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Abstract: Fault detection in heating, ventilation and air-conditioning (HVAC) systems can effectively
prevent equipment damage and system energy loss, and enhance the stability and reliability of
system operation. However, existing fault detection strategies have not realized high effectiveness,
mainly due to the time-delay characteristics of HVAC system faults and the lack of system-fault
operation data. Therefore, aiming at the time delay of system faults and the lack of actual system-fault
operation data, this paper proposes a fault detection method that combines a system simulation
model and an intelligent detection algorithm. The method first uses the Modelica modeling language
to build a scalable simulation model of the system to obtain fault data that are not easily accessible in
practice. The long short-term memory-support vector data description (LSTM-SVDD) algorithm is
then applied to detect faults in real time by dynamically adjusting the fault residuals according to
the absolute difference between the predicted and actual values. The experimental results show that
the LSTM-SVDD method improves the average detection accuracy by 9.675% and 9.85% over the
classical LSTM network and the extreme gradient boosting (XGBoost) method, respectively, under
different fault levels.

Keywords: HVAC systems; fault detection; long short-term memory; support vector data description;
Modelica modeling

1. Introduction

The modern HVAC systems are complex non-linear systems with large inertia and
large hysteresis. They are now often applied in significant locations, such as data centers
and communication base stations [1]. Faults in such large-scale complex systems are usually
difficult to detect in the initial stages, due to the lack of effective detection techniques,
which can lead to excessive energy losses and even significant property damage and social
impact. There is, therefore, an urgent need to further improve the reliability and safety
of HVAC systems in order to reduce the adverse effects caused by faults. To address
this issue, real-time fault detection of HVAC systems is required to identify potential
system faults so that timely maintenance measures can be planned to ensure the normal
operation of the system. In recent years, a series of fault-detection research has been
developed for HVAC systems. There are two primary approaches: model-based methods
and data-driven methods. The model-based method first establishes an indicator model
that is more sensitive to a particular fault. The deviation between the expected and actual
values of the detected physical object is then used to detect system faults. Zabala et al. [2]
developed a physical model to diagnose faults in surface air cooler of HVAC systems,
and the results showed that the method was able to accurately detect faults. Although
model-based methods can perform well to detect faults, these methods are dependent on
the accuracy of the physical model. However, it is very difficult to establish an accurate
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model of the HVAC system by using traditional modeling techniques [3]. Therefore, data-
driven methods have become a research hotspot because they can directly identify faults
from the operational data of HVAC systems without modeling the physical model [4].
The historical HVAC system operation data are used to train the learning model. Fault
alarms are raised as soon as the new system operation data are inconsistent with the
output data of the learning model. Du et al. [5] detected faults of air handling units by
using a subtractive cluster analysis algorithm as an auxiliary neural network integrated
with a standard neural network. The detection results, with false-alarm and missed-
alarm rates as evaluation indicators, show that the detection accuracy of the method is
significantly better than that of the detection method that only uses one neural network.
Magoules et al. [6] introduced a fault detection method which is based on a recursive
deterministic perceptron neural network algorithm for HVAC systems. Fan faults, coil
faults, pump faults and chiller faults were detected by using this method. Yan et al. [7]
argue that sensor faults of HVAC systems are not easily detected in the early stages. In
order to accurately detect early faults of the system in real time, a method based on a
combination of kernel principal component analysis and bi-directional two-layer long-short
time memory networks was proposed. The method effectively improves the efficiency of
detecting early faults of the system by using the sensitivity of the long- and short-time
memory network to the time series of fault data. Although data-driven techniques perform
well for fault detection of HVAC systems, the performance of these techniques relies
heavily on a balanced dataset containing a large number of fault and normal data points [8].
However, gathering a sufficient number of fault training samples is usually a challenging
task in realistic situations where HVAC systems are not allowed to operate under fault
conditions. These fault samples are necessary for the construction of a balanced training
dataset. An unbalanced training dataset degrades and even invalidates the performance of
most data-driven fault detection methods [9,10]. To address the problem of inadequate fault
samples, Yan et al. [11] proposed that the problem of unbalanced fault detection data in
air handling units could be addressed by using the generative adversarial network (GAN).
The method rebalances the training dataset by augmenting a few fault samples with GAN
as a preprocessing step. Zhang et al. [12] simulated operational faults of HVAC systems
in the EnergyPlus simulation platform. These faults include sensor deviations, fouled
coils and broken air filters. Kim et al. [13] developed and validated a 25-fault model of a
small commercial building, using OpenStudio software. All of their research has generated
simulation datasets for fault detection based on the developed fault models [14]. However,
the Modelica modeling language can perform the modeling and fault simulation of such
systems faster and more accurately than other simulation tools [15]. Hefni et al. [16] used
the Modelica language to build a power plant model that provides convincing simulation
results. The developed model can cover the whole system engineering lifecycle, from
pre-liminary design to commissioning, operation and maintenance. Therefore, this paper
proposes a modeling approach based on the Modelica language. The HVAC system faults
are simulated on the OpenModelica simulation platform to generate fault samples.

It was discovered that the operational data of HVAC systems tend to have strong
time-series characteristics. Iffat [17] argues that different deep learning techniques can
be used to mine these data in order to achieve automatic fault detection in the system.
Kayacan [18] studied the prediction of time-series data by using deep learning methods.
Meanwhile, LSTM networks possess a strong extraction capability for time-series features
that is well suited for the prediction of time-series monitoring variables of HVAC sys-
tems. Li et al. [19] showed that the LSTM model gave a superior performance to the
back-propagation neural network and multilayer perception to predict the temperature
of HVAC systems. Zhang et al. [20] significantly improved the fault-prediction accuracy
of line tripping within power systems by using the stronger learning ability of LSTM
networks for time series. Meanwhile, LSTM-network-based approaches may obtain better
results in the prediction of HVAC system variables compared to other neural networks.
However, the results of real-time fault detection in HVAC systems are not only related to
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the prediction performance of the neural network, but are often also closely related to the
fault threshold setting [21]. Traditional methods of setting fixed thresholds often result in
missed opportunities to detect faults, delayed detection of faults or false alarms [22–24]. If
the threshold is set too high, faults may be missed, or if the threshold is too low, false alarms
may occur. Therefore, it is important to set a reasonable threshold for prediction errors
in LSTM networks. The prediction error of the LSTM network is considered as the fault
residual. When the system is operating normally, the fault residuals tend to be small, and
when the system is faulty, the fault residuals tend to be larger than normal, and this can be
viewed as a classification problem. The SVDD algorithm is an excellent single classification
algorithm. It can change itself for sensitivity to the anomaly by changing the spherical
boundary to a more flexible boundary [25]. As a result, the radius of the SVDD algorithm
hypersphere can be used well as an automatic threshold for fault detection. Li et al. [26]
employed the SVDD algorithm to detect the fault of sensor faults in chillers with very
accurate detection results.

Therefore, we propose the LSTM-SVDD method to achieve real-time and accurate
fault detection in HVAC systems after studying the fault characteristics of HVAC systems
through simulation systems. The method first utilizes the strong learning capability of the
double-layer LSTM network for the monitored variables of the HVAC system to predict
the workshop temperature of the system in real time. Then, a residual value is generated
by comparing the output of the LSTM network with the actual value from the workplace
temperature sensor. Finally, this residual value is used as input to the SVDD method with
the radius of the SVDD hypersphere used as the fault detection threshold to detect a fault
in the system.

2. HVAC System Modeling and Fault Simulation

This section describes the development of a simulation system model based on the
structure and operating principles of the HVAC system. In addition, faults are simulated
by manually injecting faults.

2.1. HVAC System Modeling

The researched HVAC system is a water-cooled HVAC system at a data center, and its
system structure is similar to the subject of the literature [27]. It is shown in Figure 1.

Buildings 2022, 12, x FOR PEER REVIEW 3 of 18 
 

performance of the neural network, but are often also closely related to the fault threshold 
setting [21]. Traditional methods of setting fixed thresholds often result in missed oppor-
tunities to detect faults, delayed detection of faults or false alarms [22–24]. If the threshold 
is set too high, faults may be missed, or if the threshold is too low, false alarms may occur. 
Therefore, it is important to set a reasonable threshold for prediction errors in LSTM net-
works. The prediction error of the LSTM network is considered as the fault residual. When 
the system is operating normally, the fault residuals tend to be small, and when the system 
is faulty, the fault residuals tend to be larger than normal, and this can be viewed as a 
classification problem. The SVDD algorithm is an excellent single classification algorithm. 
It can change itself for sensitivity to the anomaly by changing the spherical boundary to a 
more flexible boundary [25]. As a result, the radius of the SVDD algorithm hypersphere 
can be used well as an automatic threshold for fault detection. Li et al. [26] employed the 
SVDD algorithm to detect the fault of sensor faults in chillers with very accurate detection 
results.  

Therefore, we propose the LSTM-SVDD method to achieve real-time and accurate 
fault detection in HVAC systems after studying the fault characteristics of HVAC systems 
through simulation systems. The method first utilizes the strong learning capability of the 
double-layer LSTM network for the monitored variables of the HVAC system to predict 
the workshop temperature of the system in real time. Then, a residual value is generated 
by comparing the output of the LSTM network with the actual value from the workplace 
temperature sensor. Finally, this residual value is used as input to the SVDD method with 
the radius of the SVDD hypersphere used as the fault detection threshold to detect a fault 
in the system. 

2. HVAC System Modeling and Fault Simulation 
This section describes the development of a simulation system model based on the 

structure and operating principles of the HVAC system. In addition, faults are simulated 
by manually injecting faults.  

2.1. HVAC System Modeling 
The researched HVAC system is a water-cooled HVAC system at a data center, and 

its system structure is similar to the subject of the literature [27]. It is shown in Figure 1. 

Chiller

Mixed air box

Data center

Refrigeration subsystem

Air handling subsystem

Cooling coil

Outdoor air

Return air

Valve Valve

Cooling water pump Chilled water pump
Cooling tower Supply fan

VAV box

Return fan

 
Figure 1. HVAC system structure of the data center. 

This HVAC system is divided into a water circuit subsystem and an air-circuit sub-
system based on object-oriented modeling. The water circuit subsystem consists of a 

Figure 1. HVAC system structure of the data center.

This HVAC system is divided into a water circuit subsystem and an air-circuit subsys-
tem based on object-oriented modeling. The water circuit subsystem consists of a chiller
model and a cooling tower model, while the air circuit subsystem consists of a fan coil
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model and a data-center-workshop model. This paper establishes HVAC system simulation
models on the OpenModelica platform [28] based on the Modelica standard library and
the Buildings library. The parameters of the simulated system were then set and calibrated
to maintain a room temperature of around 293 K based on sensor measurements of the
actual HVAC system. The difference between the simulated system and the actual HVAC
system is verified by using the data-center-workshop temperature variation as an evalua-
tion indicator. At the same time, temperature data are collected from the actual data center
workshop that is cooled by the HVAC system. A comparison of the collected data from the
actual system with the data from the simulation model is shown in Figure 2.
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Figure 2. Data-center-workshop temperature comparison between actual and simulated systems.

As can be seen from Figure 2, the data-center-workshop temperatures of both the simu-
lation system and the actual system are maintained around the set point, and their average
temperature values are only different with 0.58 K, so the simulation system established is
relatively accurate.

2.2. System Monitoring Variables and Fault Simulation

HVAC system failures mean abnormal operation with reduced system performance
that includes more energy being used than the normal operation or failure to maintain
data-center temperature according to thermostat set points [29]. In realistic scenarios, many
sensors are installed in HVAC systems to monitor the operational behavior of the system.
However, some system-critical variables cannot be monitored due to the impossibility of
installing sensors or the high cost of such sensors. Thus, considering the distribution of
HVAC system sensors and system-important variables in the actual system, the simulation
system is used to more comprehensively monitor the system operating status by construct-
ing virtual sensors. In this research, there are eleven system-monitoring variables selected.
All of these different variables, as shown in Table 1, are related to the operational status of
the HVAC system.

Since the HVAC system is mainly used to regulate the temperature of the data center
workshop, the change of temperature is closely related to the system failure. However,
owing to the system fault propagation delay, the equipment in the data center is not working
properly by the time the fault causes the temperature in the data center to rise. Therefore,
the temperature of the data center workshop is chosen as the prediction parameter of the
system in order to detect the failure in time. The correlation of the system monitoring
variables should be considered for the accurate prediction of the temperature in the data
center workshop. The correlation of each monitoring variable in Table 1 is shown in
Figure 3.
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Table 1. System-monitoring variables.

Parameter Symbol Unit

Chiller water supply temperature CWST K
Chiller water return temperature CWRT K

Cooling tower water supply temperature CTWST K
Cooling tower water return temperature CTWRT K

Mass flow rate of the supply air from the coil MFRSAC Kg/s
Coil supply air pressure CSAP Pa

Temperature of the mixed air TMA K
Coefficient of performance of the chiller COP \

Outlet temperature of the air from the coil OTAC K
Temperature of the recirculated air TRA K

Workshop temperature WT K
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Figure 3 shows that the five most relevant monitoring variables relating to data-center
temperature are chiller water-supply temperature, chiller water return temperature, mass
flow rate of the supply air from the coil, temperature of the mixed air and outlet temperature
of the air from the coil. Therefore, six monitoring variables containing the data-center-
workshop temperature were selected as inputs to the fault detection model. The system
fault detection can be achieved by using the proposed fault detection model to extract
information from these six parameters. The six monitored variables are normalized as
shown in Figure 4.

In this study, the failure of the air-supply ducts for the end of the HVAC system led to
a deviation of the temperature in the data center workshop beyond its normal set point,
and, thus, a ruptured air supply duct was selected for research and description. The fault
data were obtained by manually injecting the fault into the simulation system. After the
system had stabilized, a fault was set in the air-supply duct at a specific point in time.
The fault was simulated by attaching an additional small container to the air-supply duct
of the simulation model. The process simulates a rupture in the air supply duct leading
to a leakage failure of the supply air volume. Different fault sizes can be simulated by
connecting multiple containers, as well. The temperature of the data center workshop in the
training set is shown in Figure 5. For the test set, the data-center-workshop temperatures
under normal state and the faulty state are shown in Figure 6. The fault starts at the 3000th
sampling point and continues until the end of the test set.
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3. Architectures and Algorithms

In this section, the principles and applications of the proposed LSTM-SVDD fault
detection method are described in detail. The LSTM network is an improved network based
on RNN. It solves the vanishing gradient problem of RNN by introducing a memory unit.
In addition, the support-vector data description performs equally well for non-Gaussian
distributed data and non-linear data.

3.1. Long Short-Term Memory

Long- and short-term memory networks are a variant of RNN that aim to solve the
gradient disappearance problem [30]. To solve the problem of vanishing gradients, the
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LSTM has three gates per cell to protect and control the cell state. Figure 7 shows the
structure of the LSTM memory cell.
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A multiple-input LSTM model was designed to achieve accurate prediction of the data-
center-workshop temperature of the HVAC system. Meanwhile, we found that the double-
layer LSTM network performed the best prediction results when different structures of
LSTM models were used to predict the data-center-workshop temperature experimentally.

The double-layer LSTM regression model, based on the structure of the single-layer
LSTM, is shown in Figure 8. The model has one input layer, two LSTM layers and one
output layer. Where XL is the input data for the double layer LSTM regression model and
YL is the predicted output of the model.
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This regression prediction model enables data of the next moment to be inferred from
the historical operating data of the HVAC system. Therefore, we could next develop an
LSTM regression model to obtain the predicted values of the monitored parameters. In
this work, six monitoring variables related to HVAC systems were used for regression
prediction. Suppose the sample length of each monitored variable is m; then the operational
data of the HVAC system, X, can be represented by the matrix as follows:

X =


x11 x12 · · · x1m
x21 x22 · · · x2m

...
...

xn1 xn2 · · · xnm

 (1)

where n = 6, which is the number of the HVAC system operating parameters, and m is the
number of points sampled for each monitored variable.
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The workplace temperature was selected as the predicted monitoring parameter to
illustrate. The operational data, X, of the HVAC system need to be reconstructed as follows
in order to construct a sliding-window model of regression prediction.

XTi =


x1,t−l+1 x1,t−l+2 · · · x1,t
x2,t−l+1 x2,t−l+2 · · · x2,t

...
...

xn,t−l+1 xn,t−l+2 · · · xn,t

 (2)

YT = [xk,t+1] (3)

where XTi is the input of the regression model at time, t; YT is the target output; K is used
to indicate which parameter is being monitored; l is the length of a sliding window, which
determines the length of the data sequence associated with the next moment; t increments
from 1 to m; and i increments from 1 to m− l. For moment t, the detailed sliding process is
shown in Figure 9.
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After reconstruction of the operational data of the system, the input samples and
corresponding outputs of the LSTM regression prediction model were as follows.{

XL =
[

XT,1 XT,2 · · · XT,m−l
]

YL =
[

xk,l+1 xk,l+2 · · · xk,m
] (4)

The regression model needs to learn the mapping function, fLSTM(·), which is defined
as follows:

Y′L = fLSTM(XL) (5)

where Y′L is the predicted value of YL. Meanwhile, the absolute value of the prediction error
is defined as the residual value, r.

r =
∣∣Y′L −YL

∣∣ (6)

3.2. Support-Vector-Data Description

There is a significant change between the residual values of HVAC systems in normal
and fault conditions. Hence, the SVDD algorithm is used to identify the characteristics
of the residual value, r, to detect whether a fault has occurred in the system. SVDD is an
excellent single class classification algorithm for process monitoring and fault detection.
Its basic idea is to obtain a spherical decision boundary whose minimum volume contains
most normal data points, as illustrated in Figure 10.
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Figure 10. Illustration of the SVDD hypersphere and the D statistic for fault detection.

For a given data matrix, D, containing N input vectors di, the desired minimum-
volume hypersphere can be described by the center, a, and the radius, R, and meets the
following objective function. Hence, its hypersphere radius can often be used as a great
fault detection threshold.

min
a,R,ς

R2 + C
N

∑
i=1

ςi (7)

s.t. ‖ϕ(di − a)‖2 ≤ R2 + ςi, ςi ≥ 0, ∀i = 1, 2, · · ·N (8)

where ςi is a relaxation factor, ϕ is a mapping function and C is a penalty factor.
Equations (7) and (8) can be regarded as an optimization problem, so the above

optimization problem can be transformed as follows:

max
αi

N

∑
i=1

αiG(di, di)−
N

∑
i=1

N

∑
i=1

αiαjG
(
di, dj

)
(9)

s.t. 0 ≤ αi ≤ C,
N

∑
i=1

αi = 1 (10)

Here, G is a kernel function which is chosen as the Gaussian radial kernel function
shown in Equation (11), with g as the only variable parameter; and αi is the Lagrange
multiplier of each sample. If 0 ≤ αi ≤ C, the sample di is denoted as the support vector.
Defining the support-vector dataset S, the center (a) and radius (R) of the hypersphere can
be calculated by Equations (12) and (13), respectively.

G
(
di, dj

)
= ϕ(di) · ϕ

(
dj
)
= exp

(
−g‖di − dj‖2

)
(11)

a =
N

∑
i=1

αi ϕ(di) (12)

R =

√√√√G(dk, dk)− 2
N

∑
i=1

αiG(dk, di) +
N

∑
i=1

N

∑
j=1

αiαjG
(
di, dj

)
(13)

where dk ∈ S.
To detect faults in HVAC systems, the residuals from the normal operation of the

system are used to train the SVDD model. For any new residual test sample r, the trained
SVDD model can calculate the distance D(r) from its hypersphere sphere center a to the
new test sample R.

D(r) =

√√√√G(r, r)− 2
N

∑
i=1

αiG(r, di) +
N

∑
i=1

N

∑
j=1

αiαjG
(
di, dj

)
(14)
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If D(r) > R, the new test-sample r is regarded as a faulty sample, and, thus, the system
is detected to have faults.

4. Fault Detection Framework Based on LSTM-SVDD

In this section, we describe in detail the general framework of the LSTM-SVDD-based
fault detection method and then give the parameters of the fault detection model. Finally,
we experimentally analyze the performance of the proposed method in this paper. The
program for method validation was implemented in Python 3.7 environment, and the LSTM
network and SVDD algorithm programs were written in Jupyter Notebook in combination
with Python language to build the fault detection model of HVAC system. The experiment
was run on a Windows computer equipped with an Intel® Core™ i5-9300U CPU clocked at
2.40 GHz and 8.0 GB of physical memory.

4.1. Fault Detection Framework

The fault detection framework consists of two main components: simulation system
establishment based on actual sensor-measurement data and system fault detection based
on LSTM-SVDD. The general illustration of the fault detection model is shown in Figure 11.
First, the server of the HVAC system in the realistic situation collects data from the sensors
of the system during normal operation. The parameters of the simulated system are
calibrated and set based on the data collected, so that the performance of the simulated
system approximates the actual system. Subsequently, we carry out fault injection on the
simulation system to obtain fault-operation data of the system. Finally, the LSTM-SVDD
model extracts and identifies features from the data of the simulated system to detect
system faults and provide fault warning in real time.
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Figure 11. A fault detection framework based on LSTM-SVDD.

Faults in HVAC systems depend not only on changes in operating data at the current
moment, but also on the state at previous moments. The LSTM-SVDD method makes
full use of the characteristics of the time-series data to avoid false positives and improve
detection performance at a certain level. As shown in Figure 12, the LSTM-SVDD fault
detection steps are as follows.

Step 1: Data collection. The dataset was collected from the HVAC system of the
simulation platform and consisted of six characteristic variables. The data-center-workshop
temperature was the predicted output variable.

Step 2: We normalized the data to eliminate differences between data features, while
the reconstructed data were converted to a sequence with a sliding window.
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Step 3: The processed data were taken as the input data of the double-layer LSTM
network, and thus a double-layer LSTM model was developed to achieve the predicted
output. This LSTM network was trained with the goal of minimizing the sum of the total
loss functions. The loss function is the mean square error given in Equation (15). The
final loss function is about 0.02 and remains stable after training, thus indicating that the
double-layer LSTM meets the requirements with training.

RMSE =

√
1
m

m

∑
i=1

(
Y′L −YL

)2 (15)

where m is the number of predicted points, YL is the actual output and Y′L is the model
predicted output.

Step 4: The residual value, r, is taken as input data for the SVDD algorithm. The SVDD
model uses its hypersphere radius, R, as the fault threshold of fault detection to identify
whether a fault occurs in the system.

4.2. Parameters Setting for LSTM-SVDD Model

In this paper, two LSTM layers of the LSTM-SVDD based fault detection model are
designed to increase the depth of the model and obtain better prediction results. There are
20 hidden nodes per LSTM layer. In addition, the LSTM sliding window length is set to 20
to obtain better time series prediction performance. Table 2 summarizes the parameters
used in the proposed fault detection model.

Table 2. LSTM-SVDD model parameters.

Parameter Symbol Value

Sliding window l 20
Input dimension u 6
First layer nodes S1 20

Second layer nodes S2 20
Output dimension v 1

Learning rate b 0.01
Penalty weighting factor C 0.8

Gaussian kernel width parameter g 0.04

5. Fault Detection Results and Discussion

This section demonstrates the effectiveness of the proposed method based on the given
fault detection evaluation indicators and comparative experimental results.
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5.1. Fault Detection Evaluation Indexes

We need to introduce fault-detection evaluation indicators to estimate the performance
of the fault detection model. There are four possible results of the fault detection, commonly
referred to as true positive (TP), false positive (FP), false negative (FN) and true negative
(TN) [31]. Then the detection accuracy of the model was calculated by using Equation (16).

Acc =
TP + TN

TP + FP + TN + FN
(16)

Accuracy (Acc) indicates the proportion of all prediction samples that are correctly
predicted. Accuracy is commonly used as an evaluation metric. Generally speaking, higher
accuracy means a better performance for the detection model. However, in the case of
unbalanced positive and negative samples and unbalanced data distribution, accuracy as an
evaluation metric is not sensitive to misclassification of fewer samples. Precision and recall
rate can compensate for this deficiency. Meanwhile, the F1-measure value takes into account
the precision rate and recall rate comprehensively. Therefore, the Acc and F1-measure were
selected as evaluation metrics in order to evaluate the model performance overall.

The precision (P) is calculated as follows:

P =
TP

TP + FP
(17)

The recall rate (R) is calculated as follows:

R =
TP

TP + FN
(18)

The F1-measure is the harmonic mean of precision and recall rate.

F1 = 2× P× R
P + R

(19)

5.2. Fault Detection Results and Analysis Based on LSTM-SVDD

To comprehensively analyze the performance of the proposed fault detection model,
we validated it from two perspectives: prediction performance and fault detection perfor-
mance for different levels of faults. The predictive performance of the proposed LSTM
network is not perfect for the model predicted values, even in the fault-free state, due
to modeling errors. Therefore, these predicted values must be further processed before
identifying the occurrence of system faults. The most efficient processing method is to
impose a fixed threshold on the difference between the predicted and actual values. If the
difference is more than a threshold value, a fault is identified. We evaluate its predictive
performance for data-center-workshop temperature with the residual value, r.

r =
∣∣Y′L −YL

∣∣ (20)

The residual value, r, of this LSTM network during normal operation of the system is
shown in Figure 13.

Assuming that the system suffers a rupture of the supply air duct at the 3000th
sampling point, the residual value, r, will change as shown in Figure 14. The fault detection
process is generally divided into two phases: the first phase is the fault-free phase consisting
of the first 3000 sample data, and the second phase is the fault phase consisting of the last
2000 sample data. In the fault-free phase, the smaller the residual value, the better the fault
detection performance. Conversely, in the fault phase, the higher the residual value the
better the fault detection performance. The predictive accuracy of the different methods
directly influences the subsequent fault detection results.
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As can be seen from Figure 14, the residuals are small for the first 3000 samples
when the system is operating normally, whereas the magnitude of the residuals grows and
fluctuates considerably when the system fails.

The variation characteristics of the residual values can often be taken as a fault de-
tection baseline during the normal and fault operation phases of the system. In the fault
detection phase, all residual samples from the normal operation phase of the system are
considered as positive samples and all residual samples from the fault phase operation are
considered as negative samples. The SVDD algorithm is used to automatically detect the
residual samples in both phases. The results of its detection are shown in Figure 15.

As can be seen from the Figure 15, the proposed LSTM-SVDD-based fault detection
method has residuals all below the fault threshold in the no-fault phase, which means
that there are no false alarms in this phase; meanwhile, most residuals are above the fault
threshold in the fault phase with only a few below the fault threshold causing few missed
alarms. This indicates that LSTM-SVDD works well for this fault detection.

The amplitude of the fault can also significantly affect the fault detection results. To
validate the effectiveness of the proposed method for fault magnitude detection, the level
of supply duct leakage was varied on the HVAC system simulation model to introduce
different levels of faults that would cause the data-center-workshop temperature to deviate
from the normal range. The fault level is based on the percentage of deviation from the
average temperature of the data center workshop in normal operation. The ACC and
F1-measure curves of the LSTM-SVDD method are shown in Figure 16 under the conditions
of five fault levels of 2%, 1.5%, 1%, 0.5% and 0 deviation rate, respectively.
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In Figure 16, the LSTM-SVDD method still maintains a high detection efficiency for
small deviation faults. Its detection efficiency reaches 0.946 even at a fault deviation rate of
0.5%, while at a fault deviation of 2%, its detection efficiency reaches 0.999. As well, there is
a higher degree of accuracy in fault detection as the fault gets larger. It is easier to identify
the data as anomalous, because the larger magnitude of the fault deviation means that the
sample deviates from the center of the SVDD minimum hypersphere with greater distance.

5.3. Methods Comparison Analysis

To verify the performance of the proposed method in this paper, regression prediction
performance and fault detection efficiency were experimented upon with other methods.
For prediction performance, the absolute difference, r, between the predicted and actual
values on the test set was chosen as the prediction performance evaluation metric under
the same time-series data that are divided between the same test and training sets. The
prediction errors of the LSTM network proposed in the literature [19], the XGBoost method
proposed in the literature [32] and the proposed LSTM network in this paper toward the
data-center-workshop temperature are shown in Figure 17.

As can be seen from Figure 17, the prediction error of the proposed LSTM network
in this paper is smaller than the prediction error of the LSTM network proposed in the
literature [19] and the XGBoost method proposed in the literature [32]. Therefore, the
proposed LSTM network in this paper performs the best in prediction performance, while
the XGBoost method has the worst prediction performance when the time-series data
fluctuates greatly. The reason is that LSTM networks tended to have an advantage over
other neural networks for predicting time-series data. Since the classical LSTM network
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uses only a single LSTM layer, the proposed LSTM network prediction model has a higher
accuracy under the same number of training times.
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For fault detection efficiency, the literature [19] proposed LSTM network and the
literature [32] proposed XGBoost method combined with a fixed threshold given in the
literature [32] to detect faults. The final detection efficiency of the three methods under
different fault levels is shown in Table 3. It can be found that the LSTM-SVDD detection
model has a higher detection accuracy and F1 score than the other two methods, so it has
the best fault detection performance.

Table 3. Detection results of different methods.

Fault Level Methods Prediction Errors Acc F1

L1 (0.5%)
Literature [30] Classical LSTM 0.0421 0.813 0.865

Literature [31] XGBoost 0.0487 0.811 0.863
Proposed LSTM-SVDD 0.0165 0.946 0.957

L2 (1%)
Literature [30] Classical LSTM 0.0403 0.846 0.886

Literature [31] XGBoost 0.0464 0.845 0.885
Proposed LSTM-SVDD 0.0162 0.970 0.976

L3 (1.5%)
Literature [30] Classical LSTM 0.0431 0.897 0.921

Literature [31] XGBoost 0.0453 0.895 0.919
Proposed LSTM-SVDD 0.0167 0.971 0.977

L4 (2%)
Literature [30] Classical LSTM 0.0423 0.943 0.953

Literature [31] XGBoost 0.0446 0.941 0.952
Proposed LSTM-SVDD 0.0163 0.999 0.999

In actual engineering, the delays of the HVAC system make it difficult to detect faults
in time, thus further causing system damage and energy loss. The method proposed in this
research can avoid such instances to some extent.

6. Conclusions

HVAC systems work with complex processes and delayed fault propagation. A fault
detection method combining a simulation model with the LSTM-SVDD algorithm was
proposed in order to achieve the real-time fault detection of HVAC systems to identify
faults. The introduction of fault modes in the system simulation model solves the difficulty
in collecting sufficient fault data samples due to the fact that the HVAC system operates
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under normal conditions most of the time. Due to the time-series of the operational data
of the HVAC system, the LSTM-SVDD fault detection method was proposed to perform
real-time fault detection on the system, and the detection efficiency of the method was
discussed by introducing different fault sizes. The results show that the proposed method
still has a detection accuracy of 0.946 for a small deviation fault of 0.5%. An average increase
of 0.284 and 0.29 in the F1-measure was achieved with the proposed method in comparison
to the traditional LSTM network and XGBoost methods with a fixed threshold, respectively.
Consequently, the proposed fault detection method is expected to timely detect system
faults, prevent further deterioration of equipment and prolong the equipment life. The
method can also contribute to the research of fault detection methods for other HVAC
systems in the absence of fault samples.
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