] M. Alawida, A. Samsudin, J. S. Teh, and R. S. Alkhawaldeh, “A
new hybrid digital chaotic system with applications in image
encryption,” Signal Processing, vol. 160, pp. 45–58, 2019.

[47] M. Alawida, J. S. Teh, A. Samsudin, and W. H. Alshoura, “An
image encryption scheme based on hybridizing digital chaos
and finite state machine,” Signal Processing, vol. 164,
pp. 249–266, 2019.

[48] J. A. P. Artiles, D. P. B. Chaves, and C. Pimentel, “Image
encryption using block cipher and chaotic sequences,” Signal
Processing: Image Communication, vol. 79, pp. 24–31, 2019.

[49] X. Wang, H. Zhao, L. Feng, X. Ye, and H. Zhang, “High-
sensitivity image encryption algorithm with random diffusion
based on dynamic-coupled map lattices,” Optics and Lasers in
Engineering, vol. 122, pp. 225–238, 2019.

[50] Y. Luo, J. Yu, W. Lai, and L. Liu, “A novel chaotic image
encryption algorithm based on improved baker map and
logistic map,” Multimedia Tools and Applications, vol. 78,
no. 15, pp. 22023–22043, 2019.

[51] X.Wang andM.Wang, “A hyperchaos generated from Lorenz
system,” Physica A: Statistical Mechanics and Its Applications,
vol. 387, no. 14, pp. 3751–3758, 2008.

[52] T. Xiang, X. Liao, and K.-W. Wong, “An improved particle
swarm optimization algorithm combined with piecewise
linear chaotic map,” Applied Mathematics and Computation,
vol. 190, no. 2, pp. 1637–1645, 2007.

[53] J. S. Teh, M. Alawida, and Y. C. Sii, “Implementation and
practical problems of chaos-based cryptography revisited,”
Journal of Information Security and Applications,
vol. 50102421 pages, 2020.

[54] R. Sivaraman, R. Sundararaman, J. B. B. Rayappan et al., “Ring
Oscillator as Confusion–Diffusion Agent: A Complete TRNG
Drove Image Security,” IET Image Processing, vol. 14, 2020.

[55] Y. Wu, J. P. Noonan, and S. Agaian, “NPCR and UACI
randomness tests for image encryption,” Cyber Journals:
Multidisciplinary Journals in Science and Technology, Journal
of Selected Areas in Telecommunications (JSAT), vol. 1, no. 2,
pp. 31–38, 2011.

[56] Z. Li, C. Peng, W. Tan, and L. Li, “A novel chaos-based image
encryption scheme by using randomly DNA encode and
plaintext related permutation,” Applied Sciences, vol. 10,
no. 21, p. 7469, 2020.

[57] Z. Li, C. Peng, W. Tan et al., “An efficient plaintext-related
chaotic image encryption scheme based on compressive
sensing,” Sensors, vol. 21, no. 758, 2021.

[58] N. Chidambaram, P. Raj, T. Karruppuswamy et al., “An
advanced framework for highly secure and cloud-based
storage of colour images,” IET Image Processing, vol. 14,
no. 13, pp. 3143–3153, 2020.

[59] Y. Wu, Y. Zhou, G. Saveriades, S. Agaian, J. P. Noonan, and
P. Natarajan, “Local Shannon entropy measure with statistical
tests for image randomness,” Information Sciences, vol. 222,
pp. 323–342, 2013.

[60] A. Rukhin, J. Soto, J. Nechvatal et al.,A Statistical Test Suite for
Random and Pseudorandom Number Generators for

Complexity 17

Cryptographic Application, pp. 800–822, NIST Special Pub-
lication, Gaithersburg, MD, USA, 2001.

[61] L. Xu, X. Gou, Z. Li, and J. Li, “A novel chaotic image en-
cryption algorithm using block scrambling and dynamic
index based diffusion,” Optics and Lasers in Engineering,
vol. 91, pp. 41–52, 2017.

[62] L. L. Palacios, G. G. Delgado, J. A. Dı́az et al., “Symmetric
cryptosystem based on skew tent map,”Multimedia Tools and
Applications, vol. 77, no. 2, pp. 2739–2770, 2018.

[63] E. Yavuz, R. Yazıcı, M. C. Kasapbaşi et al., “Enhanced chaotic
key-based algorithm for low-entropy image encryption,” in
Proceedings of the 2014 22nd Signal Processing And Com-
munications Applications Conference (SIU), pp. 385–388,
IEEE, Trabzon, Turkey, October 2014.

18 Complexity

