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Abstract. We prove a new effective Chebotarev density theorem for Galois extensions L/Q that
allows one to count small primes (even as small as an arbitrarily small power of the discriminant of
L); this theorem holds for the Galois closures of “almost all” number fields that lie in an appropriate
family of field extensions. Previously, applying Chebotarev in such small ranges required assuming
the Generalized Riemann Hypothesis. The error term in this new Chebotarev density theorem also
avoids the effect of an exceptional zero of the Dedekind zeta function of L, without assuming GRH.
We give many different “appropriate families,” including families of arbitrarily large degree. To
do this, we first prove a new effective Chebotarev density theorem that requires a zero-free region
of the Dedekind zeta function. Then we prove that almost all number fields in our families yield
such a zero-free region. The innovation that allows us to achieve this is a delicate new method
for controlling zeroes of certain families of non-cuspidal L-functions. This builds on, and greatly
generalizes the applicability of, work of Kowalski and Michel on the average density of zeroes of
a family of cuspidal L-functions. A surprising feature of this new method, which we expect will
have independent interest, is that we control the number of zeroes in the family of L-functions by
bounding the number of certain associated fields with fixed discriminant. As an application of the
new Chebotarev density theorem, we prove the first nontrivial upper bounds for ℓ-torsion in class
groups, for all integers ℓ ≥ 1, applicable to infinite families of fields of arbitrarily large degree.

1. Overview

In this paper, we give unconditional effective Chebotarev density theorems for almost all number
fields in certain families of fields, of a strength that previously required the assumption of GRH.
We achieve this by a new method to control zeroes of non-cuspidal L-functions in families, and we
give applications including the first non-trivial bounds on ℓ-torsion for all ℓ ≥ 1 in class groups in
infinite families of fields of arbitrarily large degree. Our method requires only crude bounds on the
number of fields in our families, allowing us to treat families of arbitrarily high degree and more
general families than in [EPW17], which gives ℓ-torsion bounds as a result of very precise counting
of the families.

1.1. Historical introduction. For any fixed number field k and Galois extension L/k of number
fields, consider the counting function of prime ideals of bounded norm in Ok and specified splitting
type in L, defined by

(1.1) πC (x, L/k) := #{p ⊆ Ok : p unramified in L,

[
L/k

p

]
= C ,Nmk/Qp ≤ x},

in which
[
L/k
p

]
is the Artin symbol and C is any fixed conjugacy class in Gal(L/k). A central

goal is to prove an asymptotic for πC (x, L/k) that is valid for x as small as possible (relative to the
absolute discriminant of the number field L), which is a regime in which many of the most interesting
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applications arise. The celebrated Chebotarev density theorem [Tsc26] provides the main term in
the asymptotic,

(1.2) πC (x, L/k) ∼
|C |

|G|
Li(x),

as x → ∞, where Gal(L/k) = G and Li(x) =
∫ x
2 dt/ log t. When L = k = Q, this is the familiar

Prime Number Theorem for π(x); when L = k, this is the Prime Ideal Theorem, counting prime

ideals p ⊂ Ok with Nmk/Qp ≤ x; when k = Q and L = Q(e2πi/q), this provides Dirichlet’s theorem,
counting rational primes p ≡ a (mod q) with p ≤ x, for any (a, q) = 1.

An effective Chebotarev theorem, conditional on GRH, was proved by Lagarias and Odlyzko
(with an improvement by Serre). Given any field extension F/Q we let nF = [F : Q] and set
DF = |DiscF/Q|.

Theorem A (Conditional on GRH, [LO75, Theorem 1.1], [Ser82, Théorème 4]). There exists an
effectively computable absolute constant C0 > 0 such that for any Galois extension L/k of number
fields, if GRH holds for the Dedekind zeta function ζL and G := Gal(L/k), then for any fixed
conjugacy class C ⊆ G and every x ≥ 2,∣∣∣∣πC (x, L/k)−

|C |

|G|
Li(x)

∣∣∣∣ ≤ C0
|C |

|G|
x1/2 log(DLx

nL).

Lagarias and Odlyzko also proved an unconditional result:

Theorem B ([LO75, Corollary 1.3]). There exist effectively computable absolute constants C1, C2 >
0 such that the following holds. Let L/k be a Galois extension of number fields with G := Gal(L/k).
If nL > 1 then ζL(s) has at most one zero s = σ + it in the region

(1.3) σ ≥ 1− (4 logDL)
−1, |t| ≤ (4 logDL)

−1.

This exceptional zero, denoted β0 if it exists, is real and simple. For all x ≥ exp(10nL(logDL)
2),

(1.4)

∣∣∣∣πC (x, L/k)−
|C |

|G|
Li(x)

∣∣∣∣ ≤
|C |

|G|
Li(xβ0) + C1x exp(−C2n

−1/2
L (log x)1/2),

with the understanding that the β0 term is present only if β0 exists.

Theorem A holds for all x ≥ 2. Theorem B requires at least that x ≥ D10nL
L , a power of the dis-

criminant that is too large for many applications. Consequently, citations of the Lagarias-Odlyzko
work often use Theorem A and are hence conditional on GRH. Recent unconditional work that con-
siders lower or upper bounds for πC (x, L/k) instead of asymptotics also leads to thresholds for x that
are too large for certain applications. For example, [TZ17b], [TZ17a, Eqn. 1.6] prove lower bounds
for πC (x, L/k) that require x to be as large as a relatively large power of DL; upper bounds for
πC (x, L/k) in the classic work [LMO79, Thm. 1.4] require x ≥ C exp{(logDL)(log logDL)(log log logDL)},
for some constant C, with improvements e.g. in [TZ17a, Deb16].

1.2. New results I: effective Chebotarev theorems. We prove a new effective Chebotarev
theorem that includes two breakthroughs: we remove the term corresponding to the exceptional
zero in (1.4), and simultaneously we obtain an asymptotic with an effective error term, which in
particular holds for x as small as Dδ

L for any small fixed δ > 0 (for DL sufficiently large). Both
aspects are critical to applications such as our new bound for ℓ-torsion in class groups. It is unlikely
that we could accomplish these goals for all fields without proving something significant toward
GRH; instead, we prove that within appropriate families of fields, “almost all” of the fields satisfy
such an effective Chebotarev theorem.

We first state an inexplicit, general version of our result for a “family” F (G) of fields (precise
quantitative statements appear in Theorems 3.3, 3.9, 3.11, 3.13, 3.14, and Corollary 3.16 of §3). By

a family F (G) we mean a set of degree n extensions K/Q with corresponding Galois closures K̃/Q
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having Gal(K̃/Q) ≃ G for a fixed transitive subgroup G ⊆ Sn. We use F (G;X) to denote those
fields K ∈ F (G) with DK ≤ X. We also use Vinogradov’s notation: A ≪ B denotes that there
exists a constant C such that |A| ≤ CB, and A≪κ B denotes that C may depend on κ.

Theorem 1.1. Fix an appropriate family F (G) (described explicitly in §1.2.1), and constants A ≥ 2
and ε > 0. Then there exist constants 0 < τ < β and κ1, κ2, κ3 > 0, such that for all X ≥ 1 we have
|F (G;X)| ≫ Xβ , and aside from at most ≪F ,A,ε X

τ+ε possible exceptions, each field K ∈ F (G;X)
has the property that for every conjugacy class C ⊆ G,

(1.5)

∣∣∣∣πC (x, K̃/Q)−
|C |

|G|
Li(x)

∣∣∣∣ ≤
|C |

|G|

x

(log x)A
,

for all

(1.6) x ≥ κ1 exp{κ2(log log(D
κ3

K̃
))5/3(log log log(D2

K̃
))1/3}.

In comparison to Theorem B, for each field to which this result applies, this theorem removes the
effect of the possible exceptional zero on the error term, and holds for x as small as an arbitrarily
small power of DK̃ (and hence of DK), capabilities critical for many applications.

1.2.1. The appropriate families of fields. In general, we construct a set (or “family”) of fields as
follows. For a number field k, we let

Zn(k,G;X) = {K/k : K ⊂ Q̄, degK/k = n,Gal(K̃/k) ≃ G,Nmk/QDiscK/k ≤ X},

where K̃ is the Galois closure of K over k, the Galois group is considered as a permutation group
on the n embeddings of K in Q, and the isomorphism with G is one of permutation groups. We
let Zn(k,G) = Zn(k,G;∞). For our main results we will work over Q, and study families of the
form ZI

n (Q, G;X), defined to be the subset of those fields K ∈ Zn(Q, G;X) such that for each
rational prime p that is tamely ramified in K (i.e. those p not dividing any of the exponents of

their factorization into prime ideals in the ring of integers of K), the inertia group in Gal(K̃/k) of

every prime ideal ℘ of K̃ dividing p is generated by an element of I , where I specifies one or more
conjugacy classes in G. The use of ramification restrictions will play a large role in our method of
proof.

The most general families we treat are degree n extensions with square-free discriminant, which
are a positive proportion of all degree n fields for n ≤ 5, and conjecturally so for n ≥ 6. (These
families are recorded in entries (3), (4), (6) in the lists below; square-free discriminant corresponds
to I being transpositions, as explained in §2.3.) We give further examples to show the range of the
method. We prove, unconditionally, that Theorem 1.1 applies to the following families ZI

n (Q, G)
of fields:

(1) G a cyclic group of order n ≥ 2, with I comprised of all generators of G (equivalently every
rational prime that is tamely ramified in K is totally ramified).

(2) n = p an odd prime, G = Dp the order 2p dihedral group of symmetries of a regular p-gon,
I being the conjugacy class of order 2 elements.

(3) n = 3, G ≃ S3, I is transpositions.
(4) n = 4, G ≃ S4, I is transpositions.
(5) n = 4, G ≃ A4, I the two conjugacy classes in A4 of order 3 elements.

This is the content of Theorem 3.3. Note for family (2) that asymptotic counting of the fields is
essentially equivalent to knowing the exact average size of p-torsion of class groups of quadratic
fields (and thus is open and very difficult). Our method does not require this counting.

We furthermore prove, conditional on the strong Artin conjecture and (in some cases certain
hypotheses for counting number fields), that Theorem 1.1 applies to the following families of fields:

(6) n ≥ 5, G ≃ Sn, I is transpositions (Theorems 3.9 and 3.11).
(7) n ≥ 5, G ≃ An, no ramification restriction (Theorem 3.13).
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(8) G ⊆ Sn a transitive simple group, no ramification restriction (Theorem 3.14).

In addition, in Corollary 3.16 we record quantitative results for counting certain types of primes.

1.2.2. The proof strategy. To describe our strategy to prove Theorem 1.1 we define the notion of a
δ-exceptional field:

Property 1.2 (δ-exceptional field). For a fixed 0 < δ < 1/2, a number field K is δ-exceptional

precisely when the Dedekind zeta function of the Galois closure K̃ of K over Q has the property that
ζK̃(s)/ζ(s) has a zero in the region [1− δ, 1]× [−(logDK̃)2/δ, (logDK̃)2/δ].

(Under GRH, no field is δ-exceptional for any 0 ≤ δ < 1/2.) Our first step toward Theorem 1.1
is to prove the following (for a quantitative version over any fixed number field k, see Theorem 3.1):

Theorem 1.3 (Effective Chebotarev for non-δ-exceptional fields). For every integer n ≥ 1, and
every transitive group G ⊆ Sn, for every A ≥ 2 and every 0 < δ ≤ 1/(2A), there exist real numbers
D0, κ1, κ2, κ3 (depending on δ, n,A) such that the following holds: for any extension K/Q with

Gal(K̃/Q) ≃ G such that DK̃ ≥ D0 and K/Q is not δ-exceptional, we have that for any conjugacy
class C ⊆ G, (1.5) holds for all x satisfying (1.6).

Theorem 1.1 relies on the following crucial step: we prove that within appropriate families,
for sufficiently small δ, almost all fields are not δ-exceptional.1 We achieve this by developing
a new method for controlling zeroes of certain families of non-cuspidal L-functions. Previously,
work of Kowalski and Michel [KM02] provided density results for zeroes within appropriate families
of cuspidal L-functions. But we require zero-free regions for Dedekind zeta functions of Galois
fields, and these correspond (in some cases conjecturally) to automorphic L-functions that are not
cuspidal. This restriction of [KM02] to the cuspidal case has been a significant barrier in many
previous applications (such as an effective prime ideal theorem in [CK14], or [CK13]; see Remark
5.9). We expect that our new approach to proving density results for zeroes in a family of non-
cuspidal L-functions will have many further applications.

Precisely, let G be a fixed transitive subgroup of Sn and let ρ0, ρ1, . . . , ρs denote the irreducible
representations of G, with ρ0 being the trivial representation. Then for each K ∈ Zn(Q, G;X), we
may write ζK̃(s) as a product of Artin L-functions

(1.7) ζK̃(s) = ζ(s)

s∏

i=1

L(s, ρi, K̃/Q)dimρi .

In particular, consider a set F (X) of fields K ∈ Zn(Q, G;X) with distinct Galois closures K̃

over Q, and denote the set of Galois closures by F̃ (X). For each field K̃ ∈ F̃ (X) and each
representation ρj , there is an associated cuspidal automorphic representation πK̃,j of GL(mj)/Q

(in some cases conditional on the Strong Artin Conjecture), and then L(s, πK̃,j) = L(s, ρj , K̃/Q).

For each 1 ≤ j ≤ s, we let Lj(X) denote the set of cuspidal automorphic representations πK̃,j of

GL(mj)/Q associated to the fields K̃ ∈ F̃ (X) and the representation ρj . We show using [KM02]
that for each j, Lj(X) has the property that aside from at most a possible small “bad” exceptional
subset, each representation π ∈ Lj(X) is such that its associated L-function L(s, π) is zero-free
in an appropriate region. (Of course, if GRH is true, there are no such exceptional L-functions,
but we are working without GRH.) In order to deduce that amongst the Dedekind zeta functions

ζK̃(s) for K̃ ∈ F̃ (X), almost all of them also possess this zero-free region, we need to build up
the products as in (1.7), and we need to understand the following question: given a representation

1See also §4.10 on an unconditional approach to rule out exceptional zeroes in the standard zero-free region for
ζL(s), and thus remove the β0 term in (1.4), for extensions with no quadratic subfields. However, that approach does
not rule out the extensions being δ-exceptional, and in particular, does not lead to an effective Chebotarev theorem
that can count primes small enough for our purposes.
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π ∈ Lj(X) (i.e. possibly a “bad” exceptional representation), how many fields K̃ ∈ F̃ (X) can have

the property that L(s, ρj , K̃/Q) = L(s, π)?
This is subtle, and relies on delicate properties of the families considered. At its heart the question

is: for a fixed irreducible representation ρi of G, for how many fields K1,K2 ∈ F (X) ⊆ Zn(Q, G;X)

can we have L(s, ρi, K̃1/Q) = L(s, ρi, K̃2/Q)? We transform this into a question of counting how

many fields K1,K2 ∈ F (X) have fixed fields K̃H
1 = K̃H

2 , where H = Ker(ρi) (see Proposition 6.3).
A challenge then appears: for certain groups G, is it possible that such collisions can occur amongst
a positive proportion of K ∈ Zn(Q, G;X)? (If so, a positive proportion of these fields could have
ζK̃(s) containing a factor that is not zero-free in the desired region.)

For certain G, the answer is yes (see §6.3.2). In contrast, we show that for the groups G and
the corresponding families of fields we construct in our main theorems, the answer is no. Precisely,
we define each family F (X) ⊆ Zn(Q, G;X) according to carefully chosen ramification restrictions
on tamely ramified primes, and within these carefully constructed families we can transform the
problem of counting fields that share a certain fixed field into a problem of counting number fields
of degree n with fixed discriminant. This method of constructing families of fields so that we can
control the zeroes of associated L-functions by counting number fields is a key innovation of this
paper.

Within our chosen families, by counting fields of fixed discriminant, we ultimately show that such
collisions of the fixed fields must be relatively rare. We can then prove that aside from at most
a possible “small” exceptional subset of F (X), each field has the property that its Dedekind zeta
function is zero-free in an appropriate region.

In general, our approach can be seen as a new strategy that vastly generalizes the applicability of
the result of Kowalski and Michel to families of automorphic L-functions corresponding not just to
cuspidal automorphic representations but also to isobaric automorphic representations. We expect
this new method will be relevant to other problems of interest.

1.3. New results II: counting number fields. Our new effective Chebotarev theorem for families
of fields relies on quantitative counts for number fields in two ways. First, we must bound from
above the number of fields in the family that have a fixed discriminant; second we must bound from
below the number of fields in the family with bounded discriminant. In general, such questions lie
in the arena of Malle’s conjecture [Mal02] and the Malle-Bhargava principle [Woo16, Section 10],
and many questions remain open.

Definition 1.4. Within a certain family ZI
n (Q, G), we say a subset E has density zero if for some

γ > 0 and some c1 > 0, for all X ≥ 1,

|ZI
n (Q, G;X)|/|E ∩ ZI

n (Q, G;X)| ≥ c1X
γ .

Each of our main results takes the form of an effective Chebotarev density theorem that holds
for each field within a family of fields, except for fields belonging to a possible subfamily of density
zero. In all cases, proving an upper bound for |E ∩ ZI

n (Q, G;X)| is a significant part of our new
work; in many cases, proving a lower bound for |ZI

n (Q, G;X)| is also a significant part of our new
work.

For certain of the families of fields we consider, we prove the first recorded lower bounds. For
example, we prove the following general result, from which we deduce the first lower bound in the
literature for |Zn(Q, An;X)| that grows like a power of X (Theorem 2.6).

Theorem 1.5. Fix an integer n ≥ 2 and a transitive subgroup G ⊂ Sn. Suppose f(X,T1, . . . , Tj) ∈
Q[X,T1, . . . , Tj ] is a regular polynomial of total degree d in the Ti and of degree n in X with transitive
Galois group G ⊂ Sn over Q(T1, . . . , Tj). Then, for every X ≥ 1 and every ε > 0,

|Zn(Q, G;X)| ≫f,ε X
1−|G|−1

d(2n−2)
−ε
.
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Note that a recent paper of Dèbes [Dèb17] proves an analogous result for counting the degree |G|
Galois extensions in Z|G|(Q, G;X) rather than the degree n extensions we consider in Theorem 1.5
(or equivalently, only in the case that G is simply transitive).

In a different direction, as mentioned above, at a key step of extending the Kowalski-Michel zero
density theorem to our setting (related to bounding |E ∩ ZI

n (Q, G;X)| from above), we require an
upper bound for how many fields have any given fixed discriminant. To make things precise, we
define the following property (always defining extensions within Q):

Property 1.6 (Dn(G,̟)). Let n ≥ 2 be fixed and let G be a fixed transitive subgroup of Sn. We
say that property Dn(G,̟) holds if for every fixed integer D > 1 and for every ε > 0 there exist at

most ≪n,G,ε D
̟+ε fields K/Q of degree n and Gal(K̃/Q) ≃ G such that DK = D. Moreover, we

say that property Dn(̟) holds if for every fixed integer D > 1 and for every ε > 0 there exist at
most ≪n,ε D

̟+ε fields K/Q of degree n such that DK = D.

For appropriate families, we can control |E∩ZI
n (Q, G;X)| if we can prove Property Dn(G,̟) for

a sufficiently small ̟. In particular we prove new results for D4(A4, ̟), D5(̟), and D
I
p (Dp, ̟),

in the latter case assuming a certain ramification restriction.
The way Property Dn(̟) arises in our work on families of automorphic L-functions appears to

be completely new. But it is actually the subject of a well-known conjecture which occupies a rather
central role in number theory. Specifically, Duke [Duk98, §3] and Ellenberg and Venkatesh [EV05,
Conjecture 1.3] conjecture:

Conjecture 1.7 (Discriminant Multiplicity Conjecture). For each n ≥ 2, Dn(0) holds.

Of course, D2(0) holds; for n ≥ 3, much less is known, and results toward Conjecture 1.7 would
have strong implications. First, the “pointwise” counts encapsulated in Property Dn(̟) relate
to “average” counts for the number of extensions of degree n with bounded discriminant. In one
direction, this is trivial: Property Dn(̟) immediately implies there are at most ≪n,ε X

1+̟+ε

degree n extensions of Q with discriminant at most X. It may be surprising that there is also an
implication in the other direction; this has been proved by Ellenberg and Venkatesh [EV05, Prop.
4.8].

Second, questions about Dn(̟) are directly connected to questions about ℓ-torsion in class
groups, for primes ℓ. As just one example (see Duke [Duk95]), quartic fields of fixed discrimi-
nant −q (q prime) can be explicitly classified by odd octahedral Galois representations of conductor
q, and the number of such fields can be expressed as in [Hei71] as an appropriate average of the
number of 2-torsion elements in the class groups of cubic number fields of discriminant −q. More
generally, as noted in [EV05, p. 164], if Conjecture 1.7 holds (for all n), then it implies the main
pointwise conjecture, Conjecture 7.1, for upper bounds for ℓ-torsion in class groups (for all n, ℓ).
The way we employ property Dn(̟) in the present work is in some sense more efficient, since to
study ℓ-torsion (for all ℓ ≥ 1) in class groups of degree n0 fields we only require information about
Dn(̟) for n = n0, not for all n.

1.4. New results III: applications. We expect that the new effective Chebotarev theorems for
families of fields will have many applications, and we exhibit two. First, we prove nontrivial bounds
for ℓ-torsion, for all integers ℓ ≥ 1, in class groups of “almost all” fields in each of the families to which
our Chebotarev theorems apply (Theorem 7.2). In many cases, these are the first ever nontrivial
bounds for ℓ-torsion, and in particular the first that apply to families of fields of arbitrarily large
degree. As a second (related) application, we prove a result on the density of number fields with
small generators, spurred by a question of Ruppert (Theorem 8.2). Further applications will be
described in later work.

1.5. Organization of the paper. In Part I, we state and prove the results we require for counting
number fields, both with bounded discriminant and with fixed discriminant. In Part II, we turn
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to the Chebotarev theorems: in §3 we state quantitative versions of all the effective Chebotarev
theorems; in §4 we prove the quantitative version of Theorem 1.3, and in §5 and §6 we prove the
quantitative versions of Theorem 1.1. In Part III, we treat the two applications mentioned above.

Contents

Part I: Counting Number Fields 7

Part II: Effective Chebotarev Theorems 14

Part III: Applications and ℓ-torsion in class groups 44

Part I: Counting Number Fields

2. Counting families of fields

As described in Section 1.3, we require results counting number fields, and we prove those in
this section. Our principal concern is families of the form ZI

n (Q, G;X), defined to be the subset of
those fields K ∈ Zn(Q, G;X) such that for each rational prime p that is tamely ramified in K, an
inertia group for p is generated by an element of I . We require an upper bound for |ZI

n (Q, G;X)|,
which can be an overestimate, a lower bound for |ZI

n (Q, G;X)|, which we aim to make as sharp as
currently feasible, and upper bounds on the number of fields in ZI

n (Q, G) of discriminant D.

2.1. Cyclic fields. The strategy for counting cyclic extensions goes back to Cohn [Coh54]; see
[Mäk85, Wri89, Woo10, FLN15] for results counting abelian extensions of arbitrary degree. Let G
be cyclic of order n ≥ 2 and let g denote the smallest prime divisor of n. Then we have (see, e.g.
[Wri89]) that

(2.1) |Zn(Q, G;X)| ∼ cX
1

n−n/g

for a certain constant c = c(n) > 0. We require the following refinement:

Proposition 2.1 (Cyclic groups). Let n ≥ 2 be fixed and let G be a cyclic group of order n. Let
ZI
n (Q, G;X) count those fields K ∈ Zn(Q, G;X) such that every rational prime that ramifies tamely

in K is totally ramified in K, that is, the inertia group is generated by an element that is of full
order in G. Then there exists a constant cn > 0 such that

(2.2) |ZI
n (Q, G;X)| ∼ cnX

1
n−1 .

Furthermore, Property Dn(G, 0) holds.

Remark 2.2. If |G| = n is prime then 1/(n−n/g) = 1/(n− 1). However, when |G| = n is not prime
then ZI

n (Q, G;X) is itself of density zero in Zn(Q, G;X), by comparison of (2.1) and (2.2).

Proof. Let a1 = 1 and for m ≥ 2, let am be |Aut(G)| times the number of fields counted by
ZI
n (Q, G;X) with absolute discriminant m. We define a Dirichlet series A(s) :=

∑
m≥1 amm

−s,
and by class field theory and now standard arguments we have

(2.3) A(s) = P (s)
∏

p≡1 (mod n)

(1 + φ(n)p−(n−1)s),

where P (s) is a product over p|n of polynomials in p−s. Briefly, by class field theory we are
counting certain homomorphisms from the idèle class group to G, by [Woo10, Lemma 4.2] we can
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replace the idèle class group with a product of p-adic units, and then we can easily count the local
homomorphisms (see, e.g. [Woo10, Section 4], for a similar analysis in a more difficult case).

When am is non-zero, we have am ≤ Cnφ(n)
ω(m) where ω(m) is the number of distinct prime

divisors of m and Cn is a constant depending only on n. (In particular, Cn can be bounded above
by the sum of the absolute values of all coefficients of the polynomial factors in the finite product
P (s).) Thus am ≪n,ε m

ε for any ε > 0, proving Property Dn(G; 0).
For comparison to A(s) we consider the product B(s) over all Dirichlet characters defined modulo

n, given for ℜ(s) > 1 by

B(s) =
∏

χ

L(s, χ) =
∏

χ

∏

p

(1− χ(p)p−s)−1

which has a pole of order 1 at s = 1 and otherwise may be analytically continued as a holomorphic
function. Writing the Euler product as

∏
p µp(s)

−1, note that µp(s) = 1 −
∑

χ χ(p)p
−s + O(p−2s);

by orthogonality of characters, the coefficient
∑

χ χ(p) = φ(n) if p ≡ 1 (mod n) and zero otherwise.

We can then check that A(s)/B((n− 1)s) is holomorphic in ℜ(s) > (2(n− 1))−1. Thus A(s) has a
meromorphic continuation in ℜ(s) > (2(n−1))−1 with only a simple pole at s = (n−1)−1; moreover
A(s) inherits a standard convexity estimate from B(s) (see e.g. [IK04, Lemma 5.2, Thm. 5.23]).
So, by the main term in a standard Tauberian theorem (see for example [CLT01, Thm. A.1] and
[Nar00, Section 6.4]), we have

|ZI
n (Q, G;X)| = cnX

1/(n−1) + o(X1/(n−1)),

for a certain constant cn. �

2.2. Dihedral groups Dp. For p an odd prime, let Dp be the order 2p group of symmetries
of the vertices of a regular p-gon. Klüners [Klü06a, Theorem 3.5] obtained the lower bound

|Zp(Q, Dp;X)| ≫ X2/(p−1) predicted by Malle’s conjecture [Mal02]. Klüners also showed that

Malle’s conjectured upper bound X2/(p−1)+ε follows from a special case of the Cohen-Lenstra heuris-
tics [Klü06a, Thm. 2.5], as well as proving [Klü06a, Theorem 2.7] an unconditional upper bound

|Zp(Q, Dp;X)| ≪ε X
3/(p−1)+ε. This has recently been improved by Cohen and Thorne [CT16, Thm

1.1], based on nontrivial bounds of [EPW17] for averages of ℓ-torsion over quadratic fields, to

(2.4) |Zp(Q, Dp;X)| ≪ε X
3

p−1
− 1

p(p−1)
+ε
.

We require a lower bound that includes a ramification restriction. We let Property D
I
p (Dp, ̟)

be the analog of Property Dp(Dp, ̟) in which we only count Dp-fields and with the ramification
restriction I for all tamely ramified primes.

Proposition 2.3 (Dihedral group Dp of order 2p). For p an odd prime, let Dp act on the p vertices

of the regular p-gon in the usual way, and let ZI
p (Q, Dp;X) count those fields K ∈ Zp(Q, Dp;X) with

the following ramification restriction I : every rational prime that ramifies tamely in K has inertia
group generated by an element in the conjugacy class [(2 p)(3 p − 1) · · · (p+1

2
p+3
2 )] of reflections.

Then |ZI
p (Q, Dp;X)| ≫p X

2
p−1 .

Further, DI
p (Dp, 1/(p − 1)) holds. More generally, if we know that for all quadratic fields L we

have |ClL[p]| = Op(D
b
L) for a certain exponent b > 0, then D

I
p (Dp, 2b/(p− 1)) holds.

Note: here we use the notation ClL[p] to denote the p-torsion subgroup of the class group ClL of
the field L/Q; see e.g. (7.1) for the definition.

2.2.1. Proof of the upper bound. Next we count degree p Dp-fields with a fixed discriminant. We
may trivially state that Dp(Dp, ̟) holds with ̟ = 3/(p − 1) − 1/p(p − 1), by applying (2.4).
We improve on this by only counting fields with a fixed discriminant and using our additional
ramification restriction.
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Let K ∈ ZI
p (Q, Dp) be a degree p Dp-field with absolute discriminant D. Let K̃ be the Galois

closure of K and L be the quadratic field inside K̃, so K̃/L is a cyclic p extension. Our ramification

restriction implies that K̃/L is unramified except perhaps at primes dividing 2p. We have, by our

ramification restriction, that |DiscK| = 2apbQ(p−1)/2, where Q is square-free and relatively prime

to 2p. Then |DiscL| = 2a
′
pb

′
Q for some a′, b′ that are bounded in terms of p. Thus, given D, there

are a constant (in terms of p) possible quadratic fields L, and for each of them we will count the

possible cyclic p extensions K̃/L that could arise.
Let JL be the idèle class group of L. For a finite place v of L, let Ov be the elements of non-

negative valuation in the completion Lv, and for an infinite place v let Ov = Lv. From the exact
sequence

∏
v O

∗
v → JL → ClL → 1 [Neu99, Ch. VI Prop. 1.3] (where the product is over all places

of L), and the left-exactness of Homcts(−, Cp), we have an exact sequence

1 → Hom(ClL, Cp) → Homcts(JL, Cp) → Homcts(
∏

v

O∗
v , Cp),

where we can take the product just above over finite places v of L, since there are no continuous
homormorphisms from R∗ or C∗ into Cp for p odd. Our desired Cp-extensions of L correspond
via class field theory to elements of Homcts(JL, Cp) that for each v ∤ 2p map O∗

v to the identity,
since they are unramified at such v. Thus the number of possible images in Homcts(

∏
v O

∗
v , Cp) for

our desired elements of Homcts(JL, Cp) is |Hom(
∏

v|2pO
∗
v , Cp)|. The number of v | 2p is at most 4

since L is quadratic. Since Lv is either Qp or Q2 or quadratic over Qp or Q2 (and there are only
finitely many possibilities for the latter), the number of homomorphisms from O∗

v to Cp for v | 2p is

bounded in terms of p. Also, |Hom(ClL, Cp)| = |ClL[p]|. Note DiscL = Op(|DiscK|2/(p−1)). So if

we assume |ClL[p]| = Op(|DiscL|b), then the number of possible K̃, and thus the number of possible

K, is Op(D
2b/(p−1)).

2.2.2. Proof of the lower bound. Given a quadratic field L, if ClL[p] is non-trivial, class field theory
gives an unramified cyclic degree p extension L′/L. The group Gal(L/Q) = 〈σ〉 acts on ClL by
inversion (since for an ideal a of L, we have that aσ(a) is principal). It follows that L′/Q is a degree
2p Dp-extension, with all inertia trivial or in a subgroup generated by a reflection.

Now given an imaginary quadratic field L with units ±1 such that ClL[p] is trivial and p splits
completely in L, we we will show by other means that we still can obtain a degree 2p Dp-extension
L′/Q containing L, and with our required ramification condition. We will construct a surjection
φ from JL to the cyclic group Cp of order p. Let v1, v2 be the two places of L above p. We let
φv1 : O∗

v1 → Cp be any surjection. We let φv2 : O∗
v2 → Cp be defined by φv2(u) = φv1(σ(u))

−1. At
every other place v 6= v1, v2, we let φv : O∗

v → Cp be trivial. Then at each place v, we pick an element
αv ∈ L that has valuation 1 at v and valuation divisible by p at all other places (which we can do
since ClL[p] is trivial). We extend φv to φv : L∗

v → Cp by letting φv(αv) =
∏

w 6=v φw(αv)
−1. The φv

combine to give a map φ :
∏

v L
∗
v → Cp, that is trivial on the diagonal embeddings of pth powers,

the αv, and units. These elements generate L∗ (since ClL[p] is trivial), and so φ descends to a map
φ : JL → Cp. We can check that it follows from our definitions that φ(σ(x)) = φ(x)−1. We recall
from class field theory that the Artin map for L is equivariant for the usual action of Gal(L/Q) on
JL and the action of Gal(L/Q) on Gal(Lab/L) given by conjugation by a lift in Gal(Lab/Q) [Tat67,
Thm 11.5 (i)]. So since kerφ is Gal(L/Q) invariant, it follows from Galois theory that the degree p
cyclic extension L′ of L corresponding to φ (from class field theory) is actually Galois over Q. Since
p is odd, we have that Gal(L′/Q) is a semi-direct product Gal(L′/L) ⋊ Gal(K/Q), and the action
of Gal(K/Q) on the index p subgroup Gal(L′/L) given above shows that Gal(L′/Q) ≃ Dp. Since
L′/L has no tame ramification by choice of the φv|O∗

v
, all tame ramification of L′/Q has inertia in

the subgroup of a reflection.
So for all but finitely many imaginary quadratic fields L in which p splits completely, we have

constructed a degree 2p Dp-extension L′/Q containing L with our required ramification condition,
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which in particular contains a degree p Dp-extension K. At primes ℓ ∤ 2p of Q, the exponent of
ℓ in DiscK is (p − 1)/2 if ℓ is ramified in L and 0 otherwise. So we have that DiscK is within a

constant (depending on p) factor of (DiscL)(p−1)/2. Since we have ≫p X of these quadratic fields

L, we conclude we have ≫p X
2/(p−1) fields counted by ZI

p (Q, Dp;X).

2.3. Symmetric groups Sn. Our work on Sn-fields requires understanding the size of ZI
n (Q, Sn;X)

with I = [(1 2)]; this is equivalent to requiring that the tamely-ramified part of DK is square-free.
This is a consequence of a standard fact (see Lemma 6.9) that p is tamely ramified in K with inertia
group generated by a transposition if and only if p‖DK . We record for n = 3, 4, 5, that by work of
Bhargava [Bha14, Theorem 1.3],

(2.5) |ZI
n (Q, Sn;X)| ∼ cnX.

By the asymptotic counts of S3-fields due to Davenport and Heilbronn [DH71] and S4-fields and
S5-fields due to Bhargava [Bha05, Bha10], the fields in ZI

n (Q, Sn) are a positive proportion of all
Sn fields for n = 3, 4, 5. Moreover, it is conjectured by Malle [Mal02] and Bhargava [Bha07, Bha14]
that asymptotics of order X hold for ZI

n (Q, Sn;X) and Zn(Q, Sn;X) when n ≥ 6.
For symmetric groups Sn with n ≥ 6, the best proven results are much weaker. For n > 2, we

have an upper bound of Ellenberg and Venkatesh [EV06] on all degree n number fields Zn(Q),

(2.6) |Zn(Q;X)| ≪ (αnX)exp(C
√
logn),

where αn is a constant depending only on n and C is an absolute constant. The best known lower
bound for Sn-fields is |Zn(Q, Sn;X)| ≫n X

1/2+1/n by Bhargava, Shankar and Wang [BSW16, Thm.
1.3], and importantly for us, all of the fields they construct to deduce this new lower bound have
square-free discriminant. As a consequence, for all n ≥ 6 and I = [(1 2)],

(2.7) |ZI
n (Q, Sn;X)| ≫n X

1/2+1/n.

We also require upper bounds on Sn-fields of a fixed discriminant, and we state the best known
results here. Ellenberg and Venkatesh [EV07, p. 1] prove Property D3(S3, 1/3). Klüners [Klü06b]
proves Property D4(S4, 1/2). From Bhargava’s count for quintic fields, we may trivially deduce that
D5(S5, 1) holds. For our work, knowing D5(S5, ̟) for any ̟ < 1 would suffice, so we make the
following simple observation:

Proposition 2.4. Property D5(̟) holds for ̟ = 199/200.

This follows immediately from the power-saving count for quintic S5-fields proved by Shankar
and Tsimerman [ST14] (see also the power-saving count for all quintic fields in [EPW17, Thm. 2.4]).
Indeed, letting Z5(Q;X) denote all quintic fields with DK ≤ X, we have a constant c5a > 0 such
that

|Z5(Q;X)| = c5aX +Oε(X
199/200+ε)

for every ε > 0, so that upon differencing this for X = D and X = D − 1, Proposition 2.4 follows.

2.4. The alternating group A4. For A4, it is known by Baily [Bai80] that the lower bound

conjectured by Malle [Mal02] holds, |Z4(Q, A4;X)| ≫ X1/2, and by Wong [Won05] that a weaker
upper bound holds,

(2.8) |Z4(Q, A4;X)| ≪ X5/6+ε.

We require a lower bound that includes a ramification restriction and an upper bound for fields
of fixed discriminant.

Proposition 2.5 (Alternating group A4). Let ZI
4 (Q, A4;X) count those fields K ∈ Z4(Q, A4;X)

such that every rational prime that ramifies tamely in K has inertia group generated by an element in
either of the conjugacy classes {(1 2 3), (1 3 4), (1 4 2), (2 4 3)} or {(1 3 2), (1 4 3), (1 2 4), (2 3 4)}.

Then |ZI
4 (Q, A4;X)| ≫ X1/2. Moreover, D4(A4, ̟) holds for ̟ = 0.2784....
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Property D4(A4, ̟) was previously known for ̟ = 3/4 due to Wong [Won99a, Thm. 6], but this
is not small enough for our purposes.

2.4.1. The upper bound. To show that D4(A4, ̟) holds with ̟ = 0.2784..., we will apply Baily’s
connection [Bai80] of A4 fields to certain quadratic ray class characters of cyclic cubic fields, in
combination with the bound on the 2-torsion in class groups of cubic fields due to Bhargava, Shankar,
Taniguchi, Thorne, Tsimerman, and Zhao [BST+17]. We thank Manjul Bhargava for suggesting
this approach.

Let K4 be a quartic A4-field of discriminant D. Let K3 be the fixed field of the subgroup of
A4 generated by {(1 2)(3 4), (2 3)(1 4)}, and note that K3 is cyclic cubic. We can check using
Lemma 6.9 that tame rational primes with inertia type in the conjugacy class of (1 2)(3 4) appear
squared in the discriminant of K4 and do not appear in the discriminant of K3. Similarly, tame
rational primes with inertia type in the conjugacy class of (1 2 3) appear squared in the discriminants
of both K4 and K3. So DiscK3 | 2

a3bDiscK4, for some absolute positive integers a, b.
Let K6 be one of the (conjugate) sextic subfields of the Galois closure of K4. Note that K4 and

K6 have the same Galois closure, and so to count K4 we may equivalently (up to a fixed constant)

count the associated K6. By [Bai80, Lemmas 13 and 15] we have that K6 = K3(b
1/2), where

b ∈ OK3\{Z∪O
2
K3

} andNK3/Q(b) is a square rational integer. We have thatNK3/Q(Disc (K6/K3)) =
DiscK4/DiscK3 (see [Bai80, Lemma 11]).

Now, we sum over each divisor d of 2a3bD the number of quartic A4-fields K4 of discriminant
D with DiscK3 = d. There are O(2ω(d)) cyclic cubic fields of discriminant d [Coh54]. Given a
fixed cyclic cubic field K3 of discriminant d, for an upper bound, it suffices to bound the number
of sextic fields of the form K3(b

1/2), where b ∈ OK3 \ {Z ∪O2
K3

} and NK3/Q(b) is a square rational
integer. We do this following the argument in [Bai80, Lemma 10]. Such a sextic field corresponds
to a quadratic ray class character of conductor d with finite part d∗ = Disc (K6/K3), and such a
character is a product of a character on (OK3/d

∗)×, a character on the class group of K3, and a
character on signature (see [Bai80, (4)]). Baily [Bai80, Lemma 8] describes the possible forms of
d, and in the proof of [Bai80, Lemma 9] gives a generating function for all the primitive quadratic

characters on (OK3/d
∗)×. From this it follows there are O(3ω(D/d)) choices of d∗ with characters

on (OK3/d
∗)× such that we will have Disc (K6/K3) = D/d. Let h2(K3) denote the size of the

2-torsion subgroup of the class group of K3. There are at most h2(K3) class group characters, and
h2(K3) = Oε(d

0.2784···+ε) by [BST+17, Equation (4)]. There are at most 8 characters of signature,
and so in conclusion, there are at most

Oε



∑

d|D
2ω(d)3ω(D/d)d0.2784...+ε


 = Oε(D

0.2784...+ε)

quartic A4-fields of discriminant D.

2.4.2. The lower bound. The lower bound on the number of quartic A4-fields with our required
ramification condition follows from the proof of [Bai80, Theorem 3]. As stated in line 2 of the proof
of [Bai80, Lemma 16], the degree 6 fields K6 constructed by Baily are unramified over the relevant
degree 3 cyclic field K3, except perhaps at primes of K3 dividing 2. These fields K6 have Galois
closure K12 of degree 12 with Galois group A4. The fact that K6/K3 is unramified except at primes
of K3 dividing 2 means that for each odd rational prime p the inertia groups of p in Gal(K12/Q)
must be trivial or generated by a three-cycle. The same holds for p = 2 if the primes of K3 that
divide 2 are unramified in K6/K3. If a prime dividing 2 is ramified in K6/K3, it is wildly ramified,
and thus 2 in wildly ramified in K12.

2.5. The alternating groups An and proof of Theorem 1.5. The fact that for n ≥ 5, An is
a simple group will make a later part of our argument much simpler, but on the other hand we
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require a lower bound for the number of degree n An-extensions of Q with bounded discriminant,
which was not previously in the literature. We prove:

Theorem 2.6 (Alternating groups An, n ≥ 3). For each integer n ≥ 3, there exists a real number
βn > 0 such that for all X ≥ 1, for every ε > 0, |Zn(Q, An;X)| ≫n,ε X

βn−ε. In fact we may take
βn = (1− 2

n!)/(4n− 4).

We first observe that Theorem 1.5 implies Theorem 2.6 when we specialize G to An. For each
n ≥ 3, Hilbert [Hil92] gave polynomials f(x, t) ∈ Q[x, t] that have Galois group An over Q(t) and
are degree n in x and degree 2 in t. (Hilbert in turn credits Hurwitz with the examples: see [Hil92,
p. 125] for n even and [Hil92, p. 126] for n odd; see also [Ser97, Section 10.3].) Moreover, these
same polynomials (by the same argument) have Galois group An over E(t), for any number field
E, and thus their splitting fields do not contain a non-trivial finite extension of Q (i.e. they are
regular). Thus Theorem 1.5 with |G| = |An| = n!/2, j = 1, m = n and d = 2 verifies Theorem 2.6.

We now prove Theorem 1.5; we thank Akshay Venkatesh and Manjul Bhargava for suggesting the
approach we use, and for a number of helpful discussions. The method of proof, in imprecise terms,
is as follows. Suppose that f(x, t) has Galois group G over Q(t), resulting in, say, y different fields
with Galois group G as t varies over all integral tuples with coordinates at most T in absolute value.
Then by showing that f(x, t)f(x, t′) typically has Galois group G × G and very rarely has Galois
group G (which occurs when the fields provided by f(x, t) and f(x, t′) collide), we will deduce that
f(x, t) must have produced many different fields to begin with, that is, y must grow at least like a
small power of T . See also [Ser97, p. 137] for a hint at a similar philosophy applied to generating
infinitely many G-extensions if one such extension is known.

In order to put this into action in precise terms, we require a quantitative version of the Hilbert
irreducibility theorem, for which we cite [CD16]:

Theorem C. Suppose f(X,T1, . . . , Tj) ∈ Q[X,T1, . . . , Tj ] is an irreducible polynomial with splitting
field K over Q(T1, . . . , Tj) such that Gal(K/Q(T1, . . . , Tj)) ≃ G. For any subgroup H ⊂ G set

Nf (T ;H) = #{t ∈ Zj : |t|∞ ≤ T and the splitting field of f(X, t) over Q has Galois group ≃ H}.

Then for every T ≥ 1 and every ε > 0, Nf (T ;H) ≪f,ε T
j−1+|G/H|−1+ε.

We also require the following key lemma:

Lemma 2.7. Let f(x, t1, . . . , tj) ∈ Q(t1, . . . , tj)[x] be a polynomial with splitting field K over
Q(t1, . . . , tj) such that Gal(K/Q(t1, . . . , tj)) ≃ G. Suppose that f(x, t1, . . . , tj) is regular, i.e. K
does not contain a non-trivial finite extension of Q. Then f(x, t1, . . . , tj)f(x, s1, . . . , sj) has splitting
field with Galois group G×G over Q(t1, . . . , tj , s1, . . . , sj).

2.5.1. Proof of Lemma 2.7. We will prove the lemma in the case j = 1; a straightforward extension
of this argument applies to the general case. Let F (x, t) ∈ Q[t, x] be a monic irreducible polynomial
of x with a root θ that generates K over Q(t). We let all our splitting fields be in a fixed algebraic
closure of Q(s, t). Then KQ(s) is the splitting field of f(x, t) over Q(s, t). We will show below that
if G(s, x) ∈ Q[s, x] is a monic polynomial irreducible over Q(s) that generates a Galois extension
of Q(s) and does not contain a non-trivial finite extension of Q, then G(s, x) is irreducible over
KQ(s). We will see now that this will suffice to prove the lemma. Applying this in the case
where F is trivial, we will see that G(s, x) is irreducible over Q(s, t), and in particular, analogously
we will see that F (x, t) is irreducible over Q(s, t) and so [KQ(s) : Q(s, t)] = |G|. So if L is
the splitting field of f(s, x) over Q(s), then L is generated by F (s, x), and applying the above
with G(s, x) = F (s, x), we see that [KL : KQ(s)] = |G|. Thus Gal(KL/Q(s, t)) has order |G|2

and injects into Gal(K/Q(t)) × Gal(L/Q(s)), and so Gal(KL/Q(s, t)) ≃ G × G. Since KL is the
splitting field of f(x, t)f(x, s) over Q(s, t), this proves the lemma.
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Now we show that G(s, x) with the assumptions above is irreducible over KQ(s). Suppose that
G(s, x) factored into a(x)b(x) over KQ(s). We can write

a(x) =
k∑

i=0

ni(s, t, θ)

di(s, t)
xi

where ni(y, z, w) ∈ Q[y, z, w] and ni(y, z) ∈ Q[y, z]. (Since θ is algebraic over Q(s, t), we can write
elements of KQ(s) as polynomials in θ with coefficients in Q(s, t), and so we can arrange to have
no θ’s in the denominators.) Let ni,j(z, w) be the coefficient of yj in ni(y, z, w). Let Ia be the ideal
in Q[z, w] generated by all the ni,j(z, w) for all j and for i ≥ 1, and define Ib analogously. We claim
that, as ideals of Q[z, w], we have (F (w, z)) ⊃ IaIb. Suppose not. Then there are infinitely many
maximal ideals m of Q[z, w] that contain (F (w, z)) but not IaIb. Each such maximal ideal gives
values t0, θ0 ∈ Q such that F (θ0, t0) = 0, but upon substitution of z 7→ t0 and w 7→ θ0, some element
of Ia and some element of Ib remain non-zero, which gives a nontrivial factorization of G(s, x) over
Q(s) unless some denominator di(s, t0) is identically zero (or similarly for the denominators in
b(x)). Since only finitely many t0 can make a denominator zero, and each have a finitely many
associated θ0, we conclude that G(s, x) factors non-trivially over Q(s), and thus over E(s, x) for
some Galois number field E. Since Gal(E(s)/Q(s)) → Gal(E/Q) is an isomorphism, the subfields
of E(s) that contain Q(s) are E′(s) for the subfields E′ of E. If M is the field generated by G(s, x)
over Q(s), then [ME(s) : E(s)] = [M : M ∩ E(s)]. Since G(s, x) factors non-trivially over E(s),
we have [ME(s) : E(s)] < [M : Q(s)], and thus M ∩ E(s) is a non-trivial extension of Q(s) inside
E(s), and thus contains some number field E′. In particular M contains a non-trivial number field,
which contradicts our assumption on G(s, x). Thus, we conclude that (F (w, z)) ⊃ IaIb, and thus
(F (w, z))|IaIb, and thus either(F (w, z))|Ia or (F (w, z))|Ib, since (F (w, z)) is prime. But this implies
that either a or b has all coefficients 0 except the constant one, and thus we conclude G(s, x) is
irreducible over KQ(s). This concludes the proof of Lemma 2.7.

2.5.2. Proof of Theorem 1.5. With Lemma 2.7 and Theorem C in hand, we may now prove Theorem
1.5. Suppose f(X,T1, . . . , Tj) is a polynomial of total degree d in the Ti with Galois group G over
Q(T1, . . . , Tj) (with degree n in X). For t = (t1, . . . , tj), we define |t|∞ = max1≤ℓ≤j |tℓ|, so that
there are ≫ T j possible values of t ∈ Zj with |t|∞ ≤ T . For each t ∈ Zj , let Lt be the splitting
field of f(X, t1, . . . , tj) in Q̄. Let y be the size of the set {Lt : t ∈ Zj , |t|∞ ≤ T,Gal(Lt/Q) ≃ G}
(note it is possible that different t give the same Lt), and we also write L1, . . . , Ly for the fields in
this set.

For each 1 ≤ i ≤ y, suppose Ai of the values t have Lt = Li. So

A1 + · · ·+Ay = A,

where A is the total number of values of |t|∞ ≤ T with Gal(Lt/Q) ≃ G. From Theorem C above,
we have that A ≫f T

j , since there are finitely many subgroups which each appear with an upper
bound with exponent strictly smaller than j.

For each t ∈ Z2j , let Mt be the splitting field of f(X, t1, . . . , tj)f(X, tj+1, . . . , t2j). We ask
how many t ∈ Z2j with |t|∞ ≤ T have Gal(Mt/Q) ≃ G? By Lemma 2.7 and the assumption
that f is regular, we have that f(X,T1, . . . , Tj)f(X,Tj+1, . . . , T2j) has Galois group G × G over
Q(T1, . . . , T2j). Thus, by Theorem C, the number of t ∈ Z2j with |t|∞ ≤ T and Gal(Mt/Q) ≃ G is

≪f,ε T
2j−1+|G|−1+ε. However, note that this occurs whenever f(X, t1, . . . , tj) and f(X, tj+1, . . . , t2j)

have the same splitting field with Galois group G, and so

A2
1 + · · ·+A2

y ≪f,ε T
2j−1+|G|−1+ε.
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By Cauchy-Schwarz, (A1 + · · ·+Ay)
2 ≤ y(A2

1 + · · ·+A2
y), and we conclude that

y ≥
(A1 + · · ·+Ay)

2

(A2
1 + · · ·+A2

y)
≫f,ε

T 2j

T 2j−1+|G|−1+ε
= T 1−|G|−1−ε.

Thus there are ≫f,ε T
1−|G|−1−ε different fields with Galois group G that come from specializations

of f(X,T1, . . . , Tj) to some t with |t|∞ ≤ T . For |t|∞ ≤ T , we have that f(X, t1, . . . , tj) is a degree

n polynomial in X with coefficients ≪f T
d and thus with absolute discriminant ≪f T

d(2n−2). Thus

Lt has absolute discriminant ≪f T d(2n−2). In conclusion, there are ≫f,ε X
(1−|G|−1−ε)/(d(2n−2))

degree n G-fields with absolute discriminant at most X, completing the proof of Theorem 1.5.

Part II: Effective Chebotarev Theorems

3. Quantitative statements of Chebotarev theorems for families

We now state quantitative versions of our main Chebotarev theorems, starting with a quantitative
version of Theorem 1.3.

Theorem 3.1 (Chebotarev conditional on zero-free region). Let k be a fixed number field. Fix
A ≥ 2, 0 < δ ≤ 1/(2A), and an integer n ≥ 1. Let G be a fixed transitive subgroup of Sn. Then
there exists D0 ≥ 1 and κ1, κ2, κ3 > 0 such that the following holds: for any Galois extension of
number fields L/k with Gal(L/k) ≃ G such that DL ≥ D0 and such that the Artin L-function
ζL(s)/ζk(s) is zero-free in the region

(3.1) [1− δ, 1]× [−(logDL)
2/δ, (logDL)

2/δ],

we have that for any conjugacy class C ⊆ G,

(3.2)

∣∣∣∣πC (x, L/k)−
|C |

|G|
Li(x)

∣∣∣∣ ≤
|C |

|G|

x

(log x)A

for all

(3.3) x ≥ κ1 exp{κ2(log log(D
κ3
L ))2}.

If moreover k = Q, (3.2) holds for all

(3.4) x ≥ κ1 exp{κ2(log log(D
κ3
L ))5/3(log log log(D2

L))
1/3}.

Remark 3.2. The parameters D0 and κ1, κ2, κ3 depend on n, |G|, A, δ, and the field k; they are
precisely specified in Remark 4.11 and (4.47), respectively.

We next state, in quantitative form, the cases of Theorem 1.1 that are completely unconditional.

Theorem 3.3. For each family ZI
n (Q, G) specified in items (1)–(5) of the list below, there exist

constants β, d with 0 < β ≤ d such that for all X ≥ 1,

(3.5) Xβ ≪n,G,I |ZI
n (Q, G;X)| ≪n,G,I Xd.

Moreover, there exists a constant τ∗ with 0 ≤ τ∗ < β, such that for every τ > τ∗ and every
sufficiently small ε0 > 0, there exists a constant D3 and a constant

(3.6) δ = δ(ε0,m, |G|, d)

such that for all X ≥ 1, there are at most D3X
τ+ε0 δ-exceptional fields in ZI

n (Q, G;X); here m is
the maximum dimension of an irreducible representation of G.

Moreover, fix any A ≥ 2. Then for any ε0 > 0 such that δ as defined in (3.6) satisfies δ ≤ 1/(2A),
there exists a constant D5 ≥ 1 and constants κ1, κ2, κ3 > 0 such that for all X ≥ 1, aside from a set
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E(X) of at most D5X
τ+ε0 possible exceptions, each field K ∈ ZI

n (Q, G;X) has the property that

for its Galois closure K̃ over Q, for every conjugacy class C ⊆ G,∣∣∣∣πC (x, K̃/Q)−
|C |

|G|
Li(x)

∣∣∣∣ ≤
|C |

|G|

x

(log x)A

for all x ≥ κ1 exp{κ2(log log(D
κ3

K̃
))5/3(log log log(D2

K̃
))1/3}.

The families ZI
n (Q, G) are defined by:

(1) G a cyclic group of order n ≥ 2, with I comprised of all generators of G (equivalently, every
rational prime that is tamely ramified in K is totally ramified). In this case |ZI

n (Q, G;X)| ∼

cnX
1/(n−1) and τ∗ = 0. (Hence, the density zero exceptional set E(X) is at most of size

≪ε X
ε for every ε > 0.)

(2) n = 3, G ≃ S3 acting on a set of 3 elements, I being the conjugacy class [(1 2)] of
transpositions. In this case, |ZI

3 (Q, S3;X)| ∼ c3X and τ∗ = 1/3. (Hence the density zero

exceptional set E(X) is at most of size ≪ε X
1/3+ε for every ε > 0.)

(3) n = 4, G ≃ S4 acting on a set of 4 elements, I being the conjugacy class [(1 2)] of
transpositions. In this case, |ZI

4 (Q, S4;X)| ∼ c4X and τ∗ = 1/2. (Hence the density zero

exceptional set E(X) is at most of size ≪ε X
1/2+ε for every ε > 0.)

(4) n = p an odd prime, G = Dp the order 2p dihedral group of symmetries of a regular p-gon,
I being the conjugacy class of order 2 elements. In this case, for all X ≥ 1,

X2/(p−1) ≪p |Z
I
p (Q, Dp;X)| ≪p,ε X

3/(p−1)−1/(p(p−1))+ε

and τ∗ = 1/(p − 1). (Hence the density zero exceptional set E(X) is at most of size ≪ε

X1/(p−1)+ε for every ε > 0.)
(5) n = 4, G ≃ A4 as a subgroup of S4 acting on a set of 4 elements, I comprised of the two

conjugacy classes of order 3 elements. In this case, for all X ≥ 1,

X1/2 ≪ |ZI
4 (Q, A4;X)| ≪ε X

5/6+ε,

and τ∗ = 0.2784.... (Hence the density zero exceptional set E(X) is at most of size ≪ε

X0.2784...ε for every ε > 0.)

Note we have that m ≤ |G|.5 (see [VK85] for asymptotics when G = Sn).

Remark 3.4. Kowalski and Michel’s result [KM02, Thm. 2] leads to the choice δ = ε0
5m|G|/2+2d+4ε0

.

Within a fixed family ZI
n (Q, G), note that as we choose ε0 smaller (so that δ correspondingly

decreases), the density of potential δ-exceptional fields decreases, in accord with the fact that
the requirement that ζK̃(s)/ζ(s) be zero-free in a box to the right of ℜ(s) = 1 − δ becomes less
stringent, and fewer fields would be expected to violate it. Simultaneously, as δ and accordingly
the width of the zero-free region decreases, the lower-bound threshold for x increases, since the
explicit expressions given for the parameters κi grow with 1/δ as specified in (4.47). This is also as
expected.

Remark 3.5 (Cyclic fields of prime degree). If G is a cyclic group of prime order p ≥ 2, then for
each Galois extension K/Q with Galois group ≃ G, every ramified prime is totally ramified, so that
for I as in Theorem 3.3, ZI

p (Q, G;X) = Zp(Q, G;X).

Remark 3.6 (degree n Sn-fields with square-free discriminant). Recall from §2.3 that for each n ≥ 2,
the family ZI

n (Q, Sn;X) with I = [(1 2)] includes all degree n Sn-fields with square-free discrim-
inant, which are known in the case of n = 3, 4, 5 (and conjectured for n ≥ 6) to be a positive
proportion of all degree n fields.

Remark 3.7 (degree p Dp-fields). It is conjectured that |Zp(Q, Dp;X)| ∼ cDpX
2/(p−1) for some

cDp > 0 (see [Mal04], [Klü06a, p. 608]); assuming this is the true order, our family of degree p
Dp-fields exhibited in case (4) is a positive proportion of all degree p Dp-fields.
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Remark 3.8 (degree 4 A4-fields). Based on heuristics as well as numerical evidence, it is conjectured

that |Z4(Q, A4;X)| ∼ cA4X
1/2 logX for some cA4 > 0 (see [CDyDO02, §2.7], [Mal04, Ex. 3.2]);

assuming this is the true order, our family of degree 4 A4-fields exhibited in case (5) of Theorem
3.3 just fails to be a positive proportion of all degree 4 A4-fields.

Finally, we state the quantitative forms of Theorem 1.1 that are conditional on the strong Artin
conjecture, and in certain cases on hypotheses for counting number fields.

Theorem 3.9 (Quintic S5-fields). Consider the family ZI
5 (Q, S5) for I being the conjugacy class

[(1 2)] of transpositions, in which case |ZI
5 (Q, G;X)| ∼ c5X. The conclusions of Theorem 3.3 hold

for ZI
5 (Q, G) if we assume the strong Artin conjecture holds for all irreducible Galois representations

over Q with image S5. In this case, τ∗ = 199/200. (Hence the density zero exceptional set E(X) is

at most of size ≪ε X
199/200+ε for every ε > 0.)

Remark 3.10. An alternative formulation of Theorem 3.9 uses the work of F. Calegari [Cal13]. Let

Y I
5 (Q, S5) be the family of quintic S5-fields K such that complex conjugation in Gal(K̃/Q) has

conjugacy class (1 2)(3 4), K̃/Q is unramified at 5, and the Frobenius element at 5 has conjugacy
class (1 2)(3 4). By [Bha14, Thm. 1.3], |Y I

5 (Q, S5;X)| ∼ c′5X. For these fields, Calegari verifies the
strong Artin conjecture for the dimension 4 and 6 irreducible representations of S5, and reduces the
verification for the dimension 5 irreducible representations to checking that a certain L-function is
non-vanishing for s ∈ [0, 1]. Precisely, for K ∈ Y5(Q, S5), let E be the quadratic subfield of K̃, F

be a subfield of K̃ of degree 6 over Q, and H be the compositum of E and F . Then by [Cal13,
Thm. 1.2], the strong Artin conjecture holds for the dimension 5 irreducible representations as long
as ζH(s) is nonvanishing for s ∈ [0, 1]. (See [Boo06], [Dwy14] for computational verification of this
nonvanishing, in a finite number of cases with small discriminant.) Thus we could alternatively
state Theorem 3.9 for the family Y I

5 (Q, S5), assuming in place of the strong Artin conjecture that
for each field K ∈ Y I

5 (Q, S5) considered, the appropriate L-function ζH(s) is nonvanishing for
s ∈ [0, 1].

Theorem 3.11 (degree n Sn-fields). Consider for n ≥ 6 the family ZI
n (Q, Sn) with I being the

conjugacy class [(1 2)] of transpositions, in which case for all X ≥ 1,

X1/2+1/n ≪n |ZI
n (Q, Sn;X)| ≪n X

exp(C
√
logn).

The conclusions of Theorem 3.3 hold for the family ZI
n (Q, Sn) if we assume

(i) the strong Artin conjecture holds for all irreducible Galois representations over Q with image
Sn,

(ii) for some ̟n < 1/2 + 1/n, for every fixed integer D, there are at most ≪n D̟n fields
K ∈ Zn(Q, Sn) with DK = D.

In this case, τ∗ = ̟n. (Hence the density zero exceptional set E(X) is at most of size ≪ε X
̟n+ε

for every ε > 0.)

Remark 3.12. If it is known that |ZI
n (Q, Sn;X)| ≫n X

βn , then to deduce that the possible excep-
tional set has density zero, we need only know (ii) for some ̟n < βn.

Similarly our results for simple groups are conditional on the strong Artin conjecture; for An,
we additionally apply our new lower bound for the number of degree n An-fields with bounded
discriminant.

Theorem 3.13 (Alternating groups An, n ≥ 5). For each n ≥ 5, consider the family Zn(Q, An)
(with no restriction on inertia type, that is, I = G). In this case, there exists a positive exponent
βn > 0 such that for all X ≥ 1,

Xβn ≪n |ZI
n (Q, An;X)| ≪n X

exp(C
√
logn)
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for a certain absolute constant C. In fact we may take βn = (1 − 2/n!)/(4n − 4). Then under the
assumption that the strong Artin Conjecture holds for all irreducible Galois representations over Q
with image An, the conclusions of Theorem 3.3 hold with τ∗ = 0. (Hence the density zero exceptional
set E(X) is at most of size ≪ε X

ε for every ε > 0.)

Finally, we state a result for families of fields parametrized by a fixed simple group; here we
simply assume that a lower bound that grows like a power of X is known for the number of such
fields (as may be obtained by Theorem 1.5 if an appropriate generating polynomial is known).

Theorem 3.14 (Simple groups). For n ≥ 2 and a fixed transitive simple group G ⊂ Sn, the
conclusions of Theorem 3.3 hold for the family Zn(Q, G) with no restriction on inertia type (that is,
I = G), if we assume

(i) the strong Artin conjecture for all irreducible representations over Q with image G,
(ii) a lower bound of the form |Zn(Q, G;X)| ≫n,G Xβ for some β > 0, for all X ≥ 1.

Then Xβ ≪n |Zn(Q, G;X)| ≪n X
exp(C

√
logn) for an absolute constant C, and τ∗ = 0. (Hence the

density zero exceptional set E(X) is at most of size ≪ε X
ε for every ε > 0.)

Remark 3.15. At present we do not treat families Zn(Q, G) for G a non-cyclic abelian group, or
Z4(Q, D4); we remark on difficulties encountered in these settings in Remarks 6.11 and 6.12.

We encapsulate two useful consequences in all the settings described above:

Corollary 3.16 (Quantitative counts for small primes). Let ZI
n (Q, G;X) be fixed to be one of the

families of fields considered in Theorems 3.3, 3.9, 3.11, 3.13 and 3.14, and correspondingly assume
the hypotheses (if any) of the relevant theorem. Recall the parameters τ∗ < β ≤ d proved to exist
for the family in (3.5), and for any sufficiently small ε0 > 0, let δ ≤ 1/4 be defined as in (3.6).

(1) For any σ > 0, there exists a constant D6 such that for every X ≥ 1, every field K ∈
ZI
n (Q, G;X) that has DK ≥ D6 and is not δ-exceptional, has the property that for any fixed conju-

gacy class (or finite union of conjugacy classes) C in G,

(3.7) πC (D
σ
K , K̃/Q) ≫G,n,σ

Dσ
K

logDK
.

Here K̃ denotes the Galois closure of K over Q.
(2) For any σ > 0, there exists a constant D7 such that for every X ≥ 1, every field K ∈

ZI
n (Q, G,X) that has DK ≥ D7 and is not δ-exceptional, has the property that for any conjugacy

class C of G,

(3.8) πC (2D
σ
K , K̃/Q)− πC (D

σ
K , K̃/Q) ≥ 1.

Here K̃ denotes the Galois closure of K over Q.
Finally, in either case, recall that for every τ > τ∗ there exists a constant D3 such that for every

X ≥ 1, at most D3X
τ+ε0 fields K ∈ ZI

n (Q, G;X) are δ-exceptional.

4. A Chebotarev density theorem conditional upon a zero-free region

The main goal of this section is to prove Theorem 3.1. A nice feature of Lagarias and Odlyzko’s
approach to the effective Chebotarev theorem is that it does not assume the Artin conjecture, so
that Theorem B is completely unconditional. Similarly, Theorem 3.1 is unconditional, aside from
the assumed zero-free region. This is made possible by using Lagarias and Odlyzko’s technical trick
(originally due to Deuring) of expressing ζL as a product of Hecke L-functions, where L/k is a Galois
extension of number fields with Gal(L/k) ≃ G. Fixing an element g ∈ G and letting H = 〈g〉 be
the cyclic subgroup of G generated by g, then upon setting E to be the fixed field LH , Lagarias and
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Odlyzko obtain the product expression on the left, in which χ varies over the irreducible characters
of H:

(4.1)
∏

χ irred

L(s, χ, L/E) = ζL(s) =
∏

ρj

L(s, ρj , L/k)
dim ρj .

Each such factor is a Hecke L-function and hence is known to be entire if χ is nontrivial. On the
other hand, once we have Theorem 3.1, to deduce the assumed zero-free region via Kowalski-Michel,
we will also factor ζL(s) as on the right-hand side, as a product of Artin L-functions, which we then
need to show (or assume) are automorphic L-functions with certain properties.

If one is willing to assume the Artin conjecture, so that each factor on the right-hand side of
(4.1) with ρj nontrivial is entire, a Chebotarev density theorem with an effective error term is
relatively quick to prove, since either a standard zero-free region (or the GRH zero-free region) may
be applied to each of these Artin L-functions, obviating the alternative Hecke factorization; see for
example, [IK04, §5.13 and Thm. 4.13]. (The conjugacy class C of interest is picked out via trace
functions, much as in Dirichlet’s theorem on primes p ≡ a (mod q), the residue class of interest is
picked out via Dirichlet characters.) In our application to families of fields we do indeed assume
the strong Artin conjecture (or it is known). Nevertheless, to prove Theorem 3.1 we have used the
Lagarias-Odlyzko approach, as we expect its unconditionality to be useful for other applications.

4.1. Standard lemmas on zeroes. We recall the currently best known zero free region for ζ(s),
due to Vinogradov [Vin58] and Korobov [Kor58].

Lemma 4.1 (Vinogradov-Korobov zero-free region for ζ(s)). There exists an absolute constant
cQ > 0 such that ζ(s) has no zero s = σ + it in the region

(4.2) σ ≥ 1−
cQ

(log(|t|+ 2))2/3(log log(|t|+ 3))1/3
.

We will also use a standard zero-free region for any Dedekind zeta function [IK04, Theorem 5.33].

Lemma 4.2 ( Standard zero-free region for ζk(s)). Let k/Q be a number field of degree nk ≥ 1 and
with absolute discriminant Dk. There exists an absolute constant ck > 0 such that ζk(s) has no zero
s = σ + it in the region

(4.3) σ ≥ 1−
ck

n2k log(Dk(|t|+ 3)nk)
,

except possibly a simple real “exceptional” zero β
(k)
0 < 1.

We also recall a standard count for zeroes of Dedekind zeta functions at a fixed height:

Lemma 4.3 ([IK04, Theorem 5.31, Proposition 5.7]). Let k/Q be a number field of degree nk ≥ 1
and with absolute discriminant Dk. For a real variable t, let nk(t) denote the number of zeroes
ρ = β + iγ of ζk(s) with 0 < β < 1 and |γ − t| ≤ 1. For all real t, nk(t) ≪ logDk + nk log(|t|+ 4).

The corresponding result for Hecke L-functions is:

Lemma 4.4 ([LO75, Lemma 5.4]). Let nχ(t) denote the number of zeroes ρ = β + iγ of a Hecke
L-function L(s, χ, L/E) with 0 < β < 1 and |γ − t| ≤ 1. Let F (χ) denote the conductor of χ, and
A(χ) = DENmE/Q(F (χ)). For all t, nχ(t) ≪ logA(χ) + nE log(|t|+ 2).

4.2. Explicit description of assumed zero-free region. We now prove Theorem 3.1, using in
particular the assumption, in the theorem statement, that ζL(s)/ζk(s) is zero-free in the region

(4.4) [1− δ, 1]× [−(logDL)
2/δ, (logDL)

2/δ].
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For use in potential computational applications, we specify the dependencies of all parameters on
k, δ, etc., although we do not now optimize them (e.g. compared to recent work conditional on
GRH in [GM17]), as it is not relevant for our current applications.

We may assume that L has degree nL > 1 over Q, since in the case L = k = Q, πC (x, L/k) is
simply counting rational primes p ≤ x. Our proof will proceed in two stages: first, we deduce from
Theorem B of Lagarias and Odlyzko that the conclusion of Theorem 3.1 is true if x is sufficiently
large. Second, for small x, we refine the method of Lagarias and Odlyzko, keeping track of the
assumed zero-free region. (This manner of partitioning into large and small x has appeared in the
proof of the prime ideal theorem of [CK14, Theorem 2.6].)

At each step, when we state that something holds for a number field k, it also applies to k = Q;
separately, we give refined statements so far applicable only to k = Q. We do not rule out a priori
the possibility of an exceptional zero of ζL(s), say β0. Instead, in our application of Theorem B,
the main idea is to assume that DL is sufficiently large that the real interval within the region (1.3)
in Theorem B is contained inside the assumed zero-free region (4.4), and thus ζL cannot have an
exceptional zero β0. In order to carry this out rigorously, we must be more careful, since (4.4) is an
assumed zero-free region for ζL/ζk and not just ζL.

The function ζk(s) may have an exceptional (real) zero in the standard region (4.3) given in

Lemma 4.2; we will denote this, if it exists, β
(k)
0 . (Of course when k = Q, ζk(s) = ζ(s), and no such

exceptional zero exists.) Since k is fixed, β
(k)
0 is fixed. We now fix a new parameter δ0 so that

(4.5) 1− δ0 ≥ 1− δ, and 1− δ0 > β
(k)
0 ;

we set δ0 = δ if k = Q. (Throughout this section we will use the notation δ0; in the statement of

Theorem 3.1, any dependence on δ0 is equivalently a dependence on β
(k)
0 and δ.) From now on,

instead of the zero-free region (4.4), we work with the possibly smaller region

(4.6) [1− δ0, 1]× [−(logDL)
2/δ, (logDL)

2/δ],

which excludes the possible fixed zero β
(k)
0 .

By our hypothesis, the Artin L-function ζL(s)/ζk(s) has no zeroes in the region (4.6), and it is an
entire function by the Aramata-Brauer theorem; ζk(s) has no zeroes in the intersection of regions
(4.3) and (4.6) (respectively, no zeroes in the intersection of the regions (4.2) and (4.6) if k = Q) and
is holomorphic there. Thus ζL(s) has no zeroes in the intersection of (4.3) and (4.6) (respectively,
(4.2) and (4.6) if k = Q).

Thus we now specify (under the above hypotheses) the zero-free region of ζL(s) (see Figure 1):

(4.7)





σ ≥ 1− δ0 if |t| ≤ T0,

σ ≥ 1− L (t) if T0 ≤ |t| ≤ (logDL)
2/δ,

where

(4.8) L (t) =

{
ck

n2
k log(Dk(|t|+3)nk )

general k
cQ

(log(|t|+2))2/3(log log(|t|+3))1/3
if k = Q,

and T0 is the height at which the zero-free region (4.3) for ζk (respectively (4.2) for ζ) intersects the
line ℜ(s) = 1− δ0. In our Chebotarev theorems we are interested in the range where DL → ∞, so
there is no harm in always assuming (for simplicity) that DL is sufficiently large that the left-hand
boundary ℜ(s) = 1 − δ0 of (4.6) intersects the boundary of (4.3) (respectively (4.2) if k = Q) at a

height T0 ≤ (logDL)
2/δ. For example, for a field k and the zero-free region (4.3), we compute that

(4.9) T0 = D
−1/nk

k exp

(
ck
δ0n3k

)
− 3.
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B1

B2

1/2 β0(k) 1 - δ0 1
σ

(log DL)
2/δ

-(log DL)
2/δ

T0

-T0

(4log DL)
-1

-(4log DL)
-1

t

Figure 1. The curved region represents the standard zero-free region for ζk and

the point β
(k)
0 denotes the possible (real) exceptional zero of ζk. The larger box B1

is the assumed zero-free region (4.6) for ζL/ζk. The shaded region represents the
consequent (assumed) zero-free region for ζL, determined by the intersection of the
known standard zero-free region for ζk and B1. The box B2 is the zero-free region
(1.3) known to hold for ζL, aside from a possible exceptional (real) zero; we will
conclude no such zero can exist in B2 as long as DL is sufficiently large.

A similar computation may be done to find T0 in the case k = Q with the improved zero-free region
(4.2). In either case, to have T0 ≤ (logDL)

2/δ it is sufficient to have

(4.10) DL ≥

{
exp{exp(ckδ/δ0)} general k

exp{(exp exp(cQ/δ))
2/δ} if k = Q;

we refer to this lower bound as D′
0 = D′

0(ck, δ0, δ).

4.3. The proof of Theorem 3.1 for large x. With this zero-free region in mind, we dispatch the
case of our Chebotarev theorem for large x, that is, for x ≥ exp(10nL(logDL)

2). Recall the standard
zero-free region (1.3) which is known to hold for ζL(s), aside from a possible real exceptional zero.
We may define a constant D1 = D1(δ0) so that

(4.11) 1− δ0 < 1− (4 logD1(δ0))
−1.

For later purposes, we also assume D1(δ0) ≥ 4. Our conclusion now is that for DL ≥ D1(δ0), ζL
can have no (real, exceptional) zero in the region (1.3), and thus under the hypotheses of Theorem
3.1, the result of Theorem B holds without the β0 term.

Now in order to show the remaining error term in Theorem B (with absolute constants C1, C2)
is sufficiently small, as claimed in Theorem 3.1, we need only verify that there exists a constant
D′

1 = D′
1(C1, C2, nL, A) such that as long as DL ≥ D′

1, for all x ≥ exp(10nL(logDL)
2),

(4.12) C1x exp(−C2n
−1/2
L (log x)1/2) ≤

|C |

|G|
x(log x)−A.

In fact it suffices thatDL is sufficiently large that (4.12) holds at the endpoint x = exp(10nL(logDL)
2),

which is equivalent to requiring DL ≥ c2(logDL)
c3 with c2 = (c

−1/(2A)
1 (10nL)

1/2)(2A)C−1
2 10−1/2

and
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c3 = 2AC−1
2 10−1/2; this provides the necessary threshold D′

1. As a consequence, the conclusion of
Theorem 3.1 holds for x ≥ exp(10nL(logDL)

2), as long as DL ≥ max{D1, D
′
1}.

4.4. Small x. In the remaining region of small x (that is, for x < exp(10nL(logDL)
2)) we return

to the original strategy of Lagarias and Odlyzko, which will be our focus for the remainder of
§4. As in the classical prime number theorem, it is convenient to work originally with a weighted
prime-counting function, defined in this case by

ψC (x, L/k) =
∑′

p,m
Nmk/Qpm≤x
[

L/k
p

]m
=C

log(Nmk/Qp);

the final result for πC (x, L/k) will then follow from partial summation. Here Σ′ denotes that the sum

is restricted to those prime ideals p in Ok that are unramified in OL. The notation
[
L/k
p

]m
= C

denotes the requirement that if we pick any prime ideal q ⊂ OL lying above p, then C is the
conjugacy class of the m-th power (σq)

m of the Frobenius element σq inside G. (This is well-defined
no matter which prime q is chosen above p, since if q′ = τ(q) for some nontrivial automorphism
τ ∈ G, then (σq′)

m = (τσqτ
−1)m = τ(σq)

mτ−1, so that they lie in the same conjugacy class in G.)
Our main result for ψC in the region of small x is as follows:

Proposition 4.5. Let k be a fixed number field. Fix A ≥ 2, 0 < δ ≤ 1/(2A), and an integer n ≥ 1.
Let G be a fixed transitive subgroup of Sn. Then for any absolute constant 0 < c0 ≤ 1 of our choice,
there exists a constant D2 and constants κ′1, κ

′
2, κ

′
3 such that for any Galois extension of number

fields L/k with Gal(L/k) ≃ G such that DL ≥ max{D′
0, D1, D2}, and such that the Artin L-function

ζL(s)/ζk(s) is zero-free in the region

(4.13) [1− δ, 1]× [−(logDL)
2/δ, (logDL)

2/δ],

we have for every conjugacy class C in G that
∣∣∣∣ψC (x, L/k)−

|C |

|G|
x

∣∣∣∣ ≤ c0
|C |

|G|

x

(log x)A−1
,

as long as

(4.14) κ′1 exp{κ
′
2(log log(D

κ′
3

L ))2} ≤ x ≤ exp{10nL(logDL)
2}.

If moreover k = Q we may take x in the range

(4.15) κ′1 exp
{
κ′2(log logD

κ′
3

L )5/3(log log log(D2
L))

1/3
}
≤ x ≤ exp{10nL(logDL)

2}.

Remark 4.6. Recall that D′
0 was fixed by (4.10), D1 was fixed by (4.11); we will construct D2

explicitly in Lemma 4.10. The constants κ′1, κ
′
2, κ

′
3 depend on c0, Dk, nk, nL, δ0, δ, A and are chosen

in (4.38).

4.5. The passage to sums over zeroes of Hecke L-functions. To prove this proposition, we
rebuild the argument of Lagarias and Odlyzko, inserting the zero-free region (4.7) at a key point.
With C the fixed conjugacy class of interest, we fix any element g ∈ C and let H = 〈g〉 be the
cyclic group generated by g. Then H defines a fixed field E = LH with k ⊆ E ⊆ L, and the cyclic
group H has an associated family of irreducible one-dimensional characters. For any such character
χ, we consider the Hecke L-function L(s, χ, L/E); in particular if χ = χ0 is the trivial character
on H then L(s, χ, L/E) = ζE(s). The following statement provides the key framework for proving
Proposition 4.5:
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Proposition 4.7 (Theorem 7.1 of [LO75]). For L/k a finite Galois extension of number fields with
Gal(L/k) ≃ G, cyclic subgroup H ⊆ G, and k ⊆ E ⊆ L as described above, there exists an absolute
constant C5 ≥ 1 such that if x ≥ 2 and T ≥ 2, then

(4.16)

∣∣∣∣ψC (x, L/k)−
|C |

|G|
x

∣∣∣∣ ≤ C5
|C |

|G|
{S(x, T ) + E1 + E2} ,

in which

S(x, T ) =
∑

χ

χ(g)



∑

ρ=β+iγ
|γ|<T

xρ

ρ
−

∑

ρ=β+iγ
|ρ|<1/2

1

ρ


 ,

where the sum is over irreducible characters χ of H, and for each character χ the inner sums are
over nontrivial zeroes ρ = β + iγ of the Hecke L-function L(s, χ, L/E), and

E1 = xT−1 log x logDL + logDL + nL log x+ nLxT
−1 log x log T,(4.17)

E2 = log x logDL + nLxT
−1(log x)2.(4.18)

Remark 4.8. Note that we may assume that C5 ≥ 1, by enlarging it if necessary. As stated in (4.18),
E2 is slightly refined over [LO75, Theorem 7.1], which in place of |C ||G|−1E2 has

E′
2 = log x logDL + nkxT

−1(log x)2,

(without a factor of |C ||G|−1). As noted in [Ser82, Théorème 4], the first term in E′
2 may be

replaced by
|G|−1 log x logDL ≤ |C ||G|−1 log x logDL,

by a refined estimate for a sum over prime ideals p ⊂ Ok that ramify in L. For the second term in
E′

2, we use the trivial observation that nk|G| = nL, so that

nkxT
−1(log x)2 = |G|−1nLxT

−1(log x)2 ≤ |C ||G|−1nLxT
−1(log x)2,

as claimed.

With Proposition 4.7 in hand, Lagarias and Odlyzko use zero-free regions (either unconditional
or on GRH) to deduce a bound for S(x, T ), which indicates an appropriate choice for the height
T that guarantees all the error terms are sufficiently small. We proceed with a different zero-free
region and a different choice for T , namely

(4.19) T = (logDL)
2/δ,

where δ is provided from our assumed zero-free region (4.7). (In particular, we may assume that

T ≥ 2 as long as DL ≥ 3 > exp(2δ/2), upon recalling δ ≤ 1/4.)

4.6. Bounding the contribution of zeroes |ρ| < 1/2 in S(x, T ). The contribution to S(x, T )
from |ρ| < 1/2 (so that certainly |γ| ≤ T with T as in (4.19)) is bounded by:

(4.20)
∑

χ

∑

|ρ|<1/2
|γ|≤T

{∣∣∣∣
xρ

ρ

∣∣∣∣+
∣∣∣∣
1

ρ

∣∣∣∣
}

≪ x1/2
∑

χ

∑

|ρ|<1/2

∣∣∣∣
1

ρ

∣∣∣∣≪ x1/2nL(logDL)
2,

in which the implied constant is absolute. The first inequality is clear; to prove the second inequality,
recall the factorization (4.1) into Hecke L-functions,

(4.21) ζL(s) = ζE(s)
∏

χ 6=χ0

L(s, χ, L/E),

with the product over non-trivial irreducible characters of H. The Hecke L-functions are entire,
and ζE(s) and ζL(s) each have their only pole at s = 1; thus (rigorously by multiplying both sides
of the identity by (s− 1)), it follows that none of the factors on the right hand side of (4.21) have
a zero in the region (4.7). Recalling that (4.7) contains the region (1.3) since DL ≥ D1(δ0) we
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may conclude (by the functional equation) that each L(s, χ, L/E) is zero-free both in (1.3) and in
0 ≤ σ ≤ (4 logDL)

−1, |t| ≤ (4 logDL)
−1. Thus the only zeroes that can appear in (4.20) must have

|ρ| ≥ (4 logDL)
−1; recalling the notation of Lemmas 4.3 and 4.4, we then see that for each χ,

(4.22)
∑

|ρ|<1/2

∣∣∣∣
1

ρ

∣∣∣∣ ≤ 4(logDL)nχ(1) ≪ (logDL)(logA(χ) + nE log 3)

with the implied constant being absolute. The conductor-discriminant formula [Neu99, Ch. VII
11.9] shows

(4.23)
∑

χ

logA(χ) = log

[
D

|H|
E NmE/Q

(
∏

χ

F (χ)

)]
= log

[
D

[L:E]
E NmE/Q(DL/E)

]
= logDL.

Thus, summing (4.22) over χ we have

∑

χ

∑

|ρ|<1/2

∣∣∣∣
1

ρ

∣∣∣∣≪ (logDL)
2 + nE |H| log 3 ≪ nL(logDL)

2,

with an absolute implied constant, verifying (4.20).

4.7. Bounding the contribution of |γ| ≤ T in S(x, T ). Suppose that ρ = β + iγ is a nontrivial
zero of L(s, χ, L/E) with |γ| ≤ T and |ρ| > 1/2. Recalling the definition (4.9) of the height T0,
by the assumption of the zero-free region (4.7), we know that without exception, all zeroes ρ with
|γ| ≤ T0 have β ≤ 1− δ0, so that |xρ| = xβ ≤ x1−δ0 . Similarly, all zeroes ρ with T0 ≤ |γ| ≤ T have

β ≤ 1− L (T ), so that |xρ| = xβ ≤ x1−L (T ). We also note that for any fixed χ, by Lemma 4.4,

∑

|γ|≤T0

∣∣∣∣
xρ

ρ

∣∣∣∣≪ x1−δ0
∑

j≤T0

nχ(j)

j

≪ x1−δ0(log T0)(logA(χ) + nE log T0)

≪ x1−δ0(log T )(logA(χ) + nE log T );

similarly,

∑

T0≤|γ|≤T

∣∣∣∣
xρ

ρ

∣∣∣∣≪ x1−L (T )(log T )(logA(χ) + nE log T ).

Summing over all χ as in (4.23), we see that

x1−δ0
∑

χ

(log T )(logA(χ) + nE log T ) ≪ x1−δ0(log T ){logDL + nL log T},

and, likewise,

x1−L (T )
∑

χ

(log T )(logA(χ) + nE log T ) ≪ x1−L (T )(log T ){logDL + nL log T}.

Combining these estimates with (4.20), we may conclude

(4.24) |S(x, T )| ≤ C6 {E3 + E4 + E5} ,

for an absolute constant C6 (which we may assume satisfies C6 ≥ 1), and

E3 = x1/2nL(logDL)
2

E4 = x1−δ0(log T ) log(DLT
nL)

E5 = x1−L (T )(log T ) log(DLT
nL).
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The proof of Proposition 4.5 will then be complete, upon verification of two lemmas, which we
record as Lemma 4.9 and Lemma 4.10 below.

Lemma 4.9. Let k be a fixed number field. Let A ≥ 2 be fixed and let 0 < δ ≤ 1/(2A) be a fixed
positive constant; define δ0 from δ as in (4.5) according to whether or not ζk(s) has an exceptional
zero. Let L/k be a Galois extension of number fields with Gal(L/k) ≃ G, and assume that the Artin
L-function ζL(s)/ζk(s) is zero-free in the region

(4.25) [1− δ, 1]× [−(logDL)
2/δ, (logDL)

2/δ].

For DL ≥ D1(δ0) (as defined in (4.11)), for any choice of absolute constant 0 < c1 ≤ 1, we have

(4.26) |S(x, T )| ≤ 3c1C6x(log x)
−(A−1)

for all

(4.27) κ′′1 exp{κ
′′
2(log log(D

κ′′
3

L ))2} ≤ x ≤ exp{10nL(logDL)
2},

where

κ′′1 := (6c−1
1 10A−1nAL)

1/δ0δ−2/δ0(4.28)

κ′′2 := max{2Aδ−1
0 , 4Ac−1

k n3kδ
−1}

κ′′3 := 6c
−1/(2A)
1 DknLδ

−1/A.

Moreover, if k = Q we may consider all

(4.29) κ′′1 exp
{
κ′′2(log log(D

κ′′
3

L ))5/3(log log log(D2
L))

1/3
}
≤ x ≤ exp{10nL(logDL)

2}.

It is in Lemma 4.9 that we fully utilize the fact that the zero-free region (4.6) has a width that
is independent of DL; this is key to obtaining a small lower threshold on x.

Proof. The lemma is proved by simple computations. For any field k, we see that in the range
x ≤ exp(10nL(logDL)

2), to guarantee |E3| ≤ c1x(log x)
−(A−1) it suffices that

x ≥ c−2
1 (10)2(A−1)n2AL (logDL)

4A;

here we have explicitly used the upper bound x ≤ exp(10nL(logDL)
2). Similarly for such an upper

bound for E4 it suffices to have

x ≥ (6c−1
1 (10)A−1nAL)

1/δ0δ−2/δ0(logDL)
2A/δ0 ,

provided that T = (logDL)
2/δ and x ≤ exp(10nL(logDL)

2). Since δ0 ≤ δ ≤ 1/4, both of the lower
bounds for x displayed above are satisfied if

(4.30) x ≥ (6c−1
1 10A−1nAL)

1/δ0δ−2/δ0 exp{2Aδ−1
0 log logDL}.

The distinction of k = Q only appears in the treatment of E5; in the case of k = Q, it suffices to
find a lower bound on x such that

x
1− cQ

(log(T+2))2/3(log log(T+3))1/3 (log T ) log(DLT
nL) ≤ c1x(log x)

−(A−1),

as long as x ≤ exp(10nL(logDL)
2), T = (logDL)

2/δ and DL ≥ D1(δ0). Here one sees that it would
suffice to have

x ≥ exp{2Ac−1
Q (log(2(logDL)

2/δ))2/3(log log(2(logDL)
2/δ))1/3 log[c

1/(2A)
2 δ−1/A(logDL)]},

with c2 = 6c−1
1 (10)A−1nAL , which can be simplified as the requirement that x is at least

(4.31)

exp

{
4Ac−1

Q δ−2/3(log(2δ−1) + 1)1/3
(
log logD

max{2δ/2,c1/(2A)
2 δ−1/A}

L

)5/3 (
log log logD2δ/2

L

)1/3
}
.
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Note that 2δ/2 ≤ 2, log(2δ−1) + 1 ≤ δ−1 for all δ ≤ 1/4, and c
1/2A
2 δ−1/A ≤ 6c

−1/(2A)
1 nLδ

−1/A. Thus
upon comparing (4.30) and (4.31), we see that (4.29) suffices with κ′′i defined as above (specialized
to the case k = Q); the case of other fields k follows from analogous computations. �

Lemma 4.10. Let k be a fixed number field. Let A ≥ 2 be fixed and let 0 < δ ≤ 1/(2A) be a
fixed positive constant. Let L/k be a Galois extension of number fields with Gal(L/k) ≃ G. Set

T = (logDL)
2/δ. Given any absolute constant 0 < c′1 ≤ 1, there exists a constant D2 such that for

DL ≥ D2,

(4.32) |E1|+ |E2| ≤ 6c′1x(log x)
−(A−1)

for all

(4.33) (c′1)
−110AnA+1

L (logDL)
2A+1 ≤ x ≤ exp(10nL(logDL)

2).

Proof. This is proved by simple computations checking error terms in the range of “small” x, that
is x ≤ exp(10nL(logDL)

2), and recalling T = (logDL)
2/δ. Writing E1 = E1,a + · · · + E1,d and

E2 = E2,a + E2,b we see that for example |E1,a| ≤ c′1x(log x)
−(A−1) for x ≤ exp(10nL(logDL)

2) if
δ < 2/(2A+ 1) and

(4.34) DL ≥ exp{(c′−1
1 (10nL)

A)(1/δ−2A−1)−1
}.

Similarly, E1,b, E1,c, E2,a are seen to be sufficiently small if x is bounded below as in (4.33). The
remaining two terms E1,d and E2,b impose (respectively) the constraints δ < 2/(2A+ 1) and

(4.35) DL ≥ exp{(2 · 10AnA+1
L c′−1

1 )(2/δ−2A−1)−1
},

and δ < 1/(A+ 1),

(4.36) DL ≥ exp{(10A+1nA+2
L c′−1

1 )(2/δ−2(A+1))−1
}.

It suffices to assume δ ≤ 1/(2A) and to take D2 = D2(c
′
1, δ, nL, A) to be the maximum of (4.34),

(4.35) and (4.36). �

4.8. Proof of Proposition 4.5. To deduce Proposition 4.5, for a fixed absolute constant c0, from
these lemmas, we will apply Lemma 4.9 and Lemma 4.10 with the respective choices

(4.37) c1 = c0/(6C5C6), c′1 = c0/(12C5),

where C5 and C6 are the absolute constants arising in (4.16) and (4.24) from the Lagarias-Odlyzko
argument. After this choice in Lemma 4.10, we could denote the dependencies of D2(c

′
1, δ, nL, A)

by D2(c0, C5, δ, nL, A). The last step of the proof of Proposition 4.5 is to check that we can ensure
that the parameters are such that (4.33) holds whenever (4.27) (or (4.29) respectively) is satisfied.
Note that the lower bound in (4.33) will hold if we have

x ≥ exp{(2A+ 1) log log(D
(c′1)

−1/(2A+1)101/2nL

L )} ≥ exp{(2A+ 1) log log(D
((c′1)

−110AnA+1
L )1/(2A+1)

L )}.

Thus either for general k or k = Q it suffices to set

(4.38) κ′1 = κ′′1 ≥ 1, κ′2 = κ′′2 = max{κ′′2, 2A+ 1}, κ′3 = (c′1)
−1/(2A+1)κ′′3.

4.9. Partial summation back to prime counting. There are two remaining steps to pass from
Proposition 4.5 to Theorem 3.1 (in the regime of small x). First, we define the function

θC (x, L/k) =
∑′

p

Nmk/Qp≤x
[

L/k
p

]

=C

log(Nmk/Qp) =
∑′

p

Nmk/Qp≤x

1C (σq) log(Nmk/Qp),

in which the sum is restricted to prime ideals p ⊂ Ok that are unramified in L, and we fix any prime
ideal q in OL above p and let 1C detect whether the conjugacy class of the Frobenius element σq
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is C . A Chebyshev argument shows that θC (x, L/k) is well-approximated by ψC (x, L/k) and then
partial summation passes from θC (x, L/k) back to πC (x, L/k); we only mention the highlights. We
note that

ψC (x, L/k)− θC (x, L/k) =
∑′

p,m≥2
Nmk/Qpm≤x

1C (σ
m
q )

1

m
log(Nmk/Q(p

m)),

so that upon setting m to be the smallest integer such that x1/m ≥ 2 (so in particular m ≤
log x/ log 2), the above difference is at most

log x

log 2

(
1

2
π(x1/2, L/k) + · · ·+

1

m
π(x1/m, L/k)

)
≤

3

2 log 2
nkx

1/2 log x,

where we have denoted by π(x, L/k) the counting function for prime ideals (unramified in L) with
Nmk/Qp ≤ x. Thus we see that the statement of Proposition 4.5 holds for θC (x, L/k) in place of

ψC (x, L/k), with an additional error term of size at most 3nkx
1/2 log x, which is no bigger than

c0|C ||G|−1x(log x)−(A−1) (for an absolute constant c0 ≤ 1 we will choose later) as soon as the

sufficient condition 3|G|nk = 3nL ≤ c0x
1/2(log x)−A is met. It is simple to check that this holds

in the regimes (4.14) or (4.15) we consider in Proposition 4.5, with the parameters κ′i as already
defined. Thus for x in either range we have

(4.39)

∣∣∣∣θC (x, L/k)−
|C |

|G|
x

∣∣∣∣ ≤ 2c0
|C |

|G|

x

(log x)A−1
.

Let x0 denote the lower bound for x in (4.14) for general k and for x in the range (4.15) for k = Q,
respectively. To pass from θC (x) to πC (x) (temporarily suppressing the notational dependence on
L/k for simplicity), we let λn be an increasing sequence of positive real numbers running over the
norms Nmk/Q(p) attained by prime ideals of k (unramified in L). By partial summation, for any

x0 ≤ x ≤ exp{10nL(logDL)
2},

(4.40) πC (x) =
∑

λn≤x




∑′

Nmk/Qp=λn

1C (σq) log λn


 (log λn)

−1 =

∫ x

λ1

θC (t)dt

t log2 t
+
θC (x)

log x
.

We split the integral into the region λ1 ≤ t ≤ x0, in which the asymptotic (4.39) has not been
verified, and the region x0 ≤ t ≤ x, in which it has. For the first portion of the integral we apply
the trivial bound θC (t) ≤ nkt log t to see that this integral contributes at most nkLi(x0). In the
remaining contributions to (4.40), we may replace θC (t) by |C ||G|−1t as in (4.39) (deferring the error
terms for a moment), and similarly for θC (x); this main contribution becomes after integration by
parts

(4.41)
|C |

|G|

[∫ x

x0

t
d

dt

(
−

1

log t

)
dt+

x

log x

]
=

|C |

|G|

[
Li(x)−

(
Li(x0)−

x0
log x0

)]
.

The error terms accrued via this replacement are (in absolute value) at most

(4.42) 2c0
|C |

|G|

∫ x

x0

dt

(log t)A+1
+ 2c0

|C |

|G|

x

(log x)A
.

In the first term of (4.42) we may bound the contribution from, say, x0 ≤ t ≤ x1/2 trivially

by 2c0|C ||G|−1x1/2 while in the remaining portion we have log t ≥ (1/2) log x, yielding a total

contribution of at most 2A+2c0|C ||G|−1x(log x)−(A+1); we trivially dominate this from above by
2A+2c0|C ||G|−1x(log x)−A so that we may combine it with the second term in (4.42). Finally,
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we crudely bound the last two terms in (4.41), in absolute value, by 2Li(x0). In total, we have
represented πC (x) as |C ||G|−1Li(x) + E where

|E| ≤ (nk + 2)Li(x0) + 2c0|C ||G|−1x1/2 + (2A+2 + 2)c0|C ||G|−1x(log x)−A

≤ (nk + 2)Li(x0) + (2A+2 + 4)c0|C ||G|−1x(log x)−A.(4.43)

Here we have used that x1/2 ≤ x(log x)−A in the regime of x ≤ exp{10nL(logDL)
2} as soon as

x ≥ exp{4A log log(D
101/2n

1/2
L

L )}, which holds for all x ≥ x0. The first term on the right-hand side
of (4.43) is certainly dominated by the second as long as

(4.44)
x

(log x)A
≥

|G|(nk + 2)

(2A+2 + 4)|C |c0
Li(x0),

for which it suffices to have x ≥ nLc
−1
0 x0(log x)

A. Of course, we are already assuming that x ≥ x0;
recalling that we presently only consider x ≤ exp{10nL(logDL)

2} we see that (4.44) holds as long
as

(4.45) x ≥ 10AnA+1
L c−1

0 x0(logDL)
2A = 10AnA+1

L c−1
0 exp{2A log logDL} · x0.

Under this condition, we have shown that

|E| ≤ 2(2A+2 + 4)c0|C ||G|−1x(log x)−A ≤ |C ||G|−1x(log x)−A,

upon making the choice

(4.46) c0 = (2A+3 + 8)−1.

We may accommodate the requirement (4.45) simply by enlarging the parameters κ′i by setting

κ1 = c−1
0 κ′1, κ2 = κ′2 + 2A, κ3 = κ′3 ≥ 1. We record the definitions here, with c0 as in (4.46):

κ1 = c−1
0 (6(

c0
12C5C6

)−110A−1nAL)
1/δ0δ−2/δ0(4.47)

κ2 = max{2Aδ−1
0 , 4Ac−1

k n3kδ
−1}+ 2A

κ3 = 6(
c0

12C5
)−1/(2A+1)(

c0
12C5C6

)−1/(2A)DknLδ
−1/A.

To conclude, for x in the ranges (4.14) and (4.15) with κ′i replaced by κi, we have verified the
effective error term in the asymptotic for πC (x, L/k). This completes the treatment of small x, and
combining this with the result of §4.3 for large x, we may conclude that Theorem 3.1 holds.

Remark 4.11. The threshold D0 = D0(δ, ck, β
(k)
0 , nL, C1, C2, A) appearing in Theorem 3.1 is the

maximum of D′
0 in (4.10), D1 in (4.11), D′

1 defined in §4.3, and D2 defined as the most restrictive
of (4.34), (4.35), (4.36) (with the imposed choices c′1 = c0/12C5 and c0 = (2A+3 + 8)−1).

4.10. Remark: A Chebotarev theorem for fields without quadratic subfields. In the
introduction, we stated that one of our two goals was to remove the β0 term in Theorem B. As an
aside, we note that for certain fields, the existence of an exceptional zero can already be ruled out,
so that an immediate application of Theorem B yields:

Theorem 4.12. Let k be a number field such that ζk(s) has no real zeroes. Let L/k be a Galois
extension of relative degree at least 3 such that L/k contains no quadratic extension of k. Then there
exist absolute effectively computable constants C1, C2 such that for all x ≥ exp(10nL(logDL)

2),

(4.48)

∣∣∣∣πC (x, L/k)−
|C |

|G|
Li(x)

∣∣∣∣ ≤ C1x exp(−C2n
−1/2
L (log x)1/2).

Remark 4.13. In particular, if k = Q this theorem holds unconditionally for any L/Q such that
G = Gal(L/Q) with |G| ≥ 3 has no subgroup of index 2 (for example, G ≃ Cp for p an odd prime).
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Theorem 4.12 is an application of a nice idea of Stark [Sta74, Theorem 3], in turn a refinement
of a theorem of Heilbronn [Hei72]. (See also further work on eliminating Siegel zeroes in towers of
fields in [Mur99, OS93].)

Theorem D ([Sta74, Theorem 3]). Let L be a Galois extension of k with Gal(L/k) ≃ G and let χ
be a character of G. Suppose ρ is a simple zero of ζL(s). Then L(s, χ, L/k) is analytic at s = ρ.
Furthermore, there is a field F with k ⊆ F ⊆ L such that F/k is cyclic and for any field E with
k ⊆ E ⊆ L, ζE(ρ) = 0 if and only if F ⊆ E. If in particular ρ is real, then either F = k or F is
quadratic over k.

By Theorem B, we need only consider a possible real zero of ζL(s), which by Theorem D (and
the assumption that ζk(s) has no real zero) can only occur if there is a quadratic extension F of
k contained in L. No such F can exist if Gal(L/k) has no index 2 subgroup. Nevertheless, as
remarked before, the lower bound on x in Theorem 4.12 is too large for our ultimate application to
ℓ-torsion, a problem which Theorem 3.1 alleviates via careful attention to the assumed box-shaped
zero-free region.

5. A zero density result for families of Dedekind zeta functions

We have proved a Chebotarev density theorem conditional on a box-shaped zero-free region for
ζL(s)/ζk(s). Now we restrict our attention to k = Q and show that within appropriate families of
Galois extensions of Q, except for a possible exceptional subfamily of density zero within the family,
each ζL(s)/ζ(s) is in fact zero-free in the desired region. To do so we will build on the result of
Kowalski and Michel [KM02, Thm. 2] on the density of zeroes among a family of cuspidal automor-
phic L-functions. We describe our approach somewhat generally to facilitate future applications,
and then specialize to our present setting.

5.1. The Kowalski-Michel zero density estimate. Let m ≥ 1 be fixed. For any cuspidal
automorphic representation ρ of GL(m)/Q, define the zero-counting function for the corresponding
automorphic L-function L(s, ρ) in a region with α ∈ [1/2, 1], T ≥ 0 by

N(ρ;α, T ) = |{s = β + iγ : β ≥ α, |γ| ≤ T, L(s, ρ) = 0}|,

counting with multiplicity. For an isobaric representation π = ρ1 ⊞ · · ·⊞ ρr with ρj cuspidal, define

(5.1) N(π;α, T ) = N(ρ1;α, T ) + · · ·+N(ρr;α, T ),

again counting each zero with multiplicity.
The main outcome of [KM02] is a bound for N(ρ;α, T ) that holds on average for an appropriate

family of cuspidal representations ρ. Our innovation is to develop a means to apply their results to
the case when π varies over an appropriate family of isobaric representations, in our case, obtained
from Dedekind zeta functions. We first recall the original setting for cuspidal representations, which
assumes the following conditions hold:

Condition 5.1. For each X ≥ 1 let S(X) be a finite (possibly empty) set of cuspidal automorphic
representations ρ of GL(m)/Q such that the following properties hold for (S(X))X≥1:

(i) Every ρ ∈ S(X) satisfies the Ramanujan-Petersson conjecture at the finite places.
(ii) There exists A > 0 and a constant M0 such that for all X ≥ 1, for all ρ ∈ S(X), Cond(ρ) ≤

M0X
A.

(iii) There exists d > 0 and a constant M1 such that for all X ≥ 1, |S(X)| ≤M1X
d.

(iv) For any ε > 0 there exists a constant M2,ε such that for all ρ ∈ S(X) we have the convexity
bound

|L(s, ρ)| ≤M2,ε(Cond(ρ)(|t|+ 2)m)(1−ℜ(s))/2+ε, for 0 ≤ ℜ(s) ≤ 1.
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For any ε > 0 there exists a constant M3,ε such that for all ρ 6≃ ρ′ ∈ S(X) we have the
convexity bound

|L(s, ρ⊗ ρ′)| ≤M3,ε(Cond(ρ⊗ ρ′)(|t|+ 2)m
2
)(1−ℜ(s))/2+ε, for 0 ≤ ℜ(s) ≤ 1.

Remark 5.2. Kowalski and Michel call (S(X))X≥1 a family of automorphic representations, with
associated automorphic L-functions; following their convention we will call the associated collection
of constants {m,A, d,M0,M1,M2,ε,M3,ε} the family parameters.

Remark 5.3. It is worth comparing precisely Condition 5.1 to the hypotheses originally stated in the
work of [KM02]. We note that the above criteria (i) – (iii) reduce to exactly the criteria of [KM02,
Thm. 2]; Condition (iv) above replaces their assumption that all the L-functions in (S(X))X≥1

have the same gamma factors at infinity. That condition is only used in order to attain the uniform
convexity bounds of [KM02, Lemma 10] (Kowalski, personal communication), and thus we merely
assume the relevant uniform convexity bounds directly.

In this context, we recall Kowalski and Michel’s original theorem:

Theorem E ([KM02, Theorem 2]). Let (S(X))X≥1 be a family of cuspidal automorphic represen-
tations of GL(m)/Q satisfying Condition 5.1. Let α ≥ 3/4 and T ≥ 2. Then there exists a constant
c′0 = c′0(m,A, d), in particular

(5.2) c′0 =
5mA

2
+ d,

and a constant B ≥ 0, depending only on the family parameters, such that for every choice of c0 > c′0
we have that there exists a constant M4,c0 depending only on c0 such that for all X ≥ 1,

∑

ρ∈S(X)

N(ρ;α, T ) ≤M4,c0T
BXc0

1−α
2α−1 .

5.2. Defining a family of automorphic representations. Fix n ≥ 2 and a transitive subgroup
G ⊆ Sn. Let F (Q, G) ⊂ Z|G|(Q, G) be a set of Galois extensions L/Q with Gal(L/Q) ≃ G, and
let F (Q, G;X) denote the finite subset comprised of those fields with DL = |DiscL/Q| ≤ X.
(Momentarily we will construct such a set from each of the families ZI

n (Q, G) of degree n fields
considered in our main theorems.)

Denote the irreducible representations of G by ρ0, ρ1, . . . , ρs, with ρ0 being the trivial represen-
tation. For each field L ∈ F (Q, G;X), the Dedekind zeta function may be written as

(5.3) ζL(s) = ζ(s)
s∏

j=1

L(s, ρj , L/Q)mj .

The regular representation, of total dimension |G| = 1+
∑

1≤j≤sm
2
j , may be written as an isobaric

sum

regG = ρ0 ⊞ (ρ1 ⊞ · · ·⊞ ρ1)⊞ · · ·⊞ (ρs ⊞ · · ·⊞ ρs)

in which ρj appears mj = dim ρj times. Thus for each field L ∈ F (Q, G;X) we may consider the
Artin L-function L(s, π) = ζL(s)/ζ(s) for the representation

(5.4) π = (ρ1 ⊞ · · ·⊞ ρ1)⊞ · · ·⊞ (ρs ⊞ · · ·⊞ ρs)

in which ρj appears mj = dim ρj times. Additionally, assuming the Strong Artin Conjecture (see
§6.2), to each field L ∈ F (Q, G;X) and each representation ρj , there is an associated cuspidal
automorphic representation πL,j of GL(mj)/Q; we then have

L(s, πL,j) = L(s, ρj , L/Q).
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Now fix 1 ≤ j ≤ s. For each X ≥ 1, let Lj(X) be the set of cuspidal automorphic representations
πL,j of GL(mj)/Q associated by the Strong Artin Conjecture to the fields L ∈ F (Q, G;X) and the
representation ρj .

The main result of this section, and the key result underlying our effective Chebotarev theorem
in families, relates to the following phenomenon. For each j, under appropriate assumptions, we
show that Theorem E applies to the family (Lj(X))X≥1, so that for each X ≥ 1, aside from very
few possible “bad” exceptional representations, for each representation π ∈ Lj(X) the associated
L-function L(s, π) possesses a certain zero-free region. Now a key difficulty arises: in general,
depending on the group G and the family F (Q, G;X), it could happen that a given L-function
L(s, π) corresponding to a representation π ∈ Lj(X) occurs as a factor in ζL(s)/ζ(s) for “many”
fields L ∈ F (Q, G;X), indeed even possibly a positive proportion of such fields (see §6.3.2). We
need to rule out this possibility that a “bad” exceptional representation in Lj(X) could lead to
an L-function that “contaminates” ζL/ζ for a positive proportion of fields in F (Q, G;X). In this
section, we state appropriate conditions on a set F (Q, G;X) of Galois extensions that allow us to
rule out this problem (see in particular the condition (5.5) below). In §6, we show that the families
of fields that we consider in our main theorems obey these conditions.

Now we state the conditions we assume on the set F (Q, G) of Galois extensions and the associated
families (Lj(X))X≥1 of automorphic representations (1 ≤ j ≤ s), building on Condition 5.1. (Note
that we explicitly assume the Strong Artin Conjecture below, but for certain groups G it is known;
see §6.2.)

Condition 5.4. Let F (Q, G) be a set of Galois extensions as specified above. For each 1 ≤ j ≤ s
and each X ≥ 1, define the set Lj(X) of automorphic representations as above, assuming the Strong
Artin Conjecture.

Assume that for each 1 ≤ j ≤ s, the family (Lj(X))X≥1 satisfies Condition 5.1, with correspond-
ing parameters {mj , Aj , dj ,M0,j ,M1,j ,M2,j,ε,M3,j,ε}. In particular, for 1 ≤ j ≤ s, (Lj(X))X≥1 is
a family in the sense of Theorem E.

Let A ≥ 0, M0 be such that for all X ≥ 1, for every field L ∈ F (Q, G;X), the representation π
associated to L(s, π) = ζL(s)/ζ(s) has Cond(π) ≤M0X

A.
Let d,M1 be such that for all X ≥ 1, |F (Q, G;X)| ≤M1X

d.
We assume that for each 1 ≤ j ≤ s, there exists 0 ≤ τj < d and a constant M5,j such that for all

X ≥ 1, for any fixed π ∈ Lj(X),

(5.5) #{L ∈ F (Q, G;X) : πL,j = π} ≤M5,jX
τj .

We will call {M0,M1, A, d} and {mj , Aj , dj ,M1,j ,M2,j,ε,M3,j,ε,M5,j} for 1 ≤ j ≤ s the family
parameters for F (Q, G).

5.3. A zero density theorem for L-functions associated to the family F (Q, G). To bound
on average the number of zeroes of L-functions ζL(s)/ζ(s) in a certain region, as the field L varies
over the family F (Q, G), we will apply Theorem E repeatedly, under the assumption of Condition
5.4.

Theorem 5.5. Let F (Q, G) be a set of Galois extensions as specified above. For each 1 ≤ j ≤ s
and each X ≥ 1, define the set Lj(X) of automorphic representations as above, assuming the Strong
Artin Conjecture.

Assume that F (Q, G) and the families (Lj(X))X≥1 for j = 1, . . . , s, satisfy Condition 5.4.
Set τ = maxj τj and m = maxmj. Then for any 0 < ∆ < 1 sufficiently small that ∆ < 1− τ/d,

and for any η < 1/4, there exists B depending only on the family parameters for F (Q, G), and

0 < δ ≤ 1/4 depending only on A,m, d,∆, τ , such that for all X ≥ 1, at most O(X(1−(1−η)∆)d)
fields L ∈ F (Q, G;X) can have the property that ζL(s)/ζ(s) has a zero in the region

[1− δ, 1]× [−Xη∆d/B, Xη∆d/B].
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The implied constant in the O(·) notation depends only on A,m, d,∆, τ and s (the number of non-
trivial irreducible representations of G).

Remark 5.6. We see that in the hypotheses there is a non-empty range of 0 < ∆ < 1 − τ/d since
each τj < d.

To deduce Theorem 5.5 we first apply Theorem E to the family (Lj(X))X≥1 for each 1 ≤ j ≤ s.
Let 1 ≤ j ≤ s be fixed. By Theorem E, for any αj ≥ 3/4 and Tj ≥ 2, for all X ≥ 1,

(5.6)
∑

π∈Lj(X)

N(π;αj , Tj) ≪cj,0 T
Bj

j X
cj,0

1−αj
2αj−1 ,

in which we may choose any cj,0 > c′j,0, with c′j,0 = c′j,0(mj , Aj , dj) as shown to exist in Theorem E;
the particular form is not critical, but we may for example take

c′j,0 =
5mjAj

2
+ dj .

In the spirit of [KM02, Remark 3], we pause to observe that although the parameter dj assumed to
exist in the upper bound (iii) of Condition 5.1 may not provide a sharp upper bound, this does not
cause any contradictions in terms of its role in c′j,0; if dj is an over-estimate, then the right-hand side

of (5.6) is similarly an overestimate (and similarly with respect to the possibly non-sharp parameter
Aj). Indeed, for convenience we may choose cj,0 = c′′j,0+ε1 (for a certain ε1 to be chosen later) with

(5.7) c′′j,0 =
5mjA

2
+ d.

Note that A ≥ maxj Aj , d ≥ maxj dj so that this choice is valid.
Set τ = max1≤j≤s τj . Recalling that ∆ is given, we fix αj to be such that

cj,0(1− αj)

(2αj − 1)
= (1−∆)d− τ.

We see that the right-hand side is positive, so that αj < 1, since ∆ < 1− τ/d. Theorem E applies
when αj ≥ 3/4; if necessary one could simply impose this using monotonicity of the estimates, but
in fact it is simple to check that this holds in our scenario. (This will also easily be satisfied in our
ultimate applications, in which we will be working very close to the line ℜ(s) = 1.) We compute
that

αj =
cj,0 + (1−∆)d− τ

cj,0 + 2((1−∆)d− τ)
,

so that αj ≥ 3/4 as long as

(5.8) cj,0 ≥ 2((1−∆)d− τ).

By assumption, ∆ < 1− τ/d; let ε2 > 0 be such that

(5.9) ∆ = 1− τ/d− ε2/2d.

Then (5.8) is equivalent to the requirement that cj,0 ≥ ε2, which will always hold as long as we
choose ε1 ≥ ε2, according to the definition (5.7), upon recalling that A, d ≥ 0. Upon setting

Tj = Xη∆d/Bj , we conclude that

(5.10)
∑

π∈Lj(X)

N(π;αj , Tj) ≪cj,0 X
η∆dX(1−∆)d−τ ≪cj,0 X

(1−(1−η)∆)d−τ .

Now we assemble these results together for 1 ≤ j ≤ s. For notational convenience, given an
L-function L(s) (which could be an Artin L-function L(s, ρ, L/Q) or an automorphic L-function
L(s, π) corresponding to an automorphic representation π), we will let N ′(L(s);α, T ) denote the
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number of zeros β + iγ with L(β + iγ) = 0, and β ≥ α, |γ| ≤ T . Set α = maxj αj and T = minj Tj .
(Note that α ≥ 3/4.) Then for each X ≥ 1, assuming the Strong Artin Conjecture,

∑

L∈F (Q,G;X)

N ′(ζL/ζ;α, T ) =
∑

L∈F (Q,G;X)

s∑

j=1

mjN
′(L(s, ρj , L/Q);α, T )

=
∑

L∈F (Q,G;X)

s∑

j=1

mjN
′(L(s, πL,j , L/Q);α, T )

=
s∑

j=1

mj

∑

π∈Lj(X)

N ′(L(s, π);α, T )
∑

L∈F(Q,G;X)
πL,j=π

1.

Using condition (5.5), we can bound the right-hand side from above by

≪
s∑

j=1

mjX
τj

∑

π∈Lj(X)

N ′(L(s, π);α, T ).

Thus by applying (5.10) for each 1 ≤ j ≤ s, we see that
∑

L∈F (Q,G;X)

N ′(ζL/ζ;α, T ) ≪c0,s,m X(1−(1−η)∆)d,

where c0 = maxj cj,0. From this we conclude that at most Oc0,s,m(X(1−(1−η)∆)d) fields L ∈

F (Q, G;X) can have the property that ζL(s)/ζ(s) has a zero in the region [α, 1]×[−Xη∆d/B, Xη∆d/B],
where B = maxBj . The implied constant depends on c0, s,m, and hence on A,m, d, τ,∆, s, ε1. Now
from (5.9), ε2 is defined, and then we can choose ε1 = ε2 in the definition of cj,0. Then we may
compute that upon setting δ = 1 − α = 1 − maxj{αj} (which we have therefore verified satisfies
0 < δ ≤ 1/4), we have

(5.11) δ =
ε2

5maxj{mj}A+ 2d+ 4ε2
=

ε2
5mA+ 2d+ 4ε2

as an allowable choice. Since ε2 is determined by ∆, τ, d we can write the dependencies in terms of
these parameters. This yields the result of Theorem 5.5, moreover with a specific description of δ.

Remark 5.7. This argument shows that although the parameters A, d are only assumed to yield
valid upper bounds (not necessarily sharp) in Condition 5.4, it is advantageous to make them as
small as possible. In a similar vein, it is worth asking why, if making 1 − ∆ smaller gives better
control on the exceptional set, we do not in (5.9) artificially inflate the size of d. The reason is that

1−∆ only controls the density (roughly O(X(1−∆)d)) of the exceptional set relative to the assumed
upper bound O(Xd) for the family; thus in this instance also, it is advantageous to make d as sharp
as possible.

Remark 5.8. We see that the size of ∆, and hence of the possible exceptional set of bad fields in
F (Q, G;X) depends on the largest value of τj with 1 ≤ j ≤ s coming from the condition (5.5).
The larger maxj τj is, the smaller we must take ∆, and the less savings we have for the possible
exceptional set in F (Q, G;X).

Remark 5.9. We recall that Cho and Kim (e.g. [CK12, Theorem 3.1] and other works) have also
applied [KM02] to certain families of isobaric representations, say π = π1 ⊞ · · · ⊞ πr of GL(m)/Q,
with m = m1 + · · · +mr, and each πj a cuspidal automorphic representation of GL(mj)/Q. Let
us momentarily call the family of such π by S(X) and for each j the family of such πj by Sj(X).
In their work, item (iv) of Condition 5.1 is replaced by the requirement that for each 1 ≤ j ≤ r,
for all ρj ∈ Sj(X) the gamma factor of L(s, πj) is of the form

∏mj

i=1 Γ(s + αi), where αi ∈ R are



PIERCE, TURNAGE-BUTTERBAUGH, WOOD 33

fixed; this is a special case of the version of (iv) stated here. More importantly, instead of the key
item (5.5) in Condition 5.4, Cho and Kim assume that for any two inequivalent π, π′ ∈ S(X) with
π = π1 ⊞ · · ·⊞ πr and π′ = π′1 ⊞ · · ·⊞ π′r, they have πj 6≃ π′k for all 1 ≤ j, k ≤ r. Relative to (5.5),
this would be the statement that for each j, for any fixed ρ ∈ Sj(X), precisely one π ∈ S(X) has
πj ≃ ρ, which in our notation is even stronger than the case τj = 0 for all 1 ≤ j ≤ r. Cho and Kim
used this to deduce that |Sj(X)| = |S(X)| for each j, which was crucial to their proof, but also
limited the types of families S(X) they could consider.

6. Verifying the conditions of the zero density theorem for families of Dedekind

zeta functions

The main result of this section is that Theorems 3.3, 3.9, 3.11, 3.13 and 3.14 may be deduced
from Theorem 5.5 by verifying that for each of the families of fields considered in these theorems,
Condition 5.4 is satisfied. Accordingly, in this section we fix ZI

n (Q, G) to be one of the families
specified in the above theorems, under the associated hypotheses of the theorem (if any).

6.1. Passage to a family of Galois closures. We now pass from considering the original set
of the degree n fields in ZI

n (Q, G) to considering the set of Galois closures Z̃I
n (Q, G) = {K̃ :

K ∈ ZI
n (Q, G)}; each Galois closure corresponds to a constant number of fields in ZI

n (Q, G) (only
depending on G as a permutation group). We now recall the notation of §5.2. Using that notation,

we define F (Q, G) = Z̃I
n (Q, G) to be the set of Galois extensions we consider, and we accordingly

define the sets Lj(X) for each 1 ≤ j ≤ s and every X ≥ 1, and thereby the corresponding families
(Lj(X))X≥1 of automorphic representations.

6.2. Verification of Condition 5.1 (i) – (iv). Now that we have constructed the appropriate

families F (Q, G) = Z̃I
n (Q, G) and (Lj(X))X≥1 for each 1 ≤ j ≤ s, we must verify that Condition

5.4 is satisfied. We first note that for each family Z̃I
n (Q, G) we consider, either the strong Artin

conjecture is known to apply to all the Galois representations considered (this is the case in Theorem
3.3) or it is explicitly assumed (this is the case in Theorems 3.9, 3.11, 3.13 and 3.14). To be precise,
let us write the Euler product of an Artin L-function as L(s, ρ) =

∏
v L(s, ρv), and the Euler product

for an automorphic L-function as L(s, π) =
∏

v L(s, πv).

Conjecture F (Strong Artin Conjecture). Let L be a finite Galois extension of a number field k,
with Gal(L/Q) ≃ G. Let ρ be an m-dimensional complex representation of G. There exists an
automorphic representation π(ρ) of GL(m)/Q such that the L-functions L(s, ρ) and L(s, π) agree
almost everywhere, i.e. except at a finite number of places v, L(s, ρv) = L(s, πv). Moreover, if ρ is
irreducible, then π is cuspidal.

This is known to hold for: 1-dimensional representations ρ, due to Artin [Art30]; nilpotent Galois
extensions L/k, due to Arthur and Clozel [AC89]; A4 and S4, due to Langlands [Lan80] and Tunnell
[Tun81], respectively; dihedral groups (and in particular S3), due to Langlands [Lan80]. We also
note that in the setting we will work in, a stronger identity is known. (See, for example, [DS74,
Theorem 4.6], [Mar03, Proposition 2.1], [Mar04, Appendix A], and [MR16, Proposition 1.5].)

Theorem G. If π is cuspidal and L(s, πv) = L(s, ρv) for almost all v, then in fact L(s, π) = L(s, ρ).

These considerations guarantee that in the settings we consider (with the relevant hypotheses we
assume), each Lj(X) is a set of cuspidal automorphic representations.

We next confirm that for each 1 ≤ j ≤ s, the family (Lj(X))X≥1 satisfies the four items in
Condition 5.1. For item (i), since the Ramanujan-Petersson conjecture holds for automorphic L-
functions associated to Artin L-functions once they are known to exist (see e.g. the comment
following [KM02, Thm. 5]), under the assumption (or known truth) of the strong Artin conjecture,
the Ramanujan-Petersson conjecture holds for all the cuspidal automorphic L-functions in each set
Lj(X).
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For item (ii), note that if K ∈ ZI
n (Q, G;X) then by construction DK ≤ X. The following

standard lemma relates to discriminants of a field and its Galois closure.

Lemma 6.1 (Discriminant comparisons). Let G be a transitive subgroup of Sn. There exist constants
C1 = C1(G) and C2 = C2(G) such that for every field K ∈ Zn(Q, G),

C1D
|G|/n
K ≤ DK̃ ≤ C2D

|G|/2
K .

(The lemma follows from Lemmas 6.9 and 6.10, recorded below, and for the left-hand inequality,
the fact that every cycle length in a permutation is at most the order of the permutation.)

Recall that in general for an Artin L-function L(s, ρ, L/k), if F (χ) denotes the Artin conductor

of χ = Tr(ρ), then the conductor of L(s, ρ, L/k) is given by A(χ) = D
χ(1)
k Nmk/QF (χ). According

to the multiplicativity relation DL = Dk
∏

χj
A(χj)

χj(1) for the conductors in the identity (5.3), we

see that for each 1 ≤ j ≤ s, the conductors of L(s, ρj , L/Q) are bounded by ≪n,G X |G|/2 and we
may take Aj = A = |G|/2 for all j.

For (iii), to control the size of the family of fields Z̃I
n (Q, G;X) it suffices to control the sizes of

the families ZI
n (Q, G;X) (and moreover it suffices to bound from above the sizes of the families

Zn(Q, G;X) without the ramification restriction). Thus we may apply the following known uncon-
ditional upper bounds to show the existence of dj = d for all j: G cyclic, Proposition 2.1; G ≃ Sn
see (2.6); G ≃ Dp see (2.4); G ≃ A4 see (2.8); G ⊆ Sn simple, we simply embed Zn(Q, G;X) in the
family of all fields of degree n and apply (2.6).

For item (iv), we use the known convexity bounds for automorphic L-functions, which apply
to our Artin L-functions under the strong Artin conjecture. Briefly, to be precise, we recall for
t ∈ R the analytic conductor of L(s, π) (in terms of the arithmetic conductor Cond(π) and the local
parameters at infinity, µπ(j)),

Qπ(t) = Cond(π)
m∏

j=1

(1 + |it− µπ(j)|).

Then via the functional equation, Stirling’s formula, and an application of the Phragmen-Lindelöf
principle, one may derive the classical convexity bound (see e.g. [Har03, page 5]):

L(s, π) ≪π,ε Qπ(t)
1−ℜ(s)

2
+ε, 0 ≤ ℜ(s) ≤ 1.

For π, π′ unitary cuspidal automorphic representations of GL(m)/Q, GL(m′)/Q, the Rankin-Selberg
L-function L(s, π⊗ π̃) (see e.g. [Mic07, §1.1.2]) has a corresponding arithmetic conductor Cond(π⊗
π′) and analytic conductor, given for t ∈ R by

Qπ⊗π′(t) = Cond(π ⊗ π′)
mm′∏

j=1

(1 + |it− µπ⊗π′(j)|).

The convexity bound for L(s, π ⊗ π′) in the critical strip is known:

L(s, π ⊗ π′) ≪π,π′,ε Qπ⊗π′(t)
1−ℜ(s)

2
+ε, 0 ≤ ℜ(s) ≤ 1.

Remark 6.2. Note that for each 1 ≤ j ≤ s, the uniformity of the convexity bounds assumed in Con-
dition 5.1 (iv) with respect to mj is critically reliant on the fact that within a family ZI

n (Q, G;X),
all fields share a fixed degree and a fixed Galois group of the Galois closure.

6.3. Verification of condition (5.5): controlling the propagation of bad L-function fac-
tors. Now we turn to the most difficult task: verifying that for each choice of the family ZI

n (Q, G;X)
that we consider in our main theorems, condition (5.5) of Condition 5.4 is satisfied.
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6.3.1. Reframing the question in terms of subfields. Let ZI
n (Q, G;X) be a fixed family of fields,

for a fixed transitive group G ⊆ Sn, and let ρ be an irreducible representation of G. Let L1, L2 ∈

Z̃I
n (Q, G;X). Then Gal(Li/Q) ≃ G while Gal(L

Ker(ρ)
i /Q) ≃ G/Ker(ρ). The following proposition

transforms the property of identical L-functions into a property of identical fixed fields.

Proposition 6.3. Let ρ be a fixed representation of a fixed transitive subgroup G ⊆ Sn. For L1/Q
and L2/Q with Gal(L1/Q) ≃ Gal(L2/Q) ≃ G, then if

(6.1) L(s, ρ, L1/Q) = L(s, ρ, L2/Q)

it follows that L
Ker(ρ)
1 = L

Ker(ρ)
2 .

We recall a standard lemma.

Lemma 6.4. Suppose for two Galois extensions F1/Q and F2/Q, that, aside from finitely many
exceptions, the set of rational primes that split completely in F1 is the same as the set of rational
primes that split completely in F2. Then F1 = F2.

Proof. By the Chebotarev density theorem, the density of rational primes that are split completely in
F1, F2, or F1F2 are, respectively [F1 : Q]−1,[F2 : Q]−1, [F1F2 : Q]−1. Since a prime is split completely
in F1F2 if and only if it is split completely in F1 and F2, we have [F1 : Q] = [F2 : Q] = [F1F2 : Q]
and so F1 = F2. �

Thus to prove Proposition 6.3, it suffices to show that for each fixed representation ρ of G,

aside from finitely many exceptions, the set of rational primes that split completely in L
Ker(ρ)
1 is

the same as the set of rational primes that split completely in L
Ker(ρ)
2 , under the assumption that

L(s, ρ, L1/Q) = L(s, ρ, L2/Q). First we assume that p is a rational prime that is unramified in

L1, L2 (and hence is unramified in L
Ker(ρ)
1 , L

Ker(ρ)
2 ) and splits completely in L

Ker(ρ)
1 . In particular,

this means that for any p1 in L
Ker(ρ)
1 that lies above p, the conjugacy class of the Frobenius element

σp1 is trivial in Gal(L
Ker(ρ)
1 /Q) ≃ G/Ker(ρ), that is to say, ρ(σp1) is the identity matrix I.

Now letting p2 ∈ L
Ker(ρ)
2 be any prime lying above p, by the assumption that the L-functions are

equal, we have that the factors corresponding to p are equal as functions of s and therefore

(6.2) det(I − ρ(σp2)p
−s)−1 = det(I − ρ(σp1)p

−s)−1 = det(I − Ip−s)−1.

Now recall that the Frobenius element σp2 is necessarily finite order. We recall a simple observation.
Suppose M is an n×n matrix over C of finite order, say Mk = I for some k, such that det(I−Mx) =
det(I−Ix) = (1−x)n for a formal variable x. Then we claim M = I. Indeed, since M is finite order,
M is diagonalizable, for the minimal polynomial of M divides xk − 1 and so has no repeated roots.
By our second assumption, all the roots of the characteristic polynomial of M are equal to 1, so that
all the eigenvalues of M are 1 and M = I. We apply this in (6.2) to conclude that ρ(σp2) = I as

well. Thus the conjugacy class of the Frobenius element σp2 is trivial in Gal(L
Ker(ρ)
2 /Q) ≃ G/Ker(ρ)

and p must split completely in L
Ker(ρ)
2 .

In this fashion we see that any prime that is unramified in L1, L2 and splits completely in L
Ker(ρ1)
1

must split completely in L
Ker(ρ)
2 . Starting from primes unramified in L1, L2 that split completely

in L
Ker(ρ)
2 we can similarly show that they must split completely in L

Ker(ρ)
1 , and this concludes the

proof of Proposition 6.3.

Remark 6.5. Proposition 6.3 can alternatively be deduced from [KN16, Theorem 5], which also in-
cludes a converse, which we do not require in our application. To apply [KN16, Theorem 5] in our set-
ting, one first passes as in [KN16, p. 162] to the case of a faithful representation ̟(σKer(ρ)) = ρ(σ)
acting on H = G/Ker(ρ). Klüners and Nicolae present a counterexample to the characterization
deduced in Proposition 6.3 when working over k 6= Q [KN16, p. 167], but see their relative version
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[KN16, Thm. 6]. It is possible that certain other families ZI
n (k,G;X) with k 6= Q and certain

choices of G can be treated by an adaptation of our methods with such a relative result. (When
working over k 6= Q one would also need to take into account the more nuanced situation that arises
with regards to arithmetic equivalence.)

We now apply Proposition 6.3. As before, let G be a fixed transitive subgroup of Sn and let
ρ1, . . . , ρs be the nontrivial irreducible representations of G. For each 1 ≤ j ≤ s, consider the set of
fields

{LKer(ρj) : L ∈ Z̃I
n (Q, G;X)}.

(Note that we define this as a set, not a multi-set.) Philosophically, we would like to show that the
cardinality of this set is “large,” or equivalently very few of the fields L share the same fixed field,
which would imply that “few” collisions L(s, ρj , L1/Q) = L(s, ρj , L2/Q) could occur for L1 6= L2 ∈

Z̃I
n (Q, G;X).
Formally, recall the definition of the set Lj(X) in §5.2 according to the family of fields F (Q, G;X) =

Z̃I
n (Q, G;X). Let us first consider the special case in which ρj is faithful so that Ker(ρj) is trivial.

Then by Proposition 6.3, for two fields L1 6= L2 ∈ Z̃I
n (Q, G;X), we cannot have L

Ker(ρj)
1 = L

Ker(ρj)
2

and so we cannot have L(s, ρj , L1/Q) = L(s, ρj , L2/Q), and so in this case

(6.3) |Lj(X)| = |Z̃I
n (Q, G;X)|.

Thus if ρj is faithful, we have verified (5.5) of Condition 5.4 with τj = 0, which certainly suffices.
More generally, even if ρj is not a faithful representation, Proposition 6.3 shows that the number

of fields Li ∈ Z̃I
n (Q, G;X) for which L(s, ρj , Li/Q) is identical to a specific L-function is bounded

above by the number of fields Li ∈ Z̃I
n (Q, G;X) for which L

Ker(ρj)
i is identical to a specific field.

Thus we have translated the problem of verifying (5.5) for a particular family Lj(X) to a problem
of counting fields.

Precisely, we summarize the implications of Proposition 6.3 as the following statement:

Proposition 6.6. Let ZI
n (Q, G) be a set of fields considered in Theorem 3.3, 3.9, 3.11, 3.13 or 3.14

under the associated hypotheses, if any. Let Z̃I
n (Q, G) be the corresponding set of Galois closures.

Let ρ1, . . . , ρs be the nontrivial irreducible representations of G. Define the families (Lj(X))X≥1

for 1 ≤ j ≤ s accordingly, as in §5.2. Then Z̃I
n (Q, G) and the families (Lj(X))X≥1 for 1 ≤ j ≤ s

satisfy (5.5) of Condition 5.4 with parameters {τj}1≤j≤s if the following holds: for each irreducible
representation ρj of G, given any field F ∈ Zu(Q, G/Ker(ρj);X) (where u = |G/Ker(ρj)|), at most

On,G,I (Xτj ) fields L ∈ Z̃I
n (Q, G;X) have LKer(ρj) = F .

6.3.2. Rationale for the restriction on ramification types of tamely ramified primes. For G not a
simple group, Proposition 6.6 spurs us to quantify, for each proper normal subgroup H of G that
appears as the kernel of at least one (non-faithful, non-trivial) irreducible representation of G, how
often a particular field occurs as a fixed field LH , as L varies over a relevant family of Galois
extensions of Q with Galois group G.

For certain groups G, fixed fields could collide with high repetition. For example, taking G =
Z/4Z, then for any fixed quadratic field such as F = Q(e2πi/3), a positive proportion of quartic

Galois fields K ∈ Z4(Q,Z/4Z;X) have KZ/2Z = F . This can be seen for example via a counting
argument similar to that of §2.1. (See also comments in Remarks 6.11 and 6.12.)

To eliminate such possibilities, we will critically use our restrictions on the ramification types of
the tamely ramified primes in the fields in ZI

n (Q, G;X). Given G, we will select I so that it has
two properties:

(1) For ZI
n (Q, G) to be infinite, we need the elements in I to generate G.
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(2) We need I to have the property that for each proper normal subgroup H in G that is the
kernel of a non-faithful irreducible representation of G, given any field K ∈ ZI

n (Q, G;X)

with associated Galois closure K̃/Q, then p|DK implies p|DF , where F = K̃H .

(Of course the primes that appear in DK are the same that appear in DK̃ but this need not a
priori be true of DK̃ and DF .) Property (2) will enable us to obtain the information we seek in

Proposition 6.6, that is, to count the number of K̃ ∈ Z̃I
n (Q, G;X) sharing the same fixed field

F = K̃H , by applying quantitative information about Dn(G;̟) (Property 1.6). This is one of the
most novel features of this paper.

6.4. The counting problem. We now define the counting problem that is the heart of the matter.

Property 6.7 (Property Multn(G,I ; τ)). Let Multn(G,I ; τ) denote the property that for every
X ≥ 1, for each irreducible representation ρ of G, given any particular field F ∈ Zu(Q, G/Ker(ρ))

(with u = |G/Ker(ρ)|) that arises as a fixed field K̃Ker(ρ) for at least one field K ∈ ZI
n (Q, G;X),

for every ε > 0, at most On,G,I ,ε(X
τ+ε) fields K ∈ ZI

n (Q, G;X) have K̃Ker(ρ) = F .

Given a family ZI
n (Q, G;X), if we can prove that Multn(G,I ; τ) holds for a sufficiently small τ ,

then by Proposition 6.6, the relevant effective Chebotarev density theorem for the family ZI
n (Q, G;X)

will follow (that is, either Theorem 3.3, 3.9, 3.11, 3.13 or 3.14). Quantitatively, lowering the size
of τ for which we can prove Multn(G,I ; τ) will allow us to better control the size of the possible
exceptional set of fields.

Proposition 6.8 (Counting problem). We can prove the following:

(1) Multn(G,I ; 0) for G a simple group, I imposing no restriction.
(2) Multn(G,I ; 0) for G cyclic, I specifying totally ramified.
(3) Multn(Sn,I ;̟n) for n ≥ 3, I the conjugacy class [(1 2)], where ̟3 = 1/3, ̟4 = 1/2,

̟5 = 199/200, and for n ≥ 6, ̟n = ̟ if we assume Property Dn(Sn, ̟).
(4) Multp(Dp,I ; τp) holds for τp = 1/(p− 1), p an odd prime, I the conjugacy class of order

2 elements.
(5) Mult4(A4,I ; 0.2784...), I the two conjugacy classes of order 3 elements.

As observed above, Multn(G,I ; 0) is tautologically true when G is a simple group (I imposing
no restriction), since all the nontrivial irreducible representations are faithful and (6.3) applies. All
the other cases of the counting problem require work. We first explicitly prove this for Sn, n 6= 4;
in particular, to aid the reader, we include our argumentation for choosing I = [(1 2)].

6.4.1. Background lemmas on inertia groups and discriminants. We recall standard results on the
powers of primes dividing DK .

Lemma 6.9 (Powers of tamely ramified primes in discriminants). Let K ⊂ K̃ ⊂ Q with Gal(K̃/Q) ≃

G and H = Gal(K̃/K). Let p be a rational prime that is tamely ramified in K and K̃, and has an

inertia group in Gal(K̃/Q) generated by π ∈ G. The power α such that pα||DK is

(6.4) [G : H]− number of orbits of π acting on the cosets G/H.

Proof. We have that DK is the Artin conductor of K̃/Q for the permutation representation of

G on G/H [Neu99, Ch. VII, Corollary 11.8]. By definition, the Artin conductor of K̃/Q for a

representation V of Gal(K̃/Q) is
∏

p p
fp(V ), where the product is over rational primes and

fp(V ) =
∑

i≥0

gp,i
gp,0

codimV Gp,i ,

for Gp,i an ith ramification group for p in Gal(K̃/Q) and gp,i := |Gp,i|. Recall that Gp,0 is the
inertia group Ip and that for tamely ramified p, we have Gp,i = 1 for i ≥ 1. So for tamely ramified
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p, we have fp(V ) = codimV Ip . The lemma follows, since for a permutation representation V , the
dimension of the fixed subspace V π is the number of orbits of π. �

Lemma 6.10 (Maximum contribution of wild primes). Let G be a transitive subgroup of Sn. Then
for all fields K ∈ Zn(Q, G), the total contribution to DK from the rational primes that are wildly
ramified in K is at most a certain finite constant CG depending only on G.

This lemma follows from [Neu99, Ch. III, Thm. 2.6] and the fact that all wildly ramified primes
divide |G|.

In order to consider only the tame part of the discriminant in our investigations below, it will be

convenient to use the following notation. Given a finite set of primes Ω, define D
(Ω)
K to denote the

contribution to the discriminant from primes p 6∈ Ω, i.e. D
(Ω)
K is the maximal positive divisor of DK

that is not divisible by any prime in Ω. We will apply this in particular when Ω is comprised of the
primes dividing |G|.

6.4.2. Exemplar case: G = Sn, n = 3 or n ≥ 5. Recall that when n = 3 or n ≥ 5, Sn has one
nontrivial, proper normal subgroup, namely An, which certainly appears as the kernel of the sign
representation. Thus we must specify a ramification type I so that the counting problem for fixed
fields K̃An can be handled. We wish, for a fixed quadratic field F ∈ Z2(Q, C2), to count the number

of degree n fields K ∈ Zn(Q, Sn;X) such that K̃An = F .

K̃

K F = K̃An

Q

Gal(K̃/Q) ≃ Sn

n

Gal(K̃/F ) ≃ An

2

Using Lemma 6.9, we can compute for fields K, K̃, F in such a constellation the exact power of
p that appears in the absolute discriminants DK , DK̃ , DF , for each prime p ∤ |G|. We show these
exponents in Table 1: the leftmost column specifies the conjugacy class of the generating element π
of the (cyclic) inertia group for p, while the other columns specify the exact power of p appearing
in the discriminants. We only list a few of the p(n) conjugacy classes of Sn; we set εn = 0 if n is
odd and εn = 1 if n is even.
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Exponent of p appearing in the discriminant of

Inertia type of p K K̃ F = K̃An

[()] 0 0 0

[(1 2)] 1 n!− n!/2 1

[(1 2 3)] = [(1 2)(2 3)] 2 n!− n!/3 0

[(1 2)(3 4)] 2 n!− n!/2 0
...

...
...

...

[(1 2 3 . . . n)] n− 1 n!− n!/n εn

Table 1. Table of exponents for p when Gal(K̃/Q) ≃ Sn, for each p ∤ n!

From Table 1 we observe that every p ∤ |G| that has inertia group generated by a transposition

has p‖DK , p
n!/2‖DK̃ , p‖DF . This will allow us to control, for a fixed field F , how many K can yield

a constellation including F . These observations from Table 1 motivated our choice of I = [(1 2)]
for G ≃ Sn (n = 3, n ≥ 5).

Now we come to the crux of the argument. Suppose that F is fixed, and hence DF ≥ 1 is fixed.

Set Ω = {p : p|n!} and recall the notation D
(Ω)
K defined above. Our discussion above shows that

any degree n extension K ∈ ZI
n (Q, Sn;X) such that K̃An = F must have

(6.5) D
(Ω)
K = D

(Ω)
F .

Assuming Property Dn(Sn, ̟) is known, then since the power of any p ∈ Ω dividing DK is bounded
in terms of n, for a given F there are at most ≪n,G,ε D

̟+ε
F ≪n,G,ε X

̟+ε such K satisfying (6.5),
for every ε > 0. Now to obtain the conclusion on Multn(Sn,I ;̟n) of Proposition 6.8 for Sn,
n = 3, n ≥ 5, we simply apply the currently best known upper bounds for Property Dn(Sn, ̟) in
these cases, as stated in §2.3.

Having completed this exemplar case of G = Sn (n 6= 4) in some detail, we are now more brief with
the remaining groups G, which follow similarly by using Lemma 6.9 in order to fix an appropriate
choice of ramification type I for which the counting problem can be resolved.

6.4.3. G ≃ S4. Recall that S4 has four nontrivial irreducible representations (see e.g. [Ser77, p.
43]): two three-dimensional faithful representations (the standard representation and the product
of the standard representation with the sign representation) and two non-faithful representations.
The subgroup A4 is the kernel of the one-dimensional sign representation, and K4 ≃ C2 × C2 the
Klein four group is the kernel of the irreducible two-dimensional representation of S4. We thus have
two counting problems to consider.

Relevant to the counting problem for fixed fields under A4, by choosing I to be the conjugacy
class [(1 2)] of transpositions, we may conclude that triads K, K̃, F = K̃A4 behave exactly as in
the case of Sn in §6.4.2, so that for any p ∤ 4!, p‖DK , p

12‖DK̃ , p‖DF , and hence upon setting

Ω = {2, 3}, we have D
(Ω)
K = D

(Ω)
F . Thus arguing as in §6.4.2, any fixed F corresponds to at most

≪ε D
̟+ε
F ≪n,G,ε X

̟+ε possibilities for K ∈ ZI
4 (Q, S4;X), if Property D4(S4, ̟) is known.

Relevant to the counting problem for fixed fields under K4, still choosing I to be the conjugacy
class [(1 2)] of transpositions, for triads K, K̃, F = K̃K4 the exponents are different: for every p ∤ 4!
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we have p‖DK , p
12‖DK̃ , and p3‖DF . Thus upon setting Ω = {2, 3}, we have

(6.6) D
(Ω)
K = (D

(Ω)
F )1/3,

and so any fixed F corresponds to at most ≪ε D
̟/3+ε
F ≪n,G,ε X

̟+ε possibilities (for every ε > 0)

for K ∈ ZI
4 (Q, S4;X), if Property D4(S4, ̟) is known. (Here we have used the fact that if

K ∈ Zn(Q, G;X) and (6.6) holds, then DF ≪n,G X3.) We conclude that Mult4(S4,I ; 1/2) holds
since Property D4(S4, 1/2) is known.

6.4.4. G ≃ A4. Recall (see [Ser77, Section 5.7, page 41]) that A4 has four nontrivial irreducible
representations: two faithful representations and two one-dimensional non-faithful representations,
each with kernel K4 ≃ C2 × C2 the Klein-four group. Thus we need only complete the counting
problem for triads K, K̃, F = K̃K4 . We will require all tamely ramified primes to have inertia type
belonging to either of the conjugacy classes C1,C2 of order 3 elements (specified e.g. in Proposition
2.5).

Suppose we restrict to primes of inertia type in the conjugacy class C1. The image of this inertia
type in A4/K4 ≃ C3 is nontrivial, and we see that for any p ∤ |A4|, p

2‖DK , p
8‖K̃, p2‖DF . Thus

upon setting Ω = {2, 3}, within the triad we have D
(Ω)
K = D

(Ω)
F , and so, any fixed F corresponds

to at most ≪ε D
̟+ε
F ≪n,G,ε X

̟+ε possibilities for K ∈ ZI
4 (Q, A4;X), if Property D4(A4, ̟) is

known. The computation for primes of inertia type in the conjugacy class C2 is identical. Recalling
our result of Proposition 2.5, we conclude that Mult4(S4,I ; 0.2784...) holds.

6.4.5. G ≃ Dp, p an odd prime. We think of Dp (with p an odd prime) as the group of order 2p of
symmetries on a regular p-gon, acting in the usual way. Thus Dp has one nontrivial, proper normal
subgroup, namely Cp; this subgroup certainly appears as the kernel of the (one-dimensional) sign

representation. Thus we must consider the corresponding counting problem for fixed fields K̃Cp .
We restrict the inertia type I to the conjugacy class [(2 p)(3 (p − 1)) · · · (p+1

2
p+3
2 )], that is the

conjugacy class of reflections (each with with (p+ 1)/2 orbits acting on p elements).

For a triad K, K̃, F = K̃Cp we then have for every prime ℓ ∤ 2p that ℓ(p−1)/2‖DK , ℓ
p‖DK̃ , ℓ‖DF .

Thus upon setting Ω = {2, p} we have

(6.7) D
(Ω)
K = (D

(Ω)
F )

p−1
2 ,

and so any fixed F corresponds to at most ≪p,Dp,ε D
(p−1)̟/2+ε
F possibilities for K ∈ ZI

p (Q, Dp;X),

if Property D
I
p (Dp, ̟) is known. Now if (6.7) is known and K ∈ ZI

p (Q, Dp;X) then DF ≪p,Dp

X2/(p−1), so we have at most ≪p,Dp,ε X
̟ choices for such K if Property D

I
p (Dp, ̟) is known. We

conclude from Proposition 2.3 that Multp(Dp,I ; 1/(p− 1)) holds unconditionally.

6.4.6. G a cyclic group. Finally, for G a cyclic group of order n, note that Zn(Q, G;X) already is
comprised of Galois fields, so we do not need to pass to the Galois closures. (As a special case,
if G ≃ Cp with p prime, then G has no nontrivial proper (normal) subgroups, so all nontrivial
representations are faithful, without the need to artificially impose a ramification restriction. But
in this case, every ramified prime is naturally totally ramified, so we still group this with the general
case below.) In general, consider G an arbitrary cyclic group of order n, say G ≃ Cp

e1
1

× · · · ×Cp
ek
k

with distinct primes p1, . . . , pk. We restrict to I specifying that every tamely ramified prime must
be totally ramified, that is, its inertia group must be generated by an element of full order in G;
in particular, such an element does not belong to any proper, nontrivial subgroup Cm of Cn. By
Lemma 6.9 the following properties hold:

(1) for every prime ℓ ∤ n we have ℓn−1‖DK = DK̃ ;
(2) for every nontrivial proper (normal) subgroup Cm of Cn (corresponding to a proper divisor

m|n) there exists an integer 1 ≤ αm ≤ n − 1 (depending on m and Cn) such that ℓαm‖DF

where F = K̃Cm .



PIERCE, TURNAGE-BUTTERBAUGH, WOOD 41

As a result, upon setting Ω = {p : p|n}, for each nontrivial proper subgroup Cm of G, parametrized
by divisors m, we have that

D
(Ω)
K = (D

(Ω)
F )

n−1
αm

when F = KCm = K̃Cm . Thus any fixed F corresponds to at most ≪n,m,Cn,ε D
̟(n−1)/αm+ε
F ≪n,m,Cn,ε

X̟+ε possibilities (for any ε > 0) for K ∈ ZI
n (Q, Cn;X) if Property Dn(Cn, ̟) is known. By

Proposition 2.1 we have Dn(Cn, 0), so that we have verified Multn(Cn,I ; 0).

Remark 6.11 (Non-cyclic abelian groups). The above arguments show that we are able to pick an
appropriate ramification restriction to control the propagation of bad L-function factors if there
exists a set that generates G and such that none of them lies in any (nontrivial, proper, normal)
subgroup H of G that appears as the kernel of at least one nontrivial irreducible representation of
G. We may already observe the difficulty of adapting this general strategy to a non-cyclic abelian
group by considering the simple case of G ≃ Cpe × Cpf for a prime p. Consider an element in the

generating set of the form (a, b) with a 6= 0. Let pk be the highest power of p that divides both a

and b. Then for ζp = e2πi/p, the map Cpe × Cpf → C given by (i, j) 7→ ζ
ib/pk−ja/pk

p is a non-trivial

irreducible representation of Ce
p × Cf

p , and our generator is in the kernel of this map.

Remark 6.12 (Quartic D4-fields). Difficulties also arise for quartic D4-fields: there are irreducible
representations of D4 with kernels K4, K

′
4 (two different subgroups isomorphic to the Klein-four

group) and C4, but no set of generators of D4 that avoid all three of these subgroups, and hence no
choice of ramification type I for which the three counting problems can simultaneously be resolved.
It may be possible to apply our method to a particular subfamily of quartic D4-fields generated
from a fixed biquadratic field; in this case the counting problems will be trivial, although proving a
lower bound that grows with X for such a family may not be.

6.5. Deduction of Theorems 3.3, 3.9, 3.11, 3.13 and 3.14 from Theorem 5.5. We have
verified Condition 5.4 for each family ZI

n (Q, G;X) considered in the above theorems; now we
apply Theorem 5.5. The family parameters notated in Condition 5.4, namely {M0,M1, A, d} and
{mj , Aj , dj ,M1,j ,M2,j,ε,M3,j,ε,M5,j} for 1 ≤ j ≤ s, all depend only on n,G,I , and thus in the
following statements we can replace any dependence on family parameters by dependence on n,G,I .

Proposition 6.13. Fix a family ZI
n (Q, G;X) considered in Theorem 3.3, 3.9, 3.11, 3.13 or 3.14

under the associated hypotheses (if any). If it is known that Xβ ≪n,G,I |ZI
n (Q, G;X)| ≪n,G,I Xd

and that Multn(G,I ; τ∗) holds for some τ∗ < β, then the conclusions of the relevant theorem hold
for those values of τ∗, β, d.

Let τ∗ < β ≤ d be as assumed in the proposition. Fix τ = τ∗ + ε3 for some sufficiently small ε3
(in particular so that τ < d) and fix ε0 ≤ min{1/2, 2(d− τ)} sufficiently small. We apply Theorem
5.5 with

(6.8) ∆ = 1−
τ

d
−
ε0
2d
,

δ chosen as in (5.11) (according to A = |G|/2 and ε2 = ε0 so that we obtain the expression for δ in
Remark 3.4), and η = ε0/2d. Then

(1− (1− η)∆)d = τ +
ε0
2

+
ε0
2
(1− τ/d− ε0/2d) ≤ τ + ε0.

Then there exists B depending only on n,G,I such that for all X ≥ 1, at most

(6.9) On,G,I ,τ,d,ε0(X
τ+ε0)

fields K ∈ ZI
n (Q, G;X) are such that ζK̃/ζ can have a zero in the region

(6.10) [1− δ, 1]× [−Xβ , Xβ ],
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where β = ε0(1− τ/d− ε0/2d)/(2B).
Our goal now is to express this in terms of how many δ-exceptional fields there can be. It is

temporarily convenient to work in terms of families of fields with discriminant in a dyadic range;

thus we set ZI ,♯
n (Q, G;X) to be the subset of ZI

n (Q, G;X) with X/2 < DK ≤ X. We next verify

that for X sufficiently large, for every K ∈ ZI ,#
n (Q, G;X) the region (6.10) contains the region

(3.1), which we write now in the notation

(6.11) [1− δ, 1]× [−(logDK̃)2/δ, (logDK̃)2/δ].

If K ∈ ZI ,♯
n (Q, G;X) then by Lemma 6.1, C1(n,G)(X/2)

|G|/n ≤ DK̃ ≤ C2(n,G)X
|G|/2, for certain

constants Ci(n,G). Thus it suffices to show that there exists a thresholdD3 = D3(n,G,I , τ, d, δ, ε0)
such that if X ≥ D3 then

(6.12) (log(C2(n,G)X
|G|/2))2/δ ≤ Xβ .

This is the claim that a fixed power of X is larger than any fixed power of logX, as long as X is
sufficiently large; thus an appropriate threshold D3 exists.

We have shown that for everyX ≥ 1 there are at mostOn,G,I ,τ,d,ε0(X
τ+ε0) fieldsK ∈ ZI

n (Q, G;X)
such that ζK̃/ζ can have a zero in (6.10); consequently if X/2 ≥ D3, at most On,G,I ,τ,d,ε0(X

τ+ε0)

fields in K ∈ ZI ,#
n (Q, G;X) are such that ζK̃/ζ can have a zero in (6.11), that is, can be δ-

exceptional. Now we suppose that A ≥ 2 has been fixed, and we recall the threshold D0 from
Theorem 3.1. As long as

(6.13) X/2 ≥ D0,

any K ∈ ZI ,#
n (Q, G;X) that is not δ-exceptional satisfies the hypothesis of Theorem 3.1, and

therefore for every conjugacy class C ⊆ G yields (3.2) for all x sufficiently large as in (3.4). Upon
taking

D4 = D4(n,G,I , τ, d, δ, ε0, cQ, C1, C2, A) := max{D0, D3}

we have shown that for any X such that X/2 ≥ D4 we have that at most On,G,I ,τ,d,ε0(X
τ+ε0)

fields in K ∈ ZI ,#
n (Q, G;X) can be δ-exceptional, and for all remaining fields, (3.2) holds for all x

satisfying (3.4). We may in fact omit the dependence on δ in the notation, as it is defined in terms
of the other parameters.

The final step to complete the proof of Proposition 6.13 is to sum over dyadic ranges of discrim-
inants. Now for any X ≥ 1 (say using log2 temporarily),

ZI
n (Q, G;X) ⊆

1+logX⋃

j=0

ZI ,♯
n (Q, G; 2j).

We may dissect this into two pieces: those for which j is such that 2j−1 ≥ D4, in which case our
work above applies, and we conclude that the number of δ-exceptional fields in

1+logX⋃

2j−1≥D4

ZI ,♯
n (Q, G; 2j)

is at most

(6.14)

1+logX∑

2j−1≥D4

On,G,I ,τ,d,ε0((2
j)τ+ε0) = On,G,I ,τ,d,ε0(X

τ+ε0).

For those j such that 2j−1 ≤ D4, we count all the fields as possible exceptions, noting that∣∣∣∣∣∣

⋃

1≤2j−1≤D4

ZI ,♯
n (Q, G; 2j)

∣∣∣∣∣∣
≤ |ZI

n (Q, G; 2D4)| ≪n,G Dd
4 .
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We enlarge the implied constant in (6.14) to include this constant, and call the resulting implied
constant D5, as appears in the theorem statements. This completes the proof of Proposition 6.13,
and in combination with the values of τ∗ supplied by Proposition 6.8, we have proved Theorems
3.3, 3.9, 3.11, 3.13 and 3.14 (and the non-quantitative Theorem 1.1).

6.6. Proof of Corollary 3.16. Let ZI
n (Q, G;X) be a specified family, with corresponding parame-

ters τ∗ < β ≤ d, set A = 2 and let ε0 (sufficiently small) be fixed, with corresponding choice δ ≤ 1/4.
First, we verify that for σ > 0 fixed, there is a threshold D′

6 = D′
6(n,G,I , d, cQ, C5, C6, ε0, σ) such

that for DK ≥ D′
6,

Dσ
K ≥ κ1 exp{κ2(log log(D

κ3

K̃
))5/3(log log log(D2

K̃
))1/3},

where this lower bound is as stated in (3.4), and the parameters κi have the dependencies κi =
κi(n,G, d, cQ, C5, C6, ε0) (dropping the notational dependence on A = 2). In fact it suffices to
compute a threshold above which

Dσ
K ≥ κ1 exp{κ2(log log(D

κ5

K̃
))2}

where we set κ5 = max{κ3, 2}. By Lemma 6.1, DK̃ ≤ C2(n,G)D
|G|/2
K for a certain constant

C2(n,G), so that it further suffices to show

Dσ
K ≥ κ1 exp{κ2(log log(κ6D

κ7
K ))2}

where κ6 = C2(n,G)
κ5 and κ7 = κ5|G|/2. This will hold when DK is sufficiently large that

σ ≥
log κ1
logDK

+
κ2(log log(κ6D

κ7
K ))2

logDK
,

and we denote this threshold by D′
6 = D′

6(n,G,I , d, cQ, C5, C6, ε0, σ). Finally, recall the parameter
D0 provided in Theorem 3.1. While this is used as a constraint DK̃ ≥ D0, we apply Lemma 6.1 to

see that DK̃ ≥ C1(n,G)D
|G|/n
K for a certain constant C1(n,G). Then DK̃ ≥ D0 is certainly satisfied

if DK ≥ D′
0 with

(6.15) D′
0 := (C1(n,G)

−1D0)
n/|G|.

Now for part (1) of Corollary 3.16, we may conclude from Theorem 3.1 with A = 2 that for every
X ≥ 1, for every field in ZI

n (Q, G;X) that has DK ≥ max{D′
0, D

′
6} and is not δ-exceptional,

(6.16)

∣∣∣∣πC (D
σ
K , K̃/Q)−

|C |

|G|
Li(Dσ

K)

∣∣∣∣ ≤
|C |

|G|

Dσ
K

(logDσ
K)2

.

Finally, we enlarge max{D′
0, D

′
6} if necessary to a parameter D6, so that for all DK ≥ D6, the

error term in (6.16) is at most (1/2)|G|−1Li(Dσ
K) ≤ (1/2)|C ||G|−1Li(Dσ

K). Then πC (D
σ
K , K̃/Q) ≥

(1/2)|C ||G|−1Li(Dσ
K) ≥ (1/2)|G|−1Li(Dσ

K), and we can further enlarge D6 if necessary to write the
lower bound as in (3.7).

For part (2) of Corollary 3.16, we may follow e.g. Vaaler and Widmer [VW13, Lemma 5.1] (but
without assuming GRH, as they do). Suppose that K is not δ-exceptional and furthermore that
DK ≥ D′

0 with parameter D′
0 as above in (6.15). Then for every x satisfying the lower bound (3.4),

we apply (3.2) with A = 2 to both πC (x, K̃/Q) and πC (2x, K̃/Q). If the (non-negative) difference

(6.17) πC (2x, K̃/Q)− πC (x, K̃/Q)

were zero, this in combination with (3.2) would imply that

(6.18) Li(2x)− Li(x) ≤
2x

(log 2x)2
+

x

(log x)2
≤

3x

(log x)2
.



PIERCE, TURNAGE-BUTTERBAUGH, WOOD 44

Yet certainly for x ≥ 2,
∫ 2x

x

dt

log t
≥

x

log 2x
≥

x

2 log x
.

Thus (6.18) fails (so the difference in (6.17) must be ≥ 1) as soon as x ≥ max{2, e6}. Given σ > 0,
we apply this to x = Dσ

K , in which case we require DK ≥ D7 = max{D′
0, D

′
6, 2, e

6} with the
parameter D′

6 (depending on σ) as above. This completes the verification of Corollary 3.16.

Part III: Applications

7. Bounding ℓ-torsion in class groups

For a finite extension K/Q, the ideal class group ClK is a finite abelian group that encodes
information about arithmetic in K, and interest in the class number |ClK | has a long history, going
back to the Gauss class number conjecture, early attempts at proving Fermat’s Last Theorem, and
Dirichlet’s development of the class number formula, which unites class numbers with L-functions.
We focus on the ℓ-torsion subgroup of ClK , defined for any integer ℓ ≥ 1 by

(7.1) ClK [ℓ] := {[a] ∈ ClK : [a]ℓ = Id}.

For any number field K/Q of degree n and absolute discriminant DK = |DiscK/Q|, we may trivially
bound the ℓ-torsion subgroup by the full class group, which admits the following bound (see [Nar80,
Theorem 4.4]):

(7.2) 1 ≤ |ClK [ℓ]| ≤ |ClK | ≪n,ε D
1/2+ε
K ,

for any integer ℓ ≥ 1, and ε > 0 arbitrarily small. We will refer to this as the trivial bound for
|ClK [ℓ]|.

Our work on ℓ-torsion is inspired by the following well-known conjecture (e.g. see [BS96, “Question
CL(ℓ, d)”], [Duk98], [Zha05, Conjecture 3.5]):

Conjecture 7.1 (ℓ-torsion Conjecture).
Let K/Q be a number field of degree n. Then for every integer ℓ ≥ 1 and every ε > 0,

|ClK [ℓ]| ≪n,ℓ,ε D
ε
K .

Now, with our new effective Chebotarev theorems for families of fields, we can make new progress
toward this conjecture: we improve on the trivial bound (7.2) and in fact do as well as previous
bounds that assumed GRH, for all but a possible density zero subfamily of fields. In particular, we
prove the first unconditional nontrivial upper bounds for ℓ-torsion, for all ℓ ≥ 1, for almost all fields
in infinite families of fields of arbitrarily high degree.

Theorem 7.2. Let ZI
n (Q, G) be fixed to be one of the families of fields considered in Theorems

3.3, 3.9, 3.11, 3.13 and 3.14, and correspondingly assume the hypotheses (if any) of the relevant
theorem. Let the parameters τ∗ < β ≤ d be those proved to exist for that family in (3.5). For every
τ > τ∗ sufficiently close to τ∗, every ε0 > 0 sufficiently small, and every integer ℓ ≥ 1, there exists
a constant D8 such that for for every X ≥ 1, aside from at most D8X

τ+ε0 exceptions, every field
K ∈ ZI

n (Q, G;X) satisfies

(7.3) |ClK [ℓ]| ≪n,ℓ,G,ε D
1
2
− 1

2ℓ(n−1)
+ε

K

for all ε > 0.
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Recalling that for each family considered we have shown that |ZI
n (Q, G;X)| ≫n,G,I Xβ with

β > τ∗, the exceptional family has density zero once τ is sufficiently close to τ∗ and ε0 is taken to
be sufficiently small. (In §7.2.1, we re-state Theorem 7.2 in terms of averages of ℓ-torsion.)

The deduction of Theorem 7.2 follows a general approach codified by Ellenberg and Venkatesh
for bounding ℓ-torsion in ClK by finding many small rational primes that split completely in K:

Theorem H ([EV07, Lemma 2.3]). Suppose K/Q is an extension of degree n, and let ℓ be a positive
integer. Set 0 < δ < 1

2ℓ(n−1) and suppose that there are at least M rational primes with p ≤ Dδ
K

that are unramified and split completely in K. Then for any ε > 0,

|ClK [ℓ]| ≪n,ℓ,ε D
1
2
+ε

K M−1.

To find small primes that split completely in K it is sufficient to find small primes that split
completely in the Galois closure K̃ of K over Q, and to do so Ellenberg and Venkatesh applied
Lagarias and Odlzyko’s conditional Theorem A to obtain:

Theorem I ([EV07, Prop. 3.1]). Let K/Q be a number field of degree n and ℓ ≥ 1 an integer.
Assuming GRH, then for any ε > 0,

(7.4) |ClK [ℓ]| ≪n,ℓ,ε D
1
2
− 1

2ℓ(n−1)
+ε

K .

The argument in §7.2 will show that any quantitative improvement to the exponent obtained in
Theorems H and I is expected to be similarly reflected in the exponent obtained in (7.3).

As n, ℓ grow large, to produce the primes required in Theorem H, we must be allowed to count
primes as small as any fixed positive power of DK . This in particular illuminates why previously
known lower bounds for πC (x, L/k), such as obtained in the recent work of Thorner and Zaman
[TZ17b], [TZ17a, Eqn. 1.6], or even the result of Theorem B (assuming no exceptional zero β0
exists, or in the setting of Theorem 4.12), do not suffice for our application. The new results in
Theorem 7.2 show that the following fields satisfy (7.3) unconditionally, for all integers ℓ ≥ 1:

(i) almost all degree p cyclic extensions of Q (p prime)
(ii) almost all totally ramified cyclic extensions of Q
(iii) almost all degree p Dp-extensions (I the conjugacy class of order 2 elements, odd prime p)
(iv) almost all degree 4 A4-extensions (I the two conjugacy classes of order 3 elements).

Furthermore, Theorem 7.2 shows that for every n ≥ 2, almost all degree n Sn-extensions of Q with
square-free discriminants satisfy (7.3) for all ℓ ≥ 1, where this result is

(v) unconditional if n = 2, 3, 4
(vi) if n = 5, conditional on the strong Artin conjecture
(vii) if n ≥ 6, conditional on the strong Artin conjecture and Dn(Sn, ̟n) for some ̟n < 1/2 +

1/n.

Finally, Theorem 7.2 shows (among other results for simple groups) that (7.3) holds

(vii) for every n ≥ 5, almost all degree n An-extensions of Q satisfy (7.3) for all ℓ ≥ 1, conditional
on the strong Artin conjecture.

Remark 7.3. In fact, our proof of Theorem 7.2 works as well if we replace any of our families of
fields with the family of their Galois closures.

7.1. Previous results toward Conjecture 7.1. To situate our results, we briefly review previous
results in the literature toward Conjecture 7.1 in terms of a property we now define.

Property 7.4 (Cn,ℓ(∆)). Given integers n, ℓ ≥ 1 and a fixed real number ∆ ≥ 0, we say that
property Cn,ℓ(∆) holds if it is known that for every ε > 0 there is a constant C∆,n,ℓ,ε such that for
all fields K/Q of degree n,

|ClK [ℓ]| ≤ C∆,n,ℓ,εD
∆+ε
K .
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Thus in particular, (7.2) shows that Cn,ℓ(1/2) is trivially true for all n, ℓ ≥ 1. The strongest
type of result holds for all fields of a fixed degree. In this vein, Gauss [Gau01] genus theory shows
C2,2(0) holds. This is the only case in which Conjecture 7.1 is known to hold, for a certain prime
ℓ, for all fields of a fixed degree. The only other known pointwise bounds for prime ℓ are: n = 2
and ℓ = 3, where initial progress occurred in [HV06], [Pie05], [Pie06], and [EV07] holds the record
C2,3(1/3); C3,3(1/3) due to [EV07]; C4,3(1/2 − δ) due to [EV07] where δ = 1/168 if K is non-
D4; Cn,2(0.2784...) for n = 3, 4 and Cn,2(1/2 − 1/2n) where n ≥ 5, due to [BST+17]. Also in
[EV07], there is a proof of pointwise bounds for ℓ-torsion for certain families of fields of arbitrarily
high degree, where these fields always contain ζℓ + ζ−1

ℓ . Conditional on the Birch–Swinnerton-Dyer
conjecture and GRH, Wong [Won99b] has observed that C2,3(1/4) holds.

For n = 2, 3, 4, 5, bounds for ℓ-torsion at least as strong as (7.3) were already known to hold,
unconditionally, for almost all degree n Sn-fields (without any ramification condition). For imag-
inary quadratic fields, Soundararajan [Sou00] showed that for each prime ℓ, the nontrivial bound

|ClK [ℓ]| ≪ℓ,ε D
1/2−1/2ℓ+ε
K holds for all but a possible family of exceptional fields of density zero.

Furthermore, Heath-Brown and the first author [HBP17] obtained for each prime ℓ ≥ 5 the uncon-

ditional bound |ClK [ℓ]| ≪ℓ,ε D
1/2−3/(2ℓ+2)+ε
K for all but a possible density zero family of imaginary

quadratic fields; their methods also yield upper bounds for higher moments of ℓ-torsion for all ℓ ≥ 3.
For each degree n ≤ 5, Ellenberg and the first and third authors [EPW17] proved the bound (7.3)
holds unconditionally for all but a possible density zero exceptional family of degree n extensions of
Q. (In the case n = 4, this work had the additional requirement that the fields be non-D4 quartic
fields and ℓ ≥ 8 and for n = 5, the requirement ℓ ≥ 25.) In both [HBP17] and [EPW17], the
upper bound for the possible exceptional family becomes weaker as ℓ increases (e.g. in [EPW17]

the number of exceptional fields is at most On,ε(X
1−1/(2ℓ(n−1))+ε) for ℓ large); this is noticeably

different from the bound for the exceptional set in Theorem 7.2.

Remark 7.5. At the time of posting, the authors learned of the works of Frei and Widmer [FW17]
and Widmer [Wid17]. Frei and Widmer obtain the upper bound (7.3) for ℓ-torsion for almost all
totally ramified cyclic extensions of Q (see our case (ii) above), albeit with a larger upper bound for
the possible exceptional family of fields, analogous to that in [EPW17]. Frei and Widmer use the
sieve method of Ellenberg and the first and third authors [EPW17] combined with new counts for
the number of totally ramified cyclic extensions with a finite number of specified local conditions.
Notably, their method also works for totally ramified cyclic extensions of any fixed number field F .
Moreover they remark, building on [Wid17], on the possibility of sharpening to 1/2− 1/(ℓ(n+ 1))
the exponent in (7.4) for almost all fields in a family Zn(Q, G;X) that is sufficiently dense (e.g.
|Zn(Q, G;X)| ≫ X). Of the families we consider, the latter strategy could conceivably similarly
improve the exponent in (7.3) only for the family ZI

n (Q, Sn;X), conditional on such a lower bound
being known for the family. We thank Frei and Widmer for sharing their preprint [FW17].

7.2. Proof of Theorem 7.2. Theorem 7.2 is an immediate consequence of Corollary 3.16. We
suppose that a family ZI

n (Q, G;X) and a sufficiently small ε0 > 0 have been fixed. We let 0 <
δ ≤ 1/4 be defined as in (3.6). We set C = {id}, in which case we are counting primes that split

completely in K̃ and hence in K. For any integer ℓ ≥ 1, we take τ > τ∗ sufficiently close and a
sufficiently small ε1 > 0 and we set σ = 1/(2ℓ(n − 1)) − ε1. Then for every X ≥ 1, for any field
K ∈ ZI

n (Q, G;X) with DK ≥ D6 that is not one of the at most D3X
τ+ε0 δ-exceptional fields

in ZI
n (Q, G;X), there are ≫G,n,ℓ,ε1 D

1/2(ℓ(n−1))−ε1
K / logDK primes p ≤ D

1/2(ℓ(n−1))−ε1
K that split

completely in K. Thus for such a K that is not δ-exceptional, by Theorem H,

(7.5) |ClK [ℓ]| ≪n,G,ℓ,ε1,ε2 D
1
2
− 1

2ℓ(n−1)
−ε1+ε2

K ,

for all sufficiently small ε1, ε2 > 0. Now we count all those fields that are δ-exceptional and all
those fields in ZI

n (Q, G;X) that have discriminant smaller than D6, of which there are at most
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≪n,G,I Dd
6 , by the definition of the parameter d. Defining D8 = D8(n, ℓ,G,I , d, τ, ε0) to be an

appropriate maximum of D3 and the above multiple of Dd
6 , we see that for every X ≥ 1 we may say

that (7.5) holds for each field in ZI
n (Q, G;X), apart from at most D8X

τ+ε0 fields. This completes
the proof of Theorem 7.2.

7.2.1. Averages of ℓ-torsion. The results of Theorem 7.2 can alternatively be stated in terms of
averages of ℓ-torsion over a fixed family of degree n extensions. If |ZI

n (Q, G;X)| ≪n,G,I Xd,
Theorem 7.2 shows that for all X ≥ 1, ℓ ≥ 1, τ > τ∗ sufficiently close, ε0 sufficiently small,

∑

K∈ZI
n (Q,G;X)

|ClK [ℓ]| ≪ X
d+ 1

2
− 1

2ℓ(n−1)
+ε

+Xτ+ 1
2
+ε0+ε,

for every ε > 0, with an implied constant depending on n, ℓ,G,I , d, τ, ε0, ε. For τ∗ < τ < d, for ℓ
sufficiently large we will obtain τ ≤ d− 1/(2ℓ(n− 1)), so that

∑

K∈ZI
n (Q,G;X)

|ClK [ℓ]| ≪ X
d+ 1

2
− 1

2ℓ(n−1)
+ε

for every ε > 0. The “trivial bound” would be ≪n,G,I ,ε X
d+ 1

2
+ε for all ε > 0.

8. Number fields with small generators

For our second application, we turn to a question of whether all number fields have a “small”
generator. Given a number field K/Q of degree n (inside our fixed algebraic closure Q), one can
ask for the element α ∈ K of smallest height H(α) such that K = Q(α); here H(α) denotes the
absolute multiplicative Weil height. Precisely, for an element α ∈ K,

H(α) =
∏

v

max{1, |α|v}
dv
n ,

in which v runs over the places of K and for each place v, |·|v is the unique representative that either
extends the Archimedean absolute value on Q or a p-adic absolute value on Q, while dv = [Kv : Qv]
denotes the local degree at v. (By Northcott’s theorem [Nor49, Thm.1], there are finitely many
elements in K with height at most any fixed real number, and thus a generator of smallest height
does exist.)

In terms of lower bounds, it is known by Silverman [Sil84, Thm. 1] that for each n ≥ 2, for all
fields K/Q of degree n, for any element α ∈ K such that K = Q(α),

(8.1) H(α) ≥ B1D
1

2n(n−1)

K ,

where we may take B1 = B1(n) = n
− 1

2(n−1) . In fact, this lower bound led to the numerology of the
savings in the exponent in Theorem I. (See [EV07, Lemma 2.2], with the lower bound now further
explored in the recent preprints [FW17, Wid17], where it is shown that improving on (8.1) for a
sufficiently dense class of fields can improve on Theorem I in an average sense.)

On the other hand, regarding upper bounds, Ruppert asked two questions [Rup98] of increasing
strength:

Question 8.1. Does there exist for each n ≥ 2:

(1) a positive constant B2 = B2(n) such that for every field K/Q of degree n there exists an

element α ∈ K such that K = Q(α) and H(α) ≤ B2D
1
2n
K ?

(2) a positive constant B3 = B3(n) such that for every field K/Q of degree n there exists an

element α ∈ K such that K = Q(α) and H(α) ≤ B3D
1

2n(n−1)

K ?
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(Ruppert posed these questions in terms of the naive height, but up to constants this is equivalent
to the form given here, for which we cite the presentations of [VW13, VW15].) The second question is
effectively asking whether the exponent in Silverman’s lower bound (8.1) is sharp. For degree n = 2
the two questions are equivalent, and Ruppert [Rup98, Prop. 2] answered them in the affirmative.
Moreover, [Rup98, Prop. 3] verified (1) for totally real fields K of prime degree. Recently, Vaaler
and Widmer [VW13, Thm. 1.2] verified (1) for all number fields with at least one real embedding,
with a constant B2(n) ≤ 1. In contrast, they provided in [VW15], for each composite degree n,
an infinite family of fields violating (2). Furthermore, in [Wid17, §3 and §4], Widmer shows that
for n ≥ 4, the number of degree n fields satisfying the bound in case (2) of Question 8.1 is o(X),
so that the answer to this case must be no. (For clarity, note that Widmer works in terms of the
relative Weil height.)

This leaves the question of whether case (1) is true. As an application of our effective Chebotarev
density theorem, we show that within appropriate families of fields, (1) is true for “almost all” fields.

Theorem 8.2. Let ZI
n (Q, G) be fixed to be one of the families of fields considered in Theorems

3.3, 3.9, 3.11, 3.13 and 3.14, and correspondingly assume the hypotheses (if any) of the relevant
theorem. Let the parameters τ∗ < β ≤ d be those proved to exist for that family in (3.5). For every
τ > τ∗ sufficiently close and every ε0 > 0 sufficiently small, there exists a constant D9 such that for
every X ≥ 1, aside from at most D9X

τ+ε0 exceptions, every field K ∈ ZI
n (Q, G;X) contains an

element α with K = Q(α) such that H(α) ≤ 2D
1
2n
K .

The proof is a simple adaptation of an observation of Vaaler and Widmer in [VW13, Thm. 1.3],

which relies on finding primes that split completely in K that are of size around D
1/2
K . They showed

that the bound in Question 8.1 case (1) holds whenever ζK̃ satisfies GRH, via an application of
Theorem A. Now, independent of GRH, for every field that is not δ-exceptional, with δ determined
by (3.6), we apply part (2) of Corollary 3.16 with the choices C = {1} and σ = 1/2, in place of
[VW13, Lemma 5.1]. Then [VW13, Thm. 4.1] shows that for each field K to which the conclusion

(3.8) applies, there exists an element α ∈ K with K = Q(α) and H(α) ≤ p1/n ≤ 2D
1/2n
K . We

use Theorem 3.3 to bound the number of δ-exceptional fields, with δ determined by (3.6). We
use the trivial upper bound |ZI

n (Q, G;D7)| ≪n,G,I Dd
7 for the number of fields in the family with

discriminant smaller than the threshold D7 required to apply part (2) of Corollary 3.16. Then upon
setting D9 = D9(n,G,I , d, τ, ε0) to be an appropriate maximum of D3 from Theorem 3.3 and the
above multiple of Dd

7 , we may then conclude Theorem 8.2 holds.
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