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This paper shows an accurate speech detection algorithm for improving the performance of speech
recognition systems working in noisy environments. The proposed method is based on a hard
decision clustering approach where a set of prototypes is used to characterize the noisy channel.
Detecting the presence of speech is enabled by a decision rule formulated in terms of an averaged
distance between the observation vector and a cluster-based noise model. The algorithm benefits
from using contextual information, a strategy that considers not only a single speech frame but also
a neighborhood of data in order to smooth the decision function and improve speech detection
robustness. The proposed scheme exhibits reduced computational cost making it adequate for real
time applications, i.e., automated speech recognition systems. An exhaustive analysis is conducted
on the AURORA 2 and AURORA 3 databases in order to assess the performance of the algorithm
and to compare it to existing standard voice activity detection �VAD� methods. The results show
significant improvements in detection accuracy and speech recognition rate over standard VADs
such as ITU-T G.729, ETSI GSM AMR, and ETSI AFE for distributed speech recognition and a
representative set of recently reported VAD algorithms. © 2006 Acoustical Society of America.
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I. INTRODUCTION

The emerging wireless communication systems require
increasing levels of performance and speech processing sys-
tems working in noise adverse environments. These systems
often benefit from using voice activity detectors �VADs�
which are frequently used in such application scenarios for
different purposes. Speech/nonspeech detection is an un-
solved problem in speech processing and affects numerous
applications including robust speech recognition,1,2 discon-
tinuous transmission,3,4 estimation and detection of speech
signals,5,6 real-time speech transmission on the Internet7 or
combined noise reduction and echo cancelation schemes in
the context of telephony.8 The speech/nonspeech classifica-
tion task is not as trivial as it appears, and most of the VAD
algorithms fail when the level of background noise increases.
During the last decade, numerous researchers have devel-
oped different strategies for detecting speech on a noisy
signal9–13 and have evaluated the influence of the VAD ef-
fectiveness on the performance of speech processing
systems.14 Most of them have focused on the development of
robust algorithms with special attention on the derivation and
study of noise robust features and decision rules.12,15–17 The
different approaches include those based on energy
thresholds,15 pitch detection,18 spectrum analysis,17 zero-
crossing rate,4 periodicity measures19 or combinations of dif-
ferent features.3,4,20
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The speech/pause discrimination may be described as an
unsupervised learning problem. Clustering is an appropriate
solution for this case where the data set is divided into
groups which are related “in some sense.” Despite the sim-
plicity of clustering algorithms, there is an increasing interest
in the use of clustering methods in pattern recognition,21 im-
age processing22 and information retrieval.23,24 Clustering
has a rich history in other disciplines25,26 such as machine
learning, biology, psychiatry, psychology, archaeology, geol-
ogy, geography, and marketing. Cluster analysis, also called
data segmentation has a variety of goals. All of these are
related to grouping or segmenting a collection of objects into
subsets or “clusters” such that those within each cluster are
more closely related to one another than objects assigned to
different clusters. Cluster analysis is also used to form de-
scriptive statistics to ascertain whether or not the data con-
sists of a set of distinct subgroups, each group representing
objects with substantially different properties.

The paper is organized as follows. Section II introduces
the necessary background information on clustering analysis.
Section III shows the feature extraction process and a de-
scription of the proposed long term information C-means
�LTCM� VAD algorithm is given in Sec. IV. Section V dis-
cusses some remarks about the proposed method. A complete
experimental evaluation is conducted in Sec. VI in order to
compare the proposed method with a representative set of
VAD methods and to assess its performance for robust
speech recognition applications. Finally, we state some con-

clusions and acknowledgments in the last part of the paper.
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II. HARD PARTITIONAL CLUSTERING BASIS

Partitional clustering algorithms partition data into cer-
tain number of clusters, in such a way that, patterns in the
same cluster should be “similar” to each other unlike patterns
in different clusters. Given a set of input patterns X
= �x1 , . . . ,x j , . . . ,xN�, where x j = �xj1 , . . . ,xji , . . . ,xjK��RK

and each measure xjk is said to be a feature, hard partitional
clustering attempts to seek a C-partition of X , P
= �P1 , . . . , PC� ,C�N, such that

�i� Pi� � , i=1, . . . ,C;
�ii� �i=1

C Pi=X;
�iii� Pi� Pi�

= � ; i , i�=1, . . . ,C and i� i�.

The “similarity” measure is established in terms of a
criterion function. The sum of squares error function is one
of the most widely used criteria and is defined as

J��,M� = �
i=1

C

�
j=1

N

�ij � x j − mi�
2, �1�

where �=�ij is a partition matrix,

�ij = 	1 if x j � Pi

0 otherwise



with �i=1
C �ij =1, " j ,M= �m1 , . . . ,mC� is the cluster proto-

type or centroid �means� matrix with mi=1/Ni� j=1
N �ijx j, the

sample mean for the ith cluster and Ni the number of objects
in the ith cluster. The optimal partition resulting of the mini-
mization of the latter criterion can be found by enumerating
all possibilities. It is unfeasible due to costly computation
and heuristic algorithms have been developed for this opti-
mization instead.

Hard C-means clustering is the best-known heuristic
squared error-based clustering algorithm.27 The number of
cluster centers �prototypes� C is a priori known and the
C-means iteratively moves the centers to minimize the total
cluster variance. Given an initial set of centers the hard
C-means algorithm alternates two steps:28

�i� for each cluster we identify the subset of training
points �its cluster� that is closer to it than any other
center;

�ii� the means of each feature for the data points in
each cluster are computed, and this mean vector
becomes the new center for that cluster.

In Table I we show a more detailed description of the

TABLE I. Hard C-means pseudocode.

�1�. Initialize a C-partition randomly or based on some prior knowledge.
Calculate the cluster prototype matrix M= �m1 , . . . ,mC�
�2� Assign each object in the data set to the nearest cluster Pi

a.
�3�. Recalculate the cluster prototype matrix based on the current partition
�4�. Repeat steps �2�–�3� until there is no change for each cluster.

aThat is, x j � Piif�x j −mi � � �x j −mi�� for j=1, . . . ,N , i� i�, and i�
=1, . . . ,C
C-means algorithm.
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III. FEATURE EXTRACTION INCLUDING CONTEXTUAL
INFORMATION

Let x�n� be a discrete time signal. Denote by yn� a frame
containing the samples

yn� = �x�i + n� · D��, i = 0, . . . ,L − 1, n = i + n� · D ,

�2�

where D is the window shift, L is the number of samples in
each frame and n� selects a certain data window. Consider
the set of 2 ·m+1 frames �yl−m , . . . ,yl , . . . ,yl+m� centered on
frame yl, and denote by Y�s ,n��, n�= l−m , . . . , l , . . . , l+m its
discrete Fourier transform �DFT�, respectively,

Yn���s� � Y�s,n�� = �
i=0

NFFT−1

x�i + n� · D� · exp�− j · i · �s� ,

�3�

where �s=2�·s /NFFT, 0�s�NFFT−1, NFFT is DFT resolu-
tion �if NFFT�L then the DFT is padded with zeros� and j
denotes the imaginary unit. The averaged energies for
each n�th frame, E�k ,n��, in K subbands �k=1,2 , . . . ,K�,
are computed by means of

E�k,n�� = 	 2K

NFFT
�
s=sk

sk+1−1

�Y�s,n���2

sk = �NFFT

2K
�k − 1��, k = 1,2, . . . ,K , �4�

where an equally spaced subband assignment is used and �·�
denotes the “floor” function. Hence, the signal energy is av-
eraged over K subbands obtaining a suitable representation
of the input signal for VAD,29 the observation vector at each
frame n�, defined as

E�n�� = �E�1,n��, . . . ,E�K,n���T � RK. �5�

The VAD decision rule is formulated over a sliding win-
dow consisting of 2m+ l observation �feature� vectors around
the frame for which the decision is being made �l�, as we will
show in the following sections. This strategy, known as
“long term information,”30 provides very good results using
several approaches for VAD, however it imposes an m-frame
delay on the algorithm that, for several applications includ-
ing robust speech recognition, is not a serious implementa-
tion obstacle.

In the following section we show the way we apply
C-means to modeling the noise subspace and to find a soft
decision rule for VAD.

IV. HARD C-MEANS FOR VAD

In the LTCM VAD algorithm, the clustering method de-
scribed in Sec. II is applied to a set of initial pause frames in
order to characterize the noise subspace, that is, the generic
feature vector described in Sec. II is defined in terms of
energy observation vectors as we show in the following:
each observation vector in Eq. �5� is uniquely labeled, by the

integer j� �1, . . . ,N�, and uniquely assigned �hard decision-
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based clustering� to a prespecified number of prototypes C
�N, labeled by an integer i� �1, . . . ,C�. Thus, we are select-
ing the generic feature vector as x j �E j.

The similarity measure to be minimized in terms of en-
ergy vectors is based on the squared Euclidean distance:

d�E j,E j�� = �
k=1

K

�E�k, j� − E�k, j���2 = �E j − E j��
2 �6�

and can be equivalently defined as28

J�C� = 1
2�

i=1

C

�
C�j�=i

�
C�j��=i

�E j − E j��
2 = 1

2�
i=1

C

�
C�j�=i

�E j − Ei�2,

�7�

where C�j�= i denotes a many-to-one mapping, that assigns
the jth observation to the ith prototype and

Ēi = �Ē�1,i�, . . . ,Ē�K,i��T = mean�E j� ,

�8�
" j, C�j� = i, i = 1, . . . ,C

is the mean vector associated with the ith prototype �the
sample mean for the ith prototype mi defined in Sec. II�.
Thus, the loss function is minimized by assigning N obser-
vations to C prototypes in such a way that within each pro-
totype the average dissimilarity of the observations is mini-
mized. Once convergence is reached, N K-dimensional pause
frames are efficiently modeled by C K-dimensional noise

prototype vectors denoted by Ēi
opt , i=l , . . . ,C. We call this

set of clusters C-partition or noise prototypes since, in this
work, the word cluster is assigned to different classes of
labeled data, that is K is fixed to 2, i.e., we define two

clusters: “noise” and “speech” and the cluster “noise” con-

472 J. Acoust. Soc. Am., Vol. 120, No. 1, July 2006
sists of C prototypes. In Fig. 1 we observed how the complex
nature of noise can be simplified �smoothed� using a this
clustering approach. The clustering approach speeds the de-
cision function in a significant way since the dimension of
feature vectors is reduced substantially �N→C�.

Soft decision function for VAD

In order to classify the second data class �energy vectors
of speech frames� we use a basic sequential algorithm
scheme, related to Kohonen’s leaning vector quantization
�LVQ�,31 using a multiple observation �MO� window cen-
tered at frame l, as shown in Sec. II. For this purpose let us
consider the same dissimilarity measure, a threshold of dis-
similarity � and the maximum clusters allowed K=2.

Let Ê�l� be the decision feature vector at frame l that is
defined on the MO window as follows:

Ê�l� = max�E�j��, j = l − m, . . . ,l + m . �9�

The selection of this envelope feature vector, describing not
only a single instantaneous frame but also a �2m+1� entire
neighborhood, is useful as it detects the presence of voice
beforehand �pause-speech transition� and holds the detection
flag, smoothing the VAD decision �as a hangover based al-
gorithm in speech-pause transition16,17�, as shown in Fig. 2.

Finally, the presence of the second “cluster” �speech
frame� is detected if the following ratio holds:

��l� = log	1/K�
k=1

K
Ê�k,l�

�Ēi�

 � � , �10�

where �Ēi� =1/C�i=1
C Ēi=1/C�i=1

C � j=1
N �ijE j is the averaged

FIG. 1. �a� 20 noise log-energy
frames, computed using NFFT=256
and averaged over 50 subbands. �b�
Clustering approach to the latter set of
frames using hard decision C-means
�C=4 prototypes�.
noise prototype center and � is the decision threshold.
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In order to adapt the operation of the proposed VAD to
nonstationary and noise environments, the set of noise pro-
totypes are updated according to the VAD decision during
nonspeech periods �not satisfying Eq. �10�� in a competitive
manner �only the closer noise prototype is moved towards
the current feature vector�:

Ēi� = argmin��Ēi − Ê�l��2� i = 1, . . . ,C

ÞĒi�
new = � · Ēi�

old + �1 − �� · Ê�l� , �11�

where � is a normalized constant. Its value is close to one for
a soft decision function �i.e., we selected in simulation �
=0.99�, that is, uncorrected classified speech frames contrib-
uting to the false alarm rate will not affect the noise space
model significantly.

V. SOME REMARKS ON THE LTCM VAD ALGORITHM

The main advantage of the proposed algorithm is its
ability to deal with on line applications such as DSR sys-
tems. The above-mentioned scheme is optimum in computa-
tional cost. First, we apply a batch hard C-means to a set of
initial pause frames once, obtaining a fair description of the
noise subspace and then, using Eq. �11�, we move the nearest
prototype to the previously detected as silence current frame.
Any other on-line approach would be possible but it would
be necessary to update the entire set of prototypes for each
detected pause frame. In addition, the proposed VAD algo-
rithm belongs to the class of VADs which model noise and
apply a distance criterion to detect the presence of speech,
i.e., Ref. 17.

A. Selection of an adaptive threshold

In speech recognition experiments �Sec. VI�, the selec-
tion of the threshold is based on the results obtained in de-
tection experiments �working points in receiving operating
curves �ROC� for all conditions�. The working point �se-

FIG. 2. Decision function in Eq. �10� for two different criteria: energy
envelope �Eq. �9�� and energy average.
lected threshold� should correspond with the best tradeoff
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between the hit rate and false alarm rate, then the threshold is
adaptively chosen depending on the noisy condition.

The VAD makes the speech/nonspeech detection by
comparing the unbiased LTCM VAD decision to an adaptive
threshold,32 that is the detection threshold is adapted to the
observed noise energy E. It is assumed that the system will
work under different noisy conditions characterized by the
energy of the background noise. Optimal thresholds �work-
ing points� �0 and �1 can be determined for the system work-
ing in the cleanest and noisiest conditions. These thresholds
define a linear VAD calibration curve that is used during the
initialization period for selecting an adequate threshold as a
function of the noise energy E:

� = 
�0, E � E0,

�0 − �1

E0 − E1
+ �0 −

�0 − �1

1 − E1/E2
, E0 � E � E1,

�1, E 	 E1,

�12�

where E0 and E1 are the energies of the background noise for
the cleanest and noisiest conditions that can be determined
examining the speech databases being used. A high speech/
nonspeech discrimination is ensured with this model since
silence detection is improved at high and medium SNR lev-
els while maintaining high precision detecting speech peri-
ods under high noise conditions.

The algorithm described so far is presented as
pseudocode in the following:

�1� Initialize noise model:
�a� Select N feature vectors �E j�, j=1, . . . ,N.
�b� Compute threshold �.

�2� Apply C-means clustering to feature vectors, extracting
C noise prototype centers

�Ēi�, i = 1, . . . ,C

�3� for l
init to end
�a� Compute Ê�l� over the MO window
�b� if ��l��� �Eq. �10�� than VAD 
 1 else VAD 
 0

and update noise prototype centers �Ēi�, i=1, . . . ,C �Eq.
�11��.

B. Decision variable distributions

In this section we study the distributions of the decision
variable as a function of the long-term window length �m� in
order to clarify the motivations for the algorithm proposed. A
hand-labeled version of the Spanish SpeechDat-Car �SDC�
�Ref. 33� database was used in the analysis. This database
contains recordings from close-talking and distant micro-
phones at different driving conditions: �a� stopped car, motor
running, �b� town traffic, low speed, rough road, and �c� high
speed, good road. The most unfavorable noise environment
�i.e., high speed, good road� was selected and recordings
from the distant microphone were considered. Thus, the
m-order divergence measure between speech and silences
was measured during speech and nonspeech periods, and the
histogram and probability distributions were built. The

8 kHz input signal was decomposed into overlapping frames
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with a 10 ms window shift. Figure 3 shows the distributions
of speech and noise for m=0,2 ,5, and 8. It is derived from
this that speech and noise distributions are better separated
when increasing the order of the long-term window. The
noise is highly confined and exhibits a reduced variance, thus
leading to high nonspeech hit rates. This fact can be corrobo-
rated by calculating the classification error of speech and
noise for an optimal Bayes classifier. Figure 4 shows the
misclassification errors as a function of the window length
m. The speech classification error is approximately divided
by three from 32% to 10% when the order of the VAD is
increased from 0 to 8 frames. This is motivated by the sepa-
ration of the distributions that takes place when m is in-
FIG. 4. Probability of error as a function of m.
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creased as shown in Fig. 3. On the other hand, the increased
speech detection robustness is only prejudiced by a moderate
increase in the speech detection error. According to Fig. 4,
the optimal value of the order of the VAD would be m=8.
This analysis corroborates the fact that using long-term
speech features32 results beneficial for VAD since they re-
duce misclassification errors substantially.

VI. EXPERIMENTAL RESULTS

Several experiments are commonly carried out in order
to assess the performance of VAD algorithms. The analysis is
normally focused on the determination of the error probabili-
ties in different noise scenarios and SNR values,17,34 and the
influence of the VAD decision on speech processing
systems.1,14 The experimental framework and the objective
performance tests conducted to evaluate the proposed algo-
rithm are described in this section.

A VAD achieves silence compression in modern mobile
telecommunication systems reducing the average bit rate by
using the discontinuous transmission �DTX� mode. The In-
ternational Telecommunication Union �ITU� adopted a toll-
quality speech coding algorithm known as G.729 to work in
combination with a VAD module in DTX mode.4 The ETSI
AMR �Adaptive Multi-Rate� speech coder3 developed by the
Special Mobile Group �SMG� for the GSM system specifies
two options for the VAD to be used within the digital cellular
telecommunications system. In option 1, the signal is passed
through a filterbank and the level of signal in each band is
calculated. A measure of the SNR is used to make the VAD
decision together with the output of a pitch detector, a tone
detector and the correlated complex signal analysis module.

FIG. 3. Speech/nonSpeech distribu-
tions and error probabilities of the op-
timum Bayes classifier for m=0,2 ,5,
and 8.
An enhanced version of the original VAD is the AMR option
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2 VAD which uses parameters of the speech encoder being
more robust against environmental noise than AMR1 and
G.729. Recently, a new standard incorporating noise suppres-
sion methods has been approved by the ETSI for feature
extraction and distributed speech recognition �DSR�. The so-
called advanced front-end �AFE� �Ref. 36� incorporates an
energy-based VAD �WF AFE VAD� for estimating the noise
spectrum in Wiener filtering speech enhancement, and a dif-
ferent VAD for nonspeech frame dropping �FD AFE VAD�.

Recently reported VADs are based on the selection of
discriminative speech features, noise estimation and classifi-
cation methods. Sohn et al. showed a decision rule derived
from the generalized likelihood ratio test by assuming that
the noise statistics are known a priori.12 An interesting ap-
proach is the endpoint detection algorithm proposed by Li,16

which uses optimal FIR filters for edge detection. Other
methods track the power spectrum envelope of the signal17

or use energy thresholds for discriminating between speech
and noise.15

A. Evaluation under different noise environments

First, the proposed VAD was evaluated in terms of the
ability to discriminate between speech and nonspeech in dif-
ferent noise scenarios and at different SNR levels. The AU-
RORA 2 database35 is an adequate database for this analysis
since it is built on the clean Tldigits database that consists of

FIG. 5. Speech hit rates �HR1� of standard VADs as a function of the SNR
for the AURORA 2 database.

FIG. 6. Speech hit rates �HR1� of other VADs as a function of the SNR for

the AURORA 2 database.
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sequences of up to seven connected digits spoken by Ameri-
can English talkers as source speech, and a selection of eight
different real-world noises that have been artificially added
to the speech at SNRs of 20 dB, 15 dB, 10 dB, 5 dB, 0 dB,
and −5 dB. These noisy signals have been recorded at differ-
ent places �suburban train, crowd of people �babble�, car,
exhibition hall, restaurant, street, airport, and train station�,
and were selected to represent the most probable application
scenarios for telecommunication terminals. In the discrimi-
nation analysis, the clean Tldigits database was used to
manually label each utterance as speech or nonspeech on a
frame by frame basis for reference. Detection performance is
then assessed in terms of the speech pause hit-rate �HR0� and
the speech hit-rate �HR1� defined as the fraction of all actual
pause or speech frames that are correctly detected as pause or
speech frames, respectively,

HR1 =
N1,1

N1
ref , HR0 =

N0,0

N0
ref , �13�

where N1
ref and N0

ref are the number of real nonspeech and
speech frames in the whole database and N1,1 and N0,0 are
the number of real speech and nonspeech frames correctly
classified, respectively.

Figures 5–8 provide comparative results of this analysis
and compare the proposed VAD to standardized algorithms
including the ITU-T G.729,4 ETSI AMR,3 and ETSI AFE

FIG. 7. Nonspeech hit rates �HR0� of standard VADs as a function of the
SNR for the AURORA 2 database.

FIG. 8. Nonspeech hit rates �HR0� of other VADs as a function of the SNR

for the AURORA 2 database.
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�Ref. 36� in terms of the nonspeech hit-rate �HR0, Fig. 7�
and speech hit-rate �HR1, Fig. 5� for clean conditions and
SNR levels ranging from 20 to −5 dB. Note that results for
the two VADs defined in the AFE DSR standard36 for esti-
mating the noise spectrum in the Wiener filtering �WF� stage
and nonspeech frame dropping �FD� are provided. The re-
sults shown in these figures are averaged values for the entire
set of noises.

It can be derived from Figures 7 and 5 that �i� ITU-T
G.729 VAD suffers poor speech detection accuracy with the
increasing noise level while nonspeech detection is good in
clean conditions �85%� and poor �20%� in noisy conditions,
�ii� ETSI AMR1 yields an extreme conservative behavior
with high speech detection accuracy for the whole range of
SNR levels but very poor nonspeech detection results at in-
creasing noise levels. Although AMR1 seems to be well
suited for speech detection at unfavorable noise conditions,
its extremely conservative behavior degrades its nonspeech
detection accuracy being HR0 less than 10% below 10 dB,
making it less useful in a practical speech processing system,
�iii� ETSI AMR2 leads to considerable improvements over
G.729 and AMR1 yielding better nonspeech detection accu-
racy while still suffering fast degradation of the speech de-
tection ability at unfavorable noisy conditions, �iv� The VAD
used in the AFE standard for estimating the noise spectrum
in the Wiener filtering stage is based in the full energy band
and yields a poor speech detection performance with a fast
decay of the speech hit rate at low SNR values. On the other
hand, the VAD used in the AFE for frame dropping achieves
a high accuracy in speech detection but moderate results in
nonspeech detection, and �v� LTCM yields the best compro-
mise among the different VADs tested. It obtains a good
behavior in detecting nonspeech periods as well as exhibiting
a slow decay in performance at unfavorable noise conditions
in speech detection �90% at −5 dB�.

Figures 6 and 8 compare the proposed VAD to a repre-
sentative set of recently published VAD method.12,15–17 It is
worthwhile clarifying that the AURORA 2 database consists
of recordings with very short nonspeech periods between
digits and, consequently, it is more important to classify
speech correctly than nonspeech in a speech recognition sys-
tem. This is the reason to define a VAD method with a high
speech hit rate even in very noisy conditions. Table II sum-
marizes the advantages provided by LTCM VAD over the

TABLE II. Average speech/nonpeech hit rates for SNRs between clean co
methods.

G.729 AMR1 AMR

HR0 �%� 31.77 31.31 42.7
HR1�%� 93.00 98.18 93.7

Sohn Wo

HR0 �%� 43.66 55.4
HR1 �%� 94.46 88.4
different VAD methods in terms of the average speech/
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nonspeech hit rates �over the entire range of SNR values�.
Thus, the proposed method with a 97.57% mean HR1 and a
47.81% mean HR0 yields the best trade-off in speech/
nonspeech detection.

B. Receiver operating characteristic „ROC… curves

An additional test was conducted to compare speech de-
tection performance by means of the ROC curves, a fre-
quently used methodology in communications based on the
hit and error detection probabilities,17,29,37 that completely
describes the VAD error rate. The AURORA subset of the
Spanish SDC database33 was used in this analysis. This da-
tabase contains 4914 recordings using close-talking and dis-
tant microphones from more than 160 speakers. As in the
whole SDC database, the files are categorized into three
noisy conditions: quiet, low noise, and high noise conditions,
which represent different driving conditions and average
SNR values of 12 dB, 9 dB, and 5 dB. Thus, recordings
from the close-talking microphone are used in the analysis to
label speech/pause frames for reference, while recordings
from the distant microphone are used for the evaluation of
different VADs in terms of their ROC curves. The speech
pause hit rate �HR0� and the false alarm rate �FAR0=100
-HR1� were determined in each noise condition for the pro-
posed VAD and the G.729, AMR1, AMR2, and AFE VADs,
which were used as a reference. For the calculation of the
false-alarm rate as well as the hit rate, the “real” speech
frames and “real” speech pauses were determined using the
hand-labeled database on the close-talking microphone.

The sensitivity of the proposed method to the number of
clusters used to model the noise space was studied. It was
found experimentally that the behavior of the algorithm is
almost independent of C, using a number of subbands K
=10. Figure 9 shows that the accuracy of the algorithm
�noise detection rate versus false alarm rate� in speech-pause
discrimination is not affected by the number of prototypes
selected as long as C	2, thus the benefits of the clustering
approach are evident. Note that the objective of the VAD is
to work as close as possible to the upper left corner in this
figure where speech and silence is classified with no errors.
The effect of the number of subbands used in the algorithm

ns and −5 dB. Comparison to �a� standardized VADs and �b� other VAD

�a�
AFE �WF� AFE �FD� LTCM

57.68 28.74 47.81
88.72 97.70 97.57

�b�
Li Marzinzik LTCM

57.03 52.69 47.81
83.65 93.04 97.57
nditio

2

7
6

o

0
1

is plotted in Fig. 10. The use of a complete energy average
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�K=1� or raw data �K=100� reduces the effectiveness of the
clustering procedure making its accuracy equivalent to other
proposed VADs.

Figure 11 shows the speech pause hit rate �HR0� as a
function of the false alarm rate �FAR0=100-HR1� of the
proposed LTCM VAD for different values of the decision
threshold and different values of the number of observations
m. It is shown how increasing the number of observations
�m� leads to better speech/nonspeech discrimination with a
shift-up and to the left of the ROC curve in the ROC space.
This enables the VAD to work closer to the “ideal” working
point �HR0=100% ,FAR0=0% � where both speech and
nonspeech are classified ideally with no errors. These results
are consistent with our preliminary experiments and the re-
sults shown in Figs. 3 and 4 that expected a minimum error
rate for m close to eight frames.

Figure 12 shows the ROC curves of the proposed VAD
and other reference VAD algorithms12,15–17 for recordings
from the distant microphone in high noisy conditions. The
working points of the ITU-T G.729, ETSI AMR, and ETSI
AFE VADs are also included. The results show improve-
ments in detection accuracy over standardized VADs and
over a representative set of VAD algorithms.12,15–17 Among
all the VAD examined, our VAD yields the lowest false
alarm rate for a fixed nonspeech hit rate and also, the highest

FIG. 9. ROC curves in high noisy conditions for different number of noise
prototypes. The DFT was computed with NFFT=256, K=10 log-energy sub-
bands were used to build features vectors and the MO-window contained
2·m+1 frames �m=10�.

FIG. 10. ROC curves in high noisy conditions for different number of

subbands. NFFT=256; C=10 and m=10.
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nonspeech hit rate for a given false alarm rate. The benefits
are especially important over ITU-T G.729,4 which is used
along with a speech codec for discontinuous transmission,
and over the16 algorithm, that is based on an optimum linear
filter for edge detection. The proposed VAD also improves
Marzinzik17 VAD that tracks the power spectral envelopes,
and the Sohn12 VAD, that formulates the decision rule by
means of a statistical likelihood ratio test �LRT� defined on
the power spectrum of the noisy signal.

It is worthwhile mentioning that the experiments de-
scribed above yield a first measure of the performance of the
VAD. Other measures of VAD performance that have been
reported are the clipping errors.38 These measures provide
valuable information about the performance of the VAD and
can be used for optimizing its operation. Our analysis does
not distinguish between the frames that are being classified
and assesses the hit rates and false alarm rates for a first
performance evaluation of the proposed VAD. On the other
hand, the speech recognition experiments conducted later on
the AURORA databases will be a direct measure of the qual-
ity of the VAD and the application it was designed for. Clip-
ping errors are evaluated indirectly by the speech recognition
system since there is a high probability of a deletion error
occurring when part of the word is lost after frame dropping.

FIG. 11. Selection of the number of m �high, high speed, good road, 5 dB
average SNR, K=32, C=2�.

FIG. 12. ROC curves for comparison to standardized and other VAD meth-

ods �high, high speed, good road, 5 dB average SNR, K=32, C=2�.
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C. Assessment of the VAD on an ASR system

Although the discrimination analysis or the ROC analy-
sis presented in the preceding section are effective to evalu-
ate a given speech/nonspeech discrimination algorithm, the
influence of the VAD in a speech recognition system was
also studied. Many authors claim that VADs are well com-
pared by evaluating speech recognition performance15 since
nonefficient speech/nonspeech discrimination is an important
performance degradation source for speech recognition sys-
tems working in noisy environments.1 There are two clear
motivations for that: �i� noise parameters such as its spec-
trum are updated during nonspeech periods being the speech
enhancement system strongly influenced by the quality of the
noise estimation, and �ii� frame dropping, a frequently used
technique in speech recognition to reduce the number of in-
sertion errors caused by the acoustic noise, is based on the
VAD decision and speech misclassification errors lead to loss
of speech, thus causing irrecoverable deletion errors.

The reference framework �Base� is the distributed
speech recognition �DSR� front-end39 proposed by the ETSI
STQ working group for the evaluation of noise robust DSR
feature extraction algorithms. The recognition system is
based on the HTK �Hidden Markov Model Toolkit� software
package.40 The task consists in recognizing connected digits
which are modeled as whole word HMMs �Hidden Markov
Models� with the following parameters: 16 states per word,
simple left-to-right models, mixture of 3 Gaussians per state
and only the variances of all acoustic coefficients �no full
covariance matrix�, while speech pause models consist of
three states with a mixture of six Gaussians per state. The
39-parameter feature vector consists of 12 cepstral coeffi-

TABLE III. Average word accuracy for the AUR0RA 2 database. �a� Clean

Base � WF

Base G.729 AMR1 AMR2 AFE

Clean 99.03 98.81 98.80 98.81 98.77
20 dB 94.19 87.70 97.09 97.23 97.68
15 dB 85.41 75.23 92.05 94.61 95.19
10 dB 66.19 59.01 74.24 87.50 87.29
5 dB 39.28 40.30 44.29 71.01 66.05
0 dB 17.38 23.43 23.82 41.28 30.31
−5 dB 8.65 13.05 12.09 13.65 4.97
Average 60.49 57.13 66.30 78.33 75.30

Base � WF

Base G.729 AMRl AMR2 AFE

Clean 98.48 98.16 98.30 98.51 97.86
20 dB 97.39 93.96 97.04 97.86 97.60
15 dB 96.34 89.51 95.18 96.97 96.56
10 dB 93.88 81.69 91.90 94.43 93.98
5 dB 85.70 68.44 80.77 87.27 86.41
0 dB 59.02 42.58 53.29 65.45 64.63
−5 dB 24.47 18.54 23.47 30.31 28.78
Average 86.47 75.24 83.64 88.40 87.84
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cients �without the zero-order cepstral coefficient�, the loga-
rithmic frame energy plus the corresponding derivatives ���
and acceleration ���� coefficients.

Two training modes are defined for the experiments con-
ducted on the AURORA 2 database: �i� training on clean data
only �Clean Training�, and �ii� training on clean and noisy
data �Multi-Condition Training�. For the AURORA 3
SpeechDat-Car databases, the so-called well-matched �WM�,
medium-mismatch �MM� and high-mismatch �HM� condi-
tions are used. AURORA 3 databases contain recordings
from the close-talking and distant microphones. In WM con-
dition, both close-talking and hands-free microphones are
used for training and testing. In MM condition, both training
and testing are performed using the hands-free microphone
recordings. In HM condition, training is done using close-

ing. �b� Multicondition training.

Base � WF � FD

LTCM G.729 AMR1 AMR2 AFE LTCM

98.88 98.41 97.87 98.63 98.78 99.18
97.46 83.46 96.83 96.72 97.82 98.05
95.14 71.76 92.03 93.76 95.28 96.10
88.71 59.05 71.65 86.36 88.67 90.71
72.48 43.52 40.66 70.97 71.55 75.82
42.91 27.63 23.88 44.58 41.78 47.01
15.34 14.94 14.05 18.87 16.23 19.88
79.34 57.08 65.01 78.48 79.02 81.54

Base � WF � FD

LTCM G.729 AMRl AMR2 AFE LTCM

98.45 97.50 96.67 98.12 98.39 98.78
97.93 96.05 96.90 97.57 97.98 98.41
97.06 94.82 95.52 96.58 96.94 97.61
94.64 91.23 91.76 93.80 93.63 95.39
87.54 81.14 80.24 85.72 85.32 88.40
66.23 54.50 53.36 62.81 63.89 66.92
31.21 23.73 23.29 27.92 30.80 32.91
88.68 83.55 83.56 87.29 87.55 89.35

FIG. 13. Speech recognition experiments. Front-end feature extraction.
train

�a�

�b�
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talking microphone material from all driving conditions
while testing is done using hands-free microphone material
taken for low noise and high noise driving conditions. Fi-
nally, recognition performance is assessed in terms of the
word accuracy �WAcc� which takes into account the number
of substitution errors �S�, deletion errors �D�, and insertion
errors �I�,

WAcc�%� =
N − D − S − I

N
 100 % , �14�

where N is the total number of words in the testing database.
The influence of the VAD decision on the performance

of different feature extraction schemes was studied. The first
approach �shown in Fig. 13� incorporates Wiener filtering
�WF� to the Base system as noise suppression method. The
second feature extraction algorithm that was evaluated uses
Wiener filtering and nonspeech frame dropping. The algo-
rithm has been implemented as described for the first stage
of the Wiener filtering noise reduction system present in the
advanced front-end AFE DSR standard.36 The same feature
extraction scheme was used for training and testing and no
other mismatch reduction techniques already present in the
AFE standard �wave form processing or blind equalization�
have been considered since they are not affected by the VAD
decision and can mask the impact of the VAD on the overall
system performance.

Table III shows the AURORA 2 recognition results as a
function of the SNR for speech recognition experiments
based on the G.729, AMR, AFE, and LTCM VAD algo-
rithms. These results were averaged over the three test sets of
the AURORA 2 recognition experiments. Notice that, par-
ticularly, for the recognition experiments based on the AFE
VADs, we have used the same configuration used in the
standard36 with different VADs for WF and FD. Only exact
speech periods are kept in the FD stage and consequently, all
the frames classified by the VAD as nonspeech are discarded.
FD has impact on the training of silence models since less

TABLE V. Average word accuracy �%� for the Spanish, SDC database.

Base Woo Li Marzinzik S

WM 92.94 95.35 91.82 94.29 9
MM 83.31 89.30 77.45 89.81 9
HM 51.55 83.64 78.52 79.43 8
Avg. 75.93 89.43 82.60 87.84 9

TABLE IV. Average word acccuracy for clean and multicondition AURORA
presented VAD methods.

G.729 AMR1

Base � WF 66.19 74.97
Base � WF�FD 70.32 74.29

Woo Li M

Base � WF 83.64 77.43
Base � WF� FD 81.09 82.11
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nonspeech frames are available for training. However, if FD
is effective enough, few nonspeech periods will be handled
by the recognizer in testing and consequently, the silence
models will have little influence on the speech recognition
performance. As a conclusion, the proposed VAD outper-
forms the standard G.729, AMR1, AMR2, and AFE VADs
when used for WF and also, when the VAD is used for re-
moving nonspeech frames. Note that the VAD decision is
used in the WF stage for estimating the noise spectrum dur-
ing nonspeech periods, and a good estimation of the SNR is
critical for an efficient application of the noise reduction al-
gorithm. In this way, the energy-based WF AFE VAD suffers
fast performance degradation in speech detection as shown in
Fig. 5, thus leading to numerous recognition errors and the
corresponding increase of the word error rate, as shown in
Table III. On the other hand, FD is strongly influenced by the
performance of the VAD and an efficient VAD for robust
speech recognition needs a compromise between speech and
nonspeech detection accuracy. When the VAD suffers a rapid
performance degradation under severe noise conditions it
loses too many speech frames and leads to numerous dele-
tion errors; if the VAD does not correctly identify nonspeech
periods it causes numerous insertion errors and the corre-
sponding FD performance degradation. The best recognition
performance is obtained when the proposed LTCM VAD is
used for WF and FD. Note that FD yields better results for
the speech recognition system trained on clean speech. This
is motivated by the fact that models trained using clean
speech do not adequately model noise processes, and nor-
mally cause insertion errors during nonspeech periods. Thus,
removing efficiently speech pauses will lead to a significant
reduction of this error source. On the other hand, noise is
well modeled when models are trained using noisy speech
and the speech recognition system tends itself to reduce the
number of insertion errors in multicondition training as
shown in Table III, part �a�.

Table IV, part �a�, compares the word accuracies aver-

G729 AMRl AMR2 AFE LTCM

88.62 94.65 95.67 95.28 96.41
72.84 80.59 90.91 90.23 91.61
65.50 62.41 85.77 77.53 86.20
75.65 74.33 90.78 87.68 91.41

ning/testing experiments. Comparison to �a� standard VADs and �b� recently

2 AFE LTCM Hand-labeling

7 81.57 84.01 84.69
9 83.29 85.44 86.86

nzik Sohn LTCM Hand-labeling

2 83.89 84.01 84.69
3 83.80 85.44 86.86
ohn

6.07
1.64
4.03
0.58
2 trai

�a�
AMR

83.3
82.8

�b�
arzi

84.0
85.2
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aged for clean and multicondition training modes to the up-
per bound that could be achieved when the recognition sys-
tem benefits from using the hand-labeled database. These
results show that the performance of the proposed algorithm
is very close to that of the reference database. In all the test
sets, the proposed VAD algorithm outperforms standard
VADs obtaining the best results followed by AFE, AMR2,
AMR1, and G.729. Table IV, part �b�, extends this compari-
son to other recently presented VAD methods.12,15–17

Table V shows the recognition performance for the
Spanish SpeechDat-Car database when WF and FD are per-
formed on the base system.39 Again, the VAD outperforms
all the algorithms used for reference yielding relevant im-
provements in speech recognition. Note that, these particular
databases used in the AURORA 3 experiments have longer
nonspeech periods than the AURORA 2 database and then,
the effectiveness of the VAD results more important for the
speech recognition system. This fact can be clearly shown
when comparing the performance of the proposed VAD to
Marzinzik17 VAD. The word accuracies of both VADs are
quite similar for the AURORA 2 task. However, the pro-
posed VAD yields a significant performance improvement
over Marzinzik17 VAD for the AURORA 3 database.

VII. CONCLUSION

A new algorithm for improving speech detection and
speech recognition robustness in noisy environments is
shown. The proposed LTCM VAD is based on noise model-
ing using hard C-means clustering and employs long-term
speech information for the formulation of a soft decision rule
based on an averaged energy ratio. The VAD performs an
advanced detection of beginnings and delayed detection of
word endings which, in part, avoids having to include addi-
tional hangover schemes or noise reduction blocks. It was
found that increasing the length of the long-term window
yields to a reduction of the class distributions and leads to a
significant reduction of the classification error. An exhaustive
analysis conducted on the AURORA database showed the
effectiveness of this approach. The proposed LTCM VAD
outperformed recently reported VAD methods including
Sohn’s VAD, that defines a likelihood ratio test on a single
observation, and the standardized ITU-T G.729, ETSI AMR
for the GSM system and ETSI AFE VADs for distributed
speech recognition. On the other hand, it also improved the
recognition rate when the VAD is used for noise spectrum
estimation, noise reduction and frame dropping in a noise
robust ASR system.
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