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Abstract

In this work we focus on the modelling and numerical simulation of the

fluid-structure interaction mechanism in vascular dynamics. We first pro-

pose a simple membrane model to describe the deformation of the arterial

wall, which is derived from the Koiter’s shell equations and is applicable to

an arbitrary geometry. Secondly, we consider a reformulation of the fluid-

structure problem, in which the newly derived membrane model, thanks

to its simplicity, is embedded into the fluid equations and will appear as a

generalized Robin boundary condition. The original problem is then reduced

to the solution of subsequent fluid equations defined on a moving domain

and may be achieved with a fluid solver, only. We also derive a stability

estimate for the resulting numerical scheme. Finally, we propose new out-

flow absorbing boundary conditions, which are easy to implement and allow

to reduce significantly the spurious pressure wave reflections that typically

appear in artificially truncated computational domains. We present several

numerical results showing the effectiveness of the proposed approaches.
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1 Introduction

Since the early 80’s, there has been a great interest in solving fluid-structure
interaction problems, appearing in several engineering and biomedical applica-
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tions. In particular, fluid-structure interaction mechanisms are of great impor-
tance in haemodynamics since they are responsible for pressure wave propagation
from the heart to peripheral vessels and capillaries. Moreover, the deformation
of the arterial wall during a cardiac beat can reach up to 10% of the artery
radius and should not be neglected. This renders the coupled problem highly
non-linear since the position of the fluid-structure interface is itself an unknown.

In the last few years, there has been an increasing effort to devise efficient
numerical algorithms for fluid-structure simulations in haemodynamics. The
most common approach consists in the subsequent solutions of the fluid and
structure subproblems and allows one to couple different solvers, thus reusing
available computational codes. Within this framework, explicit algorithms (also
called loosely coupled strategies) solve the fluid and the structure only once (or
just few times) per time step and do not satisfy exactly the coupling conditions
(namely the continuity of velocity and normal stress at the fluid-structure in-
terface) at each time step. As a consequence, the work exchanged between the
two subproblems is not perfectly balanced and this may induce instabilities in
the numerical scheme. Indeed, it was shown in [6] (see also [22]) that explicit
couplings do not work in vascular dynamics because of the high added mass
effect. Alternatively, one could treat implicitly the coupling conditions at each
time step (implicit algorithms), leading to a fully coupled, monolithic system of
highly non-linear equations. The monolithic problem is then solved via subit-
erations between the fluid and structure subproblems. Several substructuring
strategies have been investigated so far, see e.g. [8, 11, 24, 35, 7, 36, 10]. In this
case, the work exchanged between the two subproblems is perfectly balanced
and the numerical scheme is stable. Yet, the price to pay is a relatively large
number of subiterations, particularly in those cases where the added mass is
important, as in haemodynamics. Up to now, the computational cost remains
extremely high. The need to reduce the computational cost for haemodynamic
fluid-structure simulations, has motivated this work.

The first goal of the paper is to propose a simple structure model, which is
well suited to describe artery dynamics. The model is based on the assump-
tion that the structure is thin, behaves as a membrane and deforms mainly in
the normal direction to the mean surface. These assumptions are sound and
widely accepted in vascular dynamics (see e.g. [2, 37, 41, 30]). The model is
derived from the Koiter’s shell equation (see [32, 33]), neglecting bending terms
and transversal displacements while including pre-stresses which might actually
appear in arteries. It can be written for an arbitrary surface and generalizes
the so called independent rings and generalized string models, which have been
derived for cylindrical surfaces upon the assumption of normal displacements
(see e.g. [43, 19, 20]) and have been widely adopted in the bioengineering com-
munity. While being very simple, these models allow to reproduce important
fluid-structure mechanisms that appear in haemodynamics, such as the propaga-
tion of pressure waves. The fact that our new model is applicable to an arbitrary
surface and retains the same simplicity of the generalized string model, makes
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it very attractive for realistic haemodynamic applications.
The second goal of the paper is to develop an efficient fluid structure cou-

pling strategy. To this aim we propose a reformulation of the problem, in which
the newly derived membrane model, thanks to its simplicity, is easily embedded
into the fluid equations and will appear as a generalized Robin boundary con-
dition. By doing this, the coupling fluid-structure conditions are automatically
treated in an implicit way, thus preserving the stability of the numerical scheme.
The resulting fluid problem remains non linear since the interface position is
unknown. In this work, we propose and compare two strategies to deal with
such non-linearity. The first one (hereafter called explicit Robin scheme) treats
in an explicit way the interface position, by extrapolation from previous time
steps, and does not require any subiteration. The second one (implicit Robin
scheme) treats implicitly the interface position by fixed point subiterations. In
both cases, the simulation of the original fluid structure problem reduces to the
solution of subsequent fluid problems in ALE formulation ([31, 9]) with gener-
alized Robin boundary conditions and may be achieved with only a fluid solver
which includes such features.

We also provide an original stability analysis showing that, for the chosen
(implicit) time discretization, both the explicit Robin and the implicit Robin
strategies lead to an unconditionally stable scheme. In particular, we stress that
the explicit treatment of the interface position does not affect the stability of
the numerical discretization. Moreover, preliminary numerical results, show that
the solutions of the explicit and of the implicit Robin schemes are in excellent
agreement. Therefore, the implicit treatment of the interface position does not
seem to improve substantially the numerical solution. The explicit Robin scheme
is then preferable being computationally cheaper.

We point out that the idea of embedding the structure equation into the fluid
has already been considered in [12], although in this work the authors do not
move the fluid domain.

The structure model and the numerical scheme proposed in this work have
been developed in the context of haemodynamic applications. Yet, they may be
of interest also for other types of applications, whenever a fluid interacts with a
thin membrane.

The proposed schemes offer also another advantage: in haemodynamic ap-
plications, it is often useful to be able to prescribe flow rate defective boundary
conditions. This problem has been recently investigated in [14, 47, 48] for a rigid
vessel, with a Lagrange multiplier approach. By employing the Robin schemes,
the flow rate problem can be straightforwardly extended to a compliant domain.

The last topic of this paper concerns the proper choice of outflow boundary
conditions for the fluid-structure problem. As we mentioned earlier, the fluid-
structure mechanism in vascular dynamics gives rise to pressure waves propagat-
ing along the vessels. Hence, at the numerical level, proper absorbing boundary
conditions should be prescribed at the outlet sections to avoid spurious reflec-
tions. A possible way to overcome this difficulty has been proposed in [13] and
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further investigated in [15]. It consists in coupling the fluid structure 3D prob-
lem with a reduced one-dimensional model, acting as a non-reflecting boundary
condition. Inspired by this geometrical multiscale approach, in this paper we
propose a new absorbing boundary condition which is applied directly to the
fluid problem thus avoiding the complexity of the coupling with the reduced 1D
solver. This strategy is very appealing for practical haemodynamics applica-
tions and so far has produced very good results, as shown by the numerical tests
presented in Section 7.

The outline of the paper is as follows. In Section 2 we derive the simple
membrane model. In Section 3 we present the formulation of the fluid problem
in ALE coordinates and we write the weak formulation of the coupled fluid-
structure problem. In Section 4 we introduce the Robin schemes, in particular
the explicit Robin algorithm and its implicit counterpart and we prove a stability
result. In Section 5 we present the flow rate problem for incompressible fluids in
compliant domains, while in Section 6 we propose the new absorbing boundary
conditions. Finally, in Section 7, we present some numerical results.

2 Derivation of a simple linear membrane model

We assume that the structure behaves as a membrane, i.e. a thin elastic shell
with no bending, whose thickness is neglected and which can be therefore de-
scribed by a 2D manifold. Moreover, we assume that no shear stresses act on
the membrane. This implies, in particular, that sections normal to the reference
surface Γ0 remain normal after deformation.

2.1 Inertial-algebraic model

In this section we derive a simple inertial-algebraic membrane model, considering
small deformations, starting from the Koiter’s model for a membrane without
shear (see [32, 33]) and making further simplifying assumptions.

The reference position Γ0 of the membrane is identified by a regular mapping

φ : ω ⊂ R
2 → Γ0 ⊂ R

3, φ = φ(ξ1, ξ2), ∀(ξ1, ξ2) ∈ ω.

The mapping φ introduces a local system of curvilinear coordinates, whose co-
variant basis is given by

aα =
∂φ

∂ξα
, α = 1, 2, a3 =

a1 × a2

|a1 × a2|
.

In the sequel, we use greek letters for indices taking their values in the set {1, 2},
while latin letters for indices taking their values in the set {1, 2, 3}. The vectors
a1 and a2 define the tangent plane to Γ0 in the point (ξ1, ξ2) and a3 is the
normal unit vector to this plane (see Figure 1). We assume that the mapping φ
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Figure 1: The regular mapping φ.

is regular, i.e. the two vectors a1 and a2 are linearly independent in all points
(ξ1, ξ2) ∈ ω̄. We denote by

Aαβ = Aβα = aα · aβ, Bαβ = Bβα = −aα · ∂a3

∂ξβ
= a3 ·

∂aβ

∂ξα

the first and the second fundamental forms of the surface Γ0, respectively (see,
e.g., [34, 1]). We also denote by Aαβ the inverse of the matrix Aαβ and by

aα = Aαβaβ, a3 = a3,

the contravariant curvilinear basis. Here and in what follows, we will adopt
Einstein’s convention that repeated indices are summed. In a similar manner,
given a tensor Cαβ we define Cλ

β = AαλCαβ . Then, any vector v ∈ R
3 can be

represented in covariant or in contravariant components as v = via
i = viai.

Finally, we introduce the surface covariant derivative of a vector field v, defined
as

vs
α/λ =

∂vα

∂ξλ
− Γβ

αλvβ, Γβ
αλ = aβ · ∂aλ

∂ξα
,

where Γβ
αλ are the Christoffel symbols (see e.g. [34, 1]).

The simplified model we will consider in this work relies on the following
assumptions:

h1) linear constitutive stress-strain relation and isotropic-homogeneous mate-
rial;

h2) small deformations;

h3) negligible bending terms (membrane deformation);

h4) only normal displacement.
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We start by considering Koiter’s model for small membrane deformations, ne-
glecting the bending terms. This model is described by the following equations,
written in weak form: let η : Γ0 → R

3 be the membrane displacement; then,
given a forcing term f s, find η in a suitable functional space K such that, for
all χ ∈K

∫

Γ0

ρshs
∂2η

∂t2
· χ dγ +

∫

Γ0

hsE
αβλδγαβ(η)γλδ(χ) dγ =

∫

Γ0

f s · χ dγ,

where ρs and hs are the density and the thickness of the structure, respectively.
Moreover, γαβ is the change of metric tensor defined by

γαβ(χ) =
1

2
(χs

α/β + χs
β/α) − Bαβχ3

and Eαβλδ is the elastic tensor, given by

Eαβλδ =
E

1 + ν
AαλAβδ +

Eν

1 − ν2
AαβAλδ.

Here, E and ν are the Young modulus and the Poisson coefficient, respectively,
of the material at hand. The proper choice of the functional space K depends
on the boundary conditions imposed on the displacement η. We point out
that we write the equations of the Koiter’s model in the reference configuration
Γ0. Indeed it is a common practice to adopt a Lagrangian framework for the
structure problems. Now, if we restrict the membrane displacements only to the
normal direction, i.e. η = (0, 0, η3), the previous model can be further simplified.
Indeed, we have γαβ(χ) = −Bαβχ3 and

Eαβλδγαβ(η)γλδ(χ) =
E

1 + ν
AαλAβδBαβBλδη3χ3+

+
Eν

1 − ν2
AαβAλδBαβBλδη3χ3

=
( E

1 + ν
Bλ

βBβ
λ +

Eν

1 − ν2
Bβ

βBλ
λ

)
η3χ3

and the structure model reduces to the simple scalar equation





ρshs
∂2η3

∂t2
+ βη3 = fs in (0, T ) × Γ0,

η3|t=0 = η0 in Γ0

∂η3

∂t

∣∣∣
t=0

= ηv in Γ0,

(1)

where

β = β(ξ1, ξ2) =
hsE

1 − ν2
((1 − ν)Bλ

βBβ
λ + νBβ

βBλ
λ) (2)

and η0 and ηv are the initial conditions. We point out that the model (1) is
applicable to any surface identified by a regular mapping φ and therefore it is of
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practical interest in the applications where realistic computational domains are
considered. Observe that, once we restrict the deformations to happen only in
the normal direction, the final model (1) does not contain anymore differential
operators in the space variables and, in particular, does not require any boundary
conditions.

In the sequel we refer to model given by (1) and (2) as inertial-algebraic

model and as algebraic model in the particular case ρs = 0.

2.2 The pre-stressed model

Starting from the 3D non-linear elasticity equations for a shell type domain and
linearizing over a deformed configuration Ωs of thickness hs, given by Ωs =
Γ0 × [−hs/2;hs/2], a term of the form (in weak formulation)

∫

Ωs

∇η T : ∇χ dωs (3)

adds to the other linear terms (see, e.g., [5]). T is the pre-stress tensor, i.e.
the Cauchy stress tensor in the deformed configuration, while η here represents
a small deformation from Ωs. In haemodynamics, experimental analysis show
that vessel walls are in a pre-stressed state both in the longitudinal and radial
directions. In particular, when an artery is extracted from a body tends to
reduce its length, whereas when a small anulus of artery is cut, it opens (see e.g.
[23]).

In this section we want to enrich the model given by (1) and (2) with a
term that takes into account this pre-stress. To this aim, we start from a 3D
shell model including term (3) and then we reduce to the simple membrane case
making the hypothesis (h1-h4) and taking the limit when the thickness hs goes
to zero.

In particular, since we are interested to derive a membrane model, we con-
sider the following form for the pre-stress tensor in the local curvilinear basis:

T 3D =

[
T 0
0 0

]
, with T =

[
T 11 T 12

T 12 T 22

]
,

which corresponds to only tangential stresses in Ωs. According to the Koiter’s
model, the deformation field η in the 3D shell domain Ωs is given by (see [3])

η = ηi(ξ1, ξ2)a
i − ξ3(η3,α + Bλ

αηλ)aα. (4)

From (4) and neglecting the terms where ξ3 appear since they are of higher order
in the shell thickness hs (this simplification is consistent with neglecting bending
terms), the 3D covariant derivatives of η are given by

{
ηα/β = ηs

α/β − Bαβη3, ηα/3 = −(η3,α + Bλ
αηλ),

η3/α = η3,α + Bλ
αηλ, η3/3 = 0.
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Therefore, integrating over the thickness and making the hypothesis of normal
displacement, from (3) we obtain





∫

Ωs

ηγ/αTαβχγ/βdωs =

∫

Γ0

∫ hs/2

−hs/2
Bγαη3T

αβBγβχ3 dldγ =

=

∫

Γ0

hsBγαTαβBγβη3χ3 dγ
∫

Ωs

η3/αTαβχ3/βdωs =

∫

Γ0

∫ hs/2

−hs/2
η3,αTαβχ3,βdldγ =

∫

Γ0

hsT
αβη3,αχ3,βdγ.

Adding these terms to model (1), the first term gives a contribution to the
coefficient β of the reaction term, while the second term gives second derivatives
in space. Therefore, the membrane model with a pre-stress reduces to





ρshs
∂2η3

∂t2
−∇ · (T∇η3) + β2η3 = fs in (0, T ) × Γ0

η3|t=0 = η0 in Γ0

∂η3

∂t

∣∣∣
t=0

= ηv in Γ0,

(5)

where

β2 = β2(ξ1, ξ2) = hs

( E

1 − ν2
((1 − ν)Bλ

βBβ
λ + νBβ

βBλ
λ) + BγαTαβBδβ

)
(6)

and where the operator ∇ has to be intended as covariant. In the sequel, we
refer to (5)-(6) as pre-stressed model. Observe that model (5) has to be endowed
with proper boundary conditions on ∂Γ0, which could be, for instance,

η3|∂Γ0 = 0

or
((T∇η3) · n∂)|∂Γ0 = 0, (7)

where n∂ is the normal unit vector to ∂Γ0. In what follows, we will consider
only Neumann boundary conditions (7).

2.3 An example: cylindrical geometry

As an example, let us consider a cylindrical surface

Γ0 = {(x, y, z) ∈ R
3, x = R cos θ, y = R sin θ, ∀θ ∈ [0, 2π), z ∈ [0, L]},

where R and L are the radius and the length of the cylinder, respectively. There-
fore, the surface Γ0 in this case is obtained through the mapping

φ(θ, z) = [x = R cos θ, y = R sin θ, z = z]T .
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The covariant basis is then given by

a1 =
∂φ

∂θ
=




−R sin θ
R cos θ
0


 , a2 =

∂φ

∂z
=




0
0
1


 , a3 =




cos θ
sin θ
0


 ,

and therefore the first and the second fundamental forms are

Aαβ =

[
R2 0
0 1

]
, Bαβ =

[
−R 0
0 0

]
.

Since

Aαβ =

[
1/R2 0

0 1

]
,

we obtain

Bα
β = AαλBλβ =

[
−1/R 0

0 0

]

and therefore

β =
hsE

1 − ν2
((1 − ν)Bλ

βBβ
λ + νBβ

βBλ
λ) =

hsE

1 − ν2
((1 − ν)

1

R2
+ ν

1

R2
) =

hsE

1 − ν2

1

R2
,

(8)
which gives the well-known independent rings model that has been widely used
in the bioengineering literature to describe artery dynamics (see e.g. [2, 37, 41,
30, 19]). Model (1)-(2) can then be viewed as a generalization of the independent
rings model to an arbitrary geometry.

Let us now consider also a pre-stress term acting on the longitudinal direction
only. Therefore, we assume

T =

[
0 0
0 T zz

]
.

From (5)1, we obtain the following equation

ρshs
∂2η3

∂t2
− µs

∂2η3

∂z2
+ βη3 = fs, (9)

where β is given by (8) and µs = T zz. This model, called generalized string

model, has been considered, for instance, in [43, 19, 20, 24]. Therefore, model
(5)-(6) can be viewed as a generalization of the generalized string model to an
arbitrary geometry.

3 The fluid and the coupled fluid-structure problem

Let us consider a Newtonian incompressible fluid flowing, at time t, in the de-
formable domain Ωt ∈ R

3 depicted in Figure 2. The evolution of Ωt is not
known a priori, since it is determined by the interaction between the fluid and
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Figure 2: Reference (left) and current (right) computational domain.

the structure. The mathematical problem is therefore highly coupled and it
consists in finding the velocity and the pressure of the fluid, the displacement of
the structure and the position of the points of the current domain Ωt. In what
follows, we consider a geometry as depicted in Figure 2, where the solid occupies
the portion Γt of the boundary while Γt

i are the fluid inflow or outflow sections.

3.1 The fluid problem

To determine the evolution of the fluid, we consider the Navier-Stokes equations
for a homogeneous, incompressible, Newtonian fluid, written in ALE coordinates
(see [31, 9, 16, 17, 19]). For that, we introduce a reference domain Ω0 and a
regular mapping xf which transforms Ω0 into the actual configuration Ωt. The
Navier-Stokes equations then read:





DAu

Dt
+ ((u− w̃) · ∇)u−∇ · σf (u, p) = 0 in (0, T ) × Ωt

∇ · u = 0 in (0, T ) × Ωt

u|t=0 = u0 in Ωt

u|Γt
D

= g in (0, T )

(σf ã3)|Γt
N

= h in (0, T )

(10)

being u = u(t,x) the fluid velocity, p = p(t,x) the pressure, ã3(t,x) the normal
unit vector to ∂Ωt, g(t,x), h(t,x), u0(x) given data and where

σf (u, p) = µ(∇u+ (∇u)T ) − pI

is the Cauchy stress tensor. We set Γt
D and Γt

N the union of the sections Γt
i

where we impose a Dirichlet and a Neumann boundary condition, respectively.
Moreover, we indicate with DA/Dt the time derivative in ALE coordinates and
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with w̃ the velocity of the points of the fluid domain in the current configura-
tion. Let us denote by w the same quantity expressed in terms of the reference
coordinate x0 ∈ Ω0 : w = w̃ ◦ xf (see Fig. 2). This quantity can be computed
in an arbitrary way, provided that





w|Γt = u|Γt ◦ xf in (0, T )
(w · a3)|Γ0

D∪Γ0
N

= 0 in (0, T )
( ∂w

∂a3
· aα

)∣∣∣
Γ0

D∪Γ0
N

= 0, α = 1, 2 in (0, T ).

(11)

where aα are tangential unit vectors to ∂Ω0. In the sequel we will pose ãi =
ai ◦x−1

f . A widely adopted method to compute the velocity w over all Ω0, is to
consider a harmonic extension operator:

−△w = 0 in (0, T ) × Ω0 (12)

together with the boundary conditions (11).
Once the domain velocity is known, we can define the ALE map

xf (t,x0) = x0 +

∫ t

0
w(τ,x0) dτ

which maps each point x0 ∈ Ω0 into the corresponding point of the current
configuration Ωt. The strategy based on problem (12) to compute the domain
velocity might not provide an invertible (one to one) ALE mapping, if the defor-
mation of the boundary is large and ”rough”. In such a case one should consider
more sophisticated extensions (see e.g. [38]). Yet, in the applications we will
consider in this work, strategy (12) is enough to reconstruct an admissible ALE
mapping.

3.2 The coupled fluid-structure problem

We point out that problem (10) is incomplete, since we do not prescribe any
condition over the interface Γt. This condition is determined through the cou-
pling between the fluid and the structure model (5). To this aim, we impose the
continuity of the velocity and of the normal stress at the interface Γt, that is





∂(η3 ◦ x−1
f )

∂t

∣∣∣
Γt

= (u · ã3)|Γt

(fs ◦ x−1
f δ)|Γt = −((σf ã3) · ã3)|Γt .

(13)

where xf denotes the third component of the mapping xf and δ takes into
account the change of surface area going from the reference configuration Γ0 to
the deformed one Γt. For example, in a cylindrical domain

δ =
(R0 + η3

R0

√
1 +

(∂η3

∂z

)2
+

( 1

R0 + η3

∂η3

∂θ

)2)−1
,
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where R0 is the radius in the reference configuration and θ the angular coor-
dinate. In order to prescribe to the fluid suitable boundary conditions at the
interface also in the tangential directions, we impose

(u · ãα)|Γt = 0, (14)

that are consistent with the fact that we are neglecting the tangential displace-
ment of the structure.

To write the weak formulation of the coupled problem, let us consider the
following functional spaces





V t = {v ∈H1(Ωt) : v|Γt
D

= 0 and (v · ãα)|Γt = 0, }
V t

g = {v ∈H1(Ωt) : v|Γt
D

= g and (v · ãα)|Γt = 0, }
Qt = L2(Ωt),
M0 = {ψ ∈H1(Ω0) : ψ|Γ0 = 0 and (ψ · a3)|Γ0

D∪Γ0
N

= 0},
W 0 = H1(Γ0).

Moreover, let us introduce the following bilinear form

a(w,v) = µ(∇w + (∇w)T ,∇v),

where we indicate with (·, ·) the L2(Ωt) inner product. Proceeding in a standard
way, we recover, for each time t, the following weak formulation for the fluid
problem (10) with (14): find u ∈ V t

g and p ∈ Qt, such that





(DAu

Dt
,v

)
+ a(u,v) + (((u− w̃) · ∇)u,v) − (p,∇ · v) =

=

∫

Γt

(σf ã3) · ã3 (v · ã3) dγ +

∫

Γt
N

h · v dγ

(q,∇ · u) = 0
u|t=0 = u0

(15)

for all v ∈ V t and q ∈ Qt. Let us notice that, at this stage, we have not
yet imposed the Dirichlet boundary condition (13)1 on Γt, but we have left
on this portion of boundary the term coming from the integration by parts.
Analogously, setting η = η3 and χ = χ3, for the structure problem given by (5)
with homogeneous Neumann boundary conditions, we obtain, for each time t,
the following weak formulation: find η ∈ W 0, such that





ρshs

(∂2η

∂t2
, χ

)
Γ0

+
(
T∇η,∇χ

)
Γ0

+ (β2η, χ)Γ0 = (fs, χ)Γ0

η|t=0 = η0
∂η

∂t

∣∣∣
t=0

= ηv

(16)

for all χ ∈ W 0 and where we indicate with (·, ·)Γ0 the L2(Γ0) inner product.
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Let us introduce a global weak formulation for the fluid-structure problem
(see [35, 39]). Posing

St = {(v, χ) ∈ V t × W 0 : (v · ã3 ◦ xf )|Γ0 = χ} (17)

it is easy to check from (15), (16) and (13), that we obtain the following global
formulation:

Problem 1 Given g ∈ H1/2(Γt
D) and h ∈ L2(Γt

N ), find u ∈ V t
g, p ∈ Qt and

η ∈ W 0 such that, for each t,





(DAu

Dt
,v

)
+ a(u,v) + (((u− w̃) · ∇)u,v) − (p,∇ · v)+

+ρshs

(∂2η

∂t2
, χ

)
Γ0

+ (T∇η,∇χ)Γ0 + (β2η, χ)Γ0 =

∫

Γt
N

h · v dγ

(q,∇ · u) = 0

∂(η ◦ x−1
f )

∂t

∣∣∣
Γt

= (u · ã3)|Γt

u|t=0 = u0,
∂η

∂t

∣∣∣
t=0

= (u0 · a3)|Γ0 , η|t=0 = η0

(18)
for all (v, χ) ∈ St and q ∈ Qt.

Observe that, thanks to the coupling condition (13)2 and the particular choice
(17) of the fluid-structure test functions, the two boundary terms in the fluid
and in the structure problem, namely

∫
Γt(σf ã3) · ã3 (v · ã3) dγ and (fs, χ)Γ0 ,

cancel perfectly.
In the next section, we will propose simple algorithms for the solution of

problem (18), that can be obtained once a suitable time discretization scheme
is introduced.

4 The Robin schemes

The global weak formulation (18) can be discretized in space by a finite element
technique, following e.g. [39]. Concerning time discretization, several possibili-
ties are available. Due to the high computational cost and the complexity of the
fluid-structure problem, it is a common practice to adopt staggered algorithms,
in which the fluid and the structure subproblems are solved separately.

In particular, explicit algorithms (also called loosely coupled strategies) solve
the fluid and the structure only once (or just few times) per time step and do not
satisfy exactly the coupling conditions (13) at each time step. As a consequence,
the work exchanged between the two subproblems is not perfectly balanced and
this may induce instabilities in the numerical scheme. Indeed, it was shown in
[6, 22] that explicit couplings do not work in vascular dynamics because of the
high added mass effect.
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Alternatively, one could employ implicit time marching schemes both for the
fluid and the structure terms in (18), leading to a fully coupled, monolithic sys-
tem of highly non-linear equations. The monolithic problem is then solved via
subiterations between the fluid and structure subproblems. Several substructur-
ing strategies have been investigated so far, see e.g. [8, 11, 24, 35, 7, 36]. In
this case, the coupling conditions are treated implicitly thus leading to stable
algorithms. Yet, the price to pay is a relatively large number of subiterations,
particularly in those cases where the added mass is important.

A third possibility, which has not been much exploited so far, consists in
treating explicitly the position of the fluid domain, by suitable extrapolation
from the information at previous time steps, while keeping the discretization
of the coupling conditions (13) implicit (see [39, 27]). In this work, we will
follow this approach. Moreover, thanks to the very simple structure model (1)
considered, we will derive a proper formulation which allows us to embed the
structure equation into the fluid problem, as a Robin-type boundary condition.
Hence, the simulation of the FSI problem (10), (1), (13) reduces to the solution
of fluid problems in ALE formulation with suitable Robin boundary conditions
and may be achieved with only a fluid solver which has such features (Robin

scheme). This approach can be easily extended to the structure equation (5),
leading to a boundary condition at the interface that we call generalized Robin

condition. The idea of embedding the structure equation into the fluid has
already been considered in [12] although in this work the authors do not move
at all the fluid domain.

We will also consider the possibility of subiterating at each time step on
the position of the interface (implicit treatment of the interface). This strategy
corresponds to a fixed-point algorithm and produces at convergence the solution
of the monolithic problem. This approach to obtain the monolithic solution is
also very attractive since, according to our preliminary results, the convergence
seems to be fast also in presence of a large added mass effect (see Section 7.1).

Let us start with the case in which the interface position is treated explicitly.

4.1 Explicit treatment of the interface position (Explicit Robin
scheme)

Let us consider a time discretization of the weak formulation (18). Let us set
tn = n∆t, with ∆t the time step and let us consider the Implicit-Euler scheme
for the fluid equation, with a semi-implicit treatment of the convective term,
and an implicit first order BDF approximation for the structure equation (5),
namely

ρshs
ηn+1 − 2ηn + ηn−1

∆t2
−∇ · (T∇ηn+1) + β2η

n+1 = fn+1
s .

In what follows, the superscript t will be replaced by n to indicate quantities eval-
uated at time tn. Moreover, we consider an explicit treatment of the movement
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of the fluid domain, solving the equations at time tn+1 in Ωn, i.e. using a first
order approximation. We obtain the following time discretization of problem
(18): find un+1 ∈ V n

g, pn+1 ∈ Qn and ηn+1 ∈ W 0 such that, for each n,





1

∆t
(un+1,v)n + a(un+1,v)n + (((un − w̃n) · ∇)un+1,v)n − (pn+1,∇ · v)n+

+
ρshs

∆t2
(ηn+1, χ)Γ0 + (T∇ηn+1,∇χ)Γ0 + (β2η

n+1, χ)Γ0 =

=
1

∆t
(un,v)n +

∫

Γn
N

h · v dγ +
ρshs

∆t2
(2ηn − ηn−1, χ)Γ0

(q,∇ · un+1)n = 0

u0 = u0,
∂η0

∂t
= (u0 · a3)|Γ0 , η0 = η0

(19)
for all (v, χ) ∈ Sn and q ∈ Qn and where we denote by (·, ·)m the L2(Ωm) inner
product. Moreover, we have denoted with um, pm and ηm the approximations
of the exact quantities at t = tm. The discretization of the second derivative in
time of the structure displacement should be properly adapted at the first time
step, in order to take properly into account the initial conditions. Let us also
introduce a time discretization of the interface conditions (13)1:

(ηn+1 − ηn) ◦ (xn
f )−1

∆t

∣∣∣
Γn

= (un+1 · ã3)|Γn . (20)

We point out that the interface condition (20) is treated implicitly, while the
movement of the domain explicitly. This allows to balance properly the energy
exchange between fluid and structure and obtain a stable algorithm (see Sections
4.3 and 7).

Remark 1 The structure time discretization scheme considered in (19) (corre-
sponding to a first order backward difference method) has been chosen for con-
venience, although it is highly dissipative. Second order schemes, such as the
mid-point or the Houbolt one, could be considered as well.

4.1.1 Inertial-algebraic model

Let us consider for the structure an inertial-algebraic model, i.e. problem (16)
with T = 0 and β2 = β. For the sake of simplicity, let us pose h = 0 and g = 0.
Moreover, we adopt the shorthand notations σ3 = (σf ã3) · ã3 and, for a given
function z, z3 = z · ã3. Let us derive the explicit Robin scheme. Thanks to (20),
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from (19) and the choice of the test functions in (17), we obtain:

(un+1 − un

∆t
,v

)
n

+ a(un+1,v)n + (((un − w̃n) · ∇)un+1,v)n+

−(pn+1,∇ · v)n =

= −
∫

Γ0

(ρshs

∆t2
(ηn+1 − 2ηn + ηn−1) + βηn+1

)
v3 ◦ xn

f dγ =

= −
∫

Γ0

(ρshs

∆t
+ β∆t

)
(un+1

3 ◦ xn
f )(v3 ◦ xn

f ) dγ+

−
∫

Γ0

((
− ρshs

∆t2
+ β

)
ηn +

ρshs

∆t2
ηn−1

)
v3 ◦ xn

f dγ =

= −
∫

Γn

(ρshs

∆t
+ β∆t

)
un+1

3 v3δ
n dγ+

−
∫

Γn

((
− ρshs

∆t2
+ β

)
ηn +

ρshs

∆t2
ηn−1

)
◦ (xn

f )−1v3δ
n dγ.

(21)

For the space discretization of this problem and of the harmonic extension
(12) and (11), let us introduce two inf-sup compatible finite dimensional sub-
spaces V n

h ⊂ V n and Qn
h ⊂ Qn and the finite dimensional subspaces V n

g,h ⊂ V n
g

and M 0
h ⊂ M0. Therefore, we can consider the following algorithm for the

solution of the coupled problem given by (18), with T = 0 and β2 = β:

Algorithm 1

Given the quantities un
h, ηn

h ,xn
f and the domain Ωn

1) Solve the fluid problem on the configuration Ωn: find un+1
h ∈

V n
g,h and pn+1

h ∈ Qn
h such that





1

∆t
(un+1

h ,v)n + a(un+1
h ,vh)n + (((un

h − w̃n
h) · ∇)un+1

h ,vh)n+

+

∫

Γn

(ρshs

∆t
+ β∆t

)
un+1

3,h v3,hδn dγ − (pn+1
h ,∇ · vh)n =

=
1

∆t
(un

h,vh)n +

∫

Γn
N

h · v dγ+

−
∫

Γn

((
− ρshs

∆t2
+ βηn

h

)
+

ρshs

∆t2
ηn−1

)
◦ (xn

f )−1v3,hδn dγ

(qh,∇ · un+1
h )n = 0

(22)
for all vh ∈ V n

h and qh ∈ Qn
h.

2) Compute the structure displacement from (20)

ηn+1
h = ∆t(un+1

3,h ◦ xn
f )|Γ0 + ηn

h .

3) Solve the harmonic extension operator: find wn+1
h ∈ M0

h such

that {
(∇wn+1

h ,∇ψh)0 = 0

wn+1
h |Γ0 = (un+1

h ◦ xn
f )|Γ0

for all ψh ∈M0
h.
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4) Move the points of the fluid domain

xn+1
f (x0) = xn

f (x0) + ∆twn+1
h , ∀x0 ∈ Ω0.

We point out that, thanks to (21), we do not need to solve the structure
equation anymore, since it is embedded in the fluid problem. The latter is
actually a problem with Robin boundary conditions for the normal component
of the velocity on Γn, namely:

(
σn+1

3 + δn
(ρshs

∆t
+ β∆t

)
un+1

3

)∣∣∣
Γn

=

= −
((

− ρshs

∆t2
+ β

)
ηn +

ρshs

∆t2
ηn−1

)
◦ (xn

f )−1δn. (23)

This condition allows one to couple in an implicit way the interface conditions
(13) by solving only a fluid problem, i.e. without subiterating. This can be
obtained, for example, resorting to an available standard fluid solver. Therefore,
since we are treating in an explicit way the movement of the fluid domain,
with this algorithm we have to solve only one fluid problem and one harmonic
extension equation at each time step.

4.1.2 Pre-stressed model

Let us consider all the terms in (16). We introduce the notation

C = ∇ξφ = [a1,a2] ∈ R
3×2, Fn = ∇x0

xn
f ∈ R

3×3

where φ is the mapping defining the reference membrane surface Γ0 (see Sec-
tion 2.1). The pre-stress tensor in the reference configuration Γ0 expressed in
Cartesian coordinate is then given by

T̃ = CTCT ∈ R
3×3.

We point out that T̃ can be computed starting from the reference configuration
Γ0. In this case, equation (21) becomes:

1

∆t
(un+1,v)n − 1

∆t
(un,v)n + a(un+1,v)n+

+(((un − w̃n) · ∇)un+1,v)n − (pn+1,∇ · v)n+

−
∫

Γn

((ρshs

∆t
+ β2∆t

)
un+1

3 v3 + ∆t Fn T̃ (Fn)T ∇un+1
3 · ∇v3

)
δn dγ+

−
∫

Γn

((
− ρshs

∆t2
+ β2

)
ηn +

ρshs

∆t2
ηn−1

)
◦ (xn

f )−1v3δ
n dγ+

−
∫

Γn

Fn T̃ (Fn)T ∇(ηn ◦ (xn
f )−1) · ∇v3δ

n dγ.

The operator ∇ in the previous equation has to be understood as a derivation
with respect to the current coordinate xf . We point out that in this case we
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do not recover a Robin boundary condition at the interface, since it is necessary
to build also a differential operator on this part of boundary. In particular, we
have the following boundary condition

(
σn+1

3 +
(
δn

(ρshs

∆t
+ β2∆t

)
un+1

3 + ∆t∇ · (δnFnT̃ (Fn)T∇un+1
3 )

)
δn

)∣∣∣
Γn

=

= −
(
δn

(
− ρshs

∆t2
+ β2

)
ηn + δn ρshs

∆t2
ηn−1 + ∇ · (δnFnT̃ (Fn)T∇ηn)

)
◦ (xn

f )−1.

(24)
We refer to condition (24) as generalized Robin condition.

4.2 Implicit treatment of the interface position (Implicit Robin
scheme)

If we want to treat in an implicit way also the interface position, we can think to
embed Algorithm 1 in an iterative cycle, in which the fluid domain is updated
at each subiteration until convergence. We detail the case of an algebraic model
for the structure and for the sake of clarity we omit the index h, corresponding
to space discretization:

Algorithm 2

Given the quantities un, ηn,xn
f and the domain Ωn and posing un+1

0 =

un,xn+1
f,0 = xn

f and Ωn+1
0 = Ωn, do until convergence

1) Solve the fluid problem with Robin boundary condition at the

interface on the configuration Ωn+1
k : find un+1

k+1 ∈ V n+1
g,k

and pn+1
k+1 ∈ Qn+1

k such that





1

∆t
(un+1

k+1 ,v)n+1,k + a(un+1
k+1 ,v)n+1,k+

+(((un+1
k − w̃n+1

k ) · ∇)un+1
k+1 ,v)n+1,k+

+

∫

Γn+1

k

β∆tun+1
3,k+1v3δ

n+1
k dγ − (pn+1

k+1 ,∇ · vh)n+1,k =

=
1

∆t
(un,v)n+1,k +

∫

Γn+1

N,k

h · v dγ −
∫

Γn+1

k

βηn ◦ (xn+1
f,k )−1v3δ

n+1
k dγ

(q,∇ · un+1
k+1)n+1,k = 0

for all v ∈ V n+1
k and q ∈ Qn+1

k .

2) Compute the structure displacement

ηn+1
k+1 = ∆t(un+1

3,k+1 ◦ xn+1
f,k )|Γ0 + ηn.
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3) Solve the harmonic extension operator: find wn+1
k+1 ∈ M 0 such

that {
(∇wn+1

k+1 ,∇ψ)0 = 0

wn+1
k+1 |Γ0 = (un+1

k+1 ◦ xn+1
f,k )|Γ0

for all ψ ∈M 0.

4) Move the points of the fluid domain

xn+1
f,k+1(x0) = xn

f (x0) + ∆twn+1
k+1 , ∀x0 ∈ Ω0.

5) Check the stopping criterion

max
{‖ηn+1

k+1 − ηn+1
k ‖L2(Γ0)

‖ηn+1
k+1‖L2(Γ0)

;
‖un+1

k+1 − un+1
k ‖L2(Ωn+1

k )

‖un+1
k+1‖L2(Ωn+1

k )

;
‖pn+1

k+1 − pn+1
k ‖L2(Ωn+1

k )

‖pn+1
k+1‖L2(Ωn+1

k )

}
< ε.

(25)
If satisfied, then exit.

We have indicated with (·, ·)m,l the L2(Ωm
l ) inner product. We point out that, at

convergence, the convective term is also treated in an implicit way. Obviously,
Algorithm 2, as well as Algorithm 1, can be easily extended to the inertial-
algebraic and pre-stressed structure models.

4.3 Stability analysis of the Robin schemes

In this section, we want to derive an a priori estimate for the algorithms proposed
in the previous sections. To simplify the presentation, we consider only the space-
continuous case. Yet the extension of the results to the fully discrete problem
is straightforward. We limit our analysis to the homogeneous case, g = 0 and
h = 0, and to the algebraic model case. Moreover, for the sake of simplicity,
we refer to a divergence-free subspace of V n+1. We recall the following identity
(geometrical conservation law (GCL), see [16, 17]):

∫

Ωn

ψiψj dω −
∫

Ωn−1

ψiψj dω = Itn

tn−1

[ ∫

Ωt

ψiψj∇ · w̃ dω
]
, (26)

where ψk is the generic finite element basis function and I tn

tn−1 is a time inte-
gration quadrature formula whose degree of exactness is d · s − 1, where d is
the dimension of the fluid domain and s is the degree of the polynomial used
to represent the time evolution of the nodal displacement. For example, in our
case d = 3 and if we choose a linear time variation of the nodal displacement in
each time slab (s = 1), in order to satisfy (26) it is sufficient to use a two point
Gauss quadrature formula, obtaining
∫

Ωn

ψiψj dω −
∫

Ωn−1

ψiψj dω =
∆t

2

∑

i=±∆t
√

3/4

∫

Ωn−1/2+i

ψiψj∇ · w̃n−1/2+i dω.
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In the particular case of cylindrical configuration and radial displacement, it can
be shown (see [16]) that a midpoint rule is sufficient to satisfy (26), namely:

∫

Ωn

ψiψj dω −
∫

Ωn−1

ψiψj dω = ∆t

∫

Ωn−1/2

ψiψj∇ · w̃n−1/2 dω. (27)

Hereafter, we detail the case of cylindrical geometry where a mid-point rule can
be employed. The result generalizes immediately to a more complex geometry
when adopting the proper quadrature formula so as to satisfy the GCL. Let
us consider the conservative formulation of problem (21) (with ρs = 0), that
becomes (see [16, 17]):

1

∆t
(un,v)m − 1

∆t
(un−1,v)m−1 + a(un,v)m−1/2+

+(((um − w̃m) · ∇)un,v)m−1/2 − (∇ · w̃mun,v)m−1/2+

+

∫

Γm−1/2

β(∆tun
3 + ηn−1 ◦ (x

m−1/2
f )−1)v3δ

m−1/2 dγ = 0

(28)

where m = n for the implicit Robin scheme and m = n − 1 for the explicit
Robin scheme. We point out that, since we consider a linear time variation of
the nodes displacement, the domain velocity w̃m is constant in the time slab
[tm−1, tm] and, in particular, we have w̃m = w̃m−1/2.

Let us indicate with ‖·‖n the L2(Ωn) norm and with ‖·‖Γ0
the L2(Γ0) norm.

The following result holds true

Theorem 1 Setting N = T/∆t, if

(um · ã3)|Γm−1/2

N

≥ 0, (29)

the following a priori estimate for problem given by (28) and (20) in the homo-
geneous case, g = 0 and h = 0, holds:

‖uN‖2
M + 2µCk∆t

M∑

k=M−N+1

‖∇uk‖2
k−1/2 + β‖ηN‖2

Γ0 ≤ ‖u0‖2
0 + β‖η0‖2

Γ0 , (30)

with M = N − 1 for the explicit Robin algorithm and M = N for the implicit
Robin one and where we pose Ω−1/2 = Ω0.

Proof. Taking v = un in (28), we obtain:

1

∆t
‖un‖2

m + µCk‖∇un‖2
m−1/2 −

1

2
(∇ · (um − w̃m), |un|2)m−1/2+

+
1

2

∫

∂Ωm−1/2

(um − w̃m) · ã3|un|2dγ − (∇ · w̃m, |un|2)m−1/2+

+

∫

Γm−1/2

β(∆tun
3 + ηn−1 ◦ (x

m−1/2
f )−1)un

3 δm−1/2 dγ ≤ 1

∆t
(un−1,un)m−1 (31)
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where Ck is the Korn’s inequality constant. Recalling (27), the right hand side
can be bounded:

(un−1,un)m−1 ≤ 1

2
‖un‖2

m−1 +
1

2
‖un−1‖2

m−1 =

=
1

2
‖un‖2

m +
1

2
‖un−1‖2

m−1 −
∆t

2
(∇ · w̃m, |un|2)m−1/2

and (31) becomes

1

2∆t
‖un‖2

m + µCk‖∇un‖2
m−1/2 −

1

2
(∇ · (um − w̃m), |un|2)m−1/2+

+
1

2

∫

∂Ωm−1/2

(um − w̃m) · ã3|un|2 dγ − (∇ · w̃m, |un|2)m−1/2+

+

∫

Γm−1/2

β(∆tun
3 + ηn−1 ◦ (x

m−1/2
f )−1)un

3 δm−1/2 dγ ≤

≤ 1

2∆t
‖un−1‖2

m−1 −
1

2
(∇ · w̃m, |un|2)m−1/2.

Recalling that

{ ∇ · um = 0, um|
Γ

m−1/2

D

= 0,

(w̃m · ã3)Γm−1/2

N ∪Γ
m−1/2

D

= 0, w̃m|Γm = um|Γm

and using (20), we obtain:

1

2∆t
‖un‖2

m + µCk‖∇un‖2
m−1/2 +

1

2

∫

Γ
m−1/2

N

um · ã3|un|2 dγ+

+

∫

Γ0

βηn (ηn − ηn−1)

∆t
dγ ≤ 1

2∆t
‖un−1‖2

m−1. (32)

If we assume that hypothesis (29) holds, we obtain

∫

Γ
m−1/2

N

um · ã3|un|2 dγ ≥ 0.

Therefore, from (32) we obtain

‖un‖2
m + 2µCk∆t‖∇un‖2

m−1/2 + β‖ηn‖2
Γ0 ≤ ‖un−1‖2

m−1 + β‖ηn−1‖2
Γ0 .

Summing up over the index n, we obtain the final estimate (30). �

We point out that assumption (29) is verified in many applications, for exam-
ple in haemodynamics, where the heart pumps the blood only in the downstream
direction (see [46]).
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5 Flow rate boundary conditions

In many engineering fluid dynamic problems, some portions of the computational
domain’s boundary do not correspond to any physical boundary and are just
introduced to limit the domain of interest (see Figure 3). The prescription of
boundary conditions on such artificial boundaries can be source of inaccuracies.
In particular, in several contexts of internal fluid dynamics there is sometimes the

Figure 3: Example of truncated computational domain: carotid bifurcation (cast
by D. Liepsch - FH Munich)

.

need to deal with defective boundary data sets, namely data that are not enough
to have a mathematically well posed problem. For example, in haemodynamics
it is often the case that only the flow rate

∫

Σ
u · ã3 dσ = F (33)

is available from clinical measurements as boundary condition over an artificial
section Σ. This condition also appears in the geometrical multiscale modelization
of the cardiovascular system (see [13, 45, 43]), where a 3D model is coupled with
a reduced one, receiving from it only defective data as boundary conditions at
the interface. The problem arising by imposing condition (33) is not well posed,
since it prescribes only an average information over all the boundary Σ. The flow
rate problem, i.e. the imposition of only condition (33) over the whole section
Σ, has been extensively analyzed for the rigid case in [28, 14, 47, 48, 49, 21].
In particular, in [14, 47, 48, 49] a flow rate boundary condition is treated as a
constraint, imposed by a Lagrange multiplier (augmented formulation). Here,
we want to extend this approach to the compliant case, in combination with
the Robin scheme. Referring to Figure 2 (right), we want to prescribe the flow

rates Fi at the artificial sections Γt
i, i = 1, . . . ,m. Therefore, setting Ṽ

t
= {v ∈

H1(Ωt) : (v · ãα)|Γt = 0}, the weak formulation (15) is replaced, for each time
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t, by the following augmented one (see [47])





(DAu

Dt
,v

)
+ a(u,v) + (((u− w̃) · ∇)u,v) − (p,∇ · v)+

+

m∑

i=1

λi

∫

Γt
i

v · ã3 dγ =

∫

Γt

σ3v3 dγ

(q,∇ · u) = 0
u|t=0 = u0∫

Γt
i

u · ã3 dγ = Fi(t), i = 1, . . . ,m

for all v ∈ Ṽ
t

and q ∈ Qt and where Fi(t), i = 1, . . . ,m are given continu-
ous functions and λi(t) ∈ L2(0, T ), i = 1, . . . ,m are the (unknown) Lagrange
multipliers.

For the sake of simplicity, in the sequel let us consider an algebraic model
for the structure and the explicit Robin scheme. Therefore, it is sufficient to
replace problem (22) at step 1) in Algorithm 1 with the following augmented

formulation: find un+1 ∈ Ṽ n
and qn+1 ∈ Qn, such that





1

∆t
(un+1,v)n + a(un+1,v)n + (((un − w̃n) · ∇)un+1,v)n − (pn+1,∇ · v)n+

+

∫

Γn

β∆tun+1
3 v3δ

n dγ +

m∑

i=1

λn+1
i

∫

Γn
i

v · ã3 dγ =

=
1

∆t
(un,v)n −

∫

Γn

βηn ◦ (xn
f )−1v3δ

n dγ

(q,∇ · un+1)n = 0∫

Γn
i

un+1 · ã3 dγ = Fn+1
i , i = 1, . . . ,m

(34)

for all v ∈ Ṽ n
and q ∈ Qn, where we set F n

i = Fi(t
n), i = 1, . . . ,m. For the

numerical solution of problem (34), we can use one of the algorithms proposed
in [47, 48, 49].

Remark 2 Due to the mass conservation law, in the rigid case is not possible
to prescribe an arbitrary flow rate on all the artificial section. For example,
at the section Γt

1, the flow rate F1(t) has to satisfy F1(t) = −∑m
j=2 Fj(t), for

compatibility with the mass conservation equation. In the compliant case instead,
this compatibility condition does not hold anymore and it is possible to prescribe
the flow rate on all the artificial sections. In this case, the mass conservation
law reads:

m∑

i=1

∫

Γt
i

u · ã3 dγ +

∫

Γt

∂η

∂t
◦ x−1

f dγ = 0.
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Nevertheless, if we use an iterative fluid/structure algorithm to solve the fluid-
structure coupled problem in which the structure prescribes a Dirichlet datum
at the interface to the fluid (as, e.g., in the Dirichlet-Neumann algorithm, see
for example [39, 7]), an incompatibility might arise again between the flow rates
Fi, i = 1, . . . ,m and the velocity at the interface, if

∫

Γt

(∂η

∂t
◦ x−1

f

)
dγ 6= −

m∑

i=1

Fi(t).

This problem can be overcome by forcing that the mass conservation law is sat-
isfied through the introduction of a Lagrange multiplier also for the displacement
of the interface, as suggested in [26, 39]. However, when adopting the Robin
method, this problem is completely overcome and no difficulties are encountered
in imposing the flow rate on all the artificial sections. This is a clear advantage
of the Robin scheme with respect to Dirichlet-Neumann strategy.

6 Absorbing boundary conditions

It is well known that, even if the fluid motion is described by parabolic equations,
the nature of the fluid-structure interaction problem in haemodynamics presents
some features of hyperbolic type. In particular, pressure waves travel along the
fluid domain (see [40, 4, 18, 13]). The imposition of a suitable outflow boundary
condition, which does not induce spurious reflections, is a major issue in this
kind of problems. In order to avoid the phenomenon of spurious reflections, it is
possible to prescribe a suitable absorbing boundary condition, by coupling the
3D compliant model with a 1D reduced model, as proposed in [13] (geometrical
multiscale approach). In particular, referring to the compliant cylinder in Figure

z

Γ

Γ
in

out

r Ω

Figure 4: Reference cylinder Ω

4, whose length is L, a simplified 1D model can be obtained integrating at each
time t the Navier-Stokes equations over each section S normal to the axis z of the
cylinder. The 1D model reads, for each t > 0 and 0 < z < L, (see [13, 18, 20]):





∂A

∂t
+

∂F

∂z
= 0

∂F

∂t
+

∂

∂z

(
α

F 2

A

)
+ A

∂P

∂z
+ KR

F

A
= 0

(35)

where F is the flow rate through S, A is the area of S, P the mean pressure
over S, KR is a resistance parameter which accounts for the fluid viscosity,
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while α accounts for the shape of the velocity profile over S. For example, the
choice α = 1 corresponds to a flat velocity profile. System (35) is a system of
two equations in three unknowns (P,F,A). For its closure, a third equation is
provided by a suitable wall model relating the radial displacement (and therefore
the area A) to the mean pressure P . In particular, considering the pure algebraic
model given by (1), with ρs = 0, we obtain

P =
β

π
(
√

A −
√

A0) (36)

where A0 is the area of the surface S at t = 0, the parameter β is given by (8) and
we approximate the normal stress with the pressure. Then, system (35) turns
out to be hyperbolic and it allows to capture propagative phenomena along the
axis of the cylinder. It possesses two distinct eigenvalues and the corresponding
eigenfunctions are the characteristic variables, given by (see [39, 13])

W1,2 =
F

A
± 2√

ρs
(

√
P + β

√
A0 −

√
β
√

A0).

Here, we propose to derive an absorbing outflow boundary condition without
coupling the 3D model with the reduced one, but simply by imposing that the
characteristic variable entering in the 3D computational domain is zero, meaning
that no information is entering. In particular, we impose

W2|Γt
out

=
(F

A
− 2√

ρs
(

√
P + β

√
A0 −

√
β
√

A0)
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Γt
out

= 0,

obtaining

P |Γt
out

=
(( 1

2
√

2

F

A
+

√
β
√

A0
)2

− β
√

A0
)∣∣∣

Γt
out

. (37)

Relation (37) relate the mean pressure P to the flow rate F at the outlet. Since
the latter quantity is unknown, we can treat it in an explicit way, interpreting
the mean pressure boundary condition (37) as a normal stress, constant in space,
as suggested in [28]. This leads to the following absorbing Neumann boundary

condition at the outlet

(σf
n+1ã3)|Γn

out
=

((( 1

2
√

2

Fn

An
+

√
β
√

A0
)2

− β
√

A0
)
ã3
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Γn

out

. (38)

Obviously, in the implicit Robin Algorithm 2, we can take the flow rate F n+1
k

at the previous subiteration instead of F n in (38) (and similarly for An+1
k and

Γn+1
out,k).

Alternatively, one could treat in an explicit way the mean pressure in (37)
and prescribe the following absorbing flow rate boundary condition at the outlet

∫

Γn
out

un+1 · ã3 dγ = Fn+1|Γn
out

=
(
2
√

2An
(√

β
√

A0 − Pn −
√

β
√

A0
))∣∣∣

Γn
out

,

(39)
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which can be imposed using the flow rate approach described in Section 5.
We point out that, for a geometry like the one depicted in Fig. 2, we can

assume that condition (37) holds at each outflow section, provided that we ideally
extend each brunch as an infinitly long cylinder. Therefore, we can reduce the
spurious reflections also in a general domain, applying conditions (38) or (39) at
the outflows.

7 Numerical results

In this section we present some numerical results with the aim of testing the
methodologies proposed in Sections 3, 4, 5 and 6. In particular, in Section
7.1 we test Algorithms 1 and 2, with various structure models. In Section
7.2 we compare the numerical results obtained with and without prescribing
an absorbing boundary condition. Finally, in Section 7.3 we show some re-
sults concerning the compliant flow rate problem, comparing them with the
solution obtained in the rigid case. All the simulations are performed in a
cylindrical domain with the 2d Finite Element code Freefem++ (see [29]) in
axi-symmetric form. We use, if not otherwise specified, P1bubble− P1 elements,
∆t = 10−3 s, µ = 0.035 cm3/s, β = 4 · 105 dyne/cm, ρs = 1 g/cm3, hs = 0.1 cm
and µs = 1.5·104 dyne cm. These values are taken from problems in computa-
tional haemodynamics, that inspired the present work.

7.1 Robin algorithms assessment

In the simulations of this section, the computational domain is a cylinder gen-
erated by the rotation of a rectangle 6 × 0.5 cm around its axial axis, with a
space grid h = 0.05 cm. Moreover, we impose the following impulsive pressure
gradient between the inlet and the outlet:

∆P =

{
5 · 103 dyne/cm2 for t < 0.005 s
0 for t ≥ 0.005 s.

In the first set of simulations, we aim at testing Algorithm 1 with the different
structure models proposed in Section 2, namely: algebraic (ρs = 0, T = 0),
inertial-algebraic (T = 0) and pre-stressed models. Figure 5 and Figure 6 show
the pressure field and the displacement of the structure, respectively, computed
in the three cases at different times.

In the second simulation, we want to compare the results obtained using
Algorithm 1 and Algorithm 2, i.e. using the explicit Robin scheme and the
implicit Robin scheme, respectively. In both cases we use an algebraic model
for the structure and we set ∆t = 0.0005 s. For the implicit Robin scheme we
use the stopping criterion (25) and we do not need to use a relaxation procedure
when updating the fluid domain. For this simulation, Algorithm 2 needs 13.55
subiterations (in average) for each time step. Figure 7 shows the pressure and
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Figure 5: Mean pressure on the longitudinal sections computed with Algorithm
1 - t = 0.004 s (left, up), t = 0.08 s (right, up), t = 0.012 s (left, bottom) and
t = 0.018 s (right, bottom).

the displacement of the structure obtained with the two schemes. We point out
that the two results are in excellent agreement and this suggests that, in the
case of a thin walled structure, the implicit treatment of the coupling conditions
is essential for stability purpose, whereas the implicit treatment of the interface
position does not seem to improve substantially the accuracy of the solution.

7.2 Absorbing boundary conditions

In this section we want to assess the benefit produced by the absorbing boundary
conditions (38) and (39), for the same test case shown in Section 7.1, using
Algorithm 1 and an algebraic model. Figure 8 compares the solutions computed
with and without prescribing the absorbing condition (38). In particular, in
the latter case we have imposed standard stress-free boundary conditions on the
outflow section. We observe that at t = 0.01 s the wave pressure has not yet
reached the end of the domain and therefore the two solutions coincides, while at
t = 0.05 s the reflections have started and the two solutions differ significantly.
Moreover, Figure 9 shows the mean pressure at surfaces distant 1.4 cm and
3 cm from the inlet, in the two cases. We notice a significant reduction of the
spurious reflections by imposing condition (38). In Figure 10 (left) we compare
the mean pressure obtained prescribing condition (38) in the algebraic, inertial-
algebraic and pre-stressed models cases. Finally, in Fig. 10 (right) we compare
the solutions obtained by using the mean pressure (38) and the flow rate (39)
as absorbing boundary condition at the outlet. The latter has been prescribed
with the GMRes-based algorithm (GS) proposed in [47]. In this plot, we have
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Figure 6: Displacement of the structure computed with Algorithm 1 - t = 0.004 s
(left, up), t = 0.008 s (right, up), t = 0.012 s (left, bottom) and t = 0.018 s (right,
bottom).

considered an algebraic model for the structure and ∆t = 0.002 s. We notice
that the second approach also reduces considerably the spurious reflections, even
though it is more computationally expensive than the other one (see [47]).

7.3 The Womersley solution in a compliant domain

In this section we consider a fluid-structure counterpart of a well-known solu-
tion, namely the Womersley solution, valid for a pulsatile flow in a rigid vessel
(see [50]). The Womersley solution can be obtained by imposing at the inlet
a sinusoidal flow rate and a free stress condition at the outlet. Such solution
is of great importance in haemodynamics, since it evidences the possibility of
local inversions of the axial velocity during a cardiac beat. Also, the solution
corresponding to a more complex periodic wave form of the inlet flow rate can
be obtained by superimposition of elementary Womersley solutions.

The goal of this section is to investigate numerically at what extent the
Womersley solution is a good description of a pulsatile flow in a compliant ves-
sel. The major difficulty is due to the fact that the duration of a cardiac beat is
much longer than the “propagation” time (i.e. tha time that information takes
to go from inlet to outlet). As a consequence, a bad choice of outlet boundary
conditions (i.e. partially reflecting) will completely spoil the solution. To obtain
a fluid-structure equivalentof the Womersley solution we consider a complaint
cylindrical domain, the algebraic membrane model (1) for the artery deforma-
tion, with β = 105 dyne/cm, the following flow rate boundary condition at the
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Figure 7: Mean pressure on the longitudinal sections (up) and displacement of
the structure (bottom) computed with Algorithm 1 and Algorithm2 - algebraic
model - t = 0.008 s (left) and t = 0.016 s (right).

inlet Γ
Q = 4 · sin(2πt) cm3/s, (40)

and the absorbing boundary condition (38) at the outlet. The computational
domain is generated by the rotation of a rectangle 2.5 × 0.5 cm around its axis,
with a space discretization parameter h = 0.0025 cm.

Figure 12 shows the axial velocity profile on a radius at the inlet Γ, at section
Γ1 (distant 1 cm from the inlet) and at section Γ2 (distant 2 cm from the inlet,
see Fig. 11), for the rigid and the compliant case. Since in the compliant case
the radius deforms, to be able to compare the two solutions we have recast
the profile to the reference configuration. Observe that, at the inlet the two
solutions are very similar, while moving into the domain, the compliant solution
is delayed. This was foreseeable, since in the compliant case the propagation
of the information is not immediate as in the rigid case. In particular, we
have estimated a velocity of propagation v = 222.22 cm/s, leading to a delay
φ = 0.009 s between sections Γ and Γ2. This is confirmed by Figures 12 (right)
where the compliant solution is also compared with the rigid solution at time
t − φ, showing that the Womersley solution is carried along the vessel.

We point out that we were able to achieve this comparision at a low compu-
tational cost thanks to our Robin scheme and, mostly, to the proposed absorbing
boundary conditions.

This simulation shows that the Womersley profile is meaningful also in the
compliant case provided we properly account for the delay due to the propagation
of information at finite speed.
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Figure 8: Pressure obtained with (left) and without (right) prescribing condition
(38) - Algorithm 1 - algebraic model - t = 0.01 s (up) and t = 0.05 s (bottom).

Figure 9: Mean pressure at a section distant 1.4 cm (left) and 3 cm (right) from
the inlet - Algorithm 1 - algebraic model.
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Figure 12: Axial velocity on a radius in the reference domain at the inlet Γ (left),
at section Γ1 (middle) and at section Γ2 (right) - t = 1.070 s (up) and t = 1.190 s
(down).
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8 Conclusions

In this paper we have proposed a simple structure model, based on the assump-
tion that the structure is thin, behaves like a membrane and deforms mainly
in the normal direction to the mean surface. It can be written for an arbitrary
surface and generalizes the independent rings and the generalized string models,
introduced in literature for a cylindrical geometry. Due to its simplicity, it is
very attractive for realistic applications, e.g. in haemodynamics.

Secondly, we have proposed an efficient fluid-structure coupling strategy,
where the membrane model is embedded into the fluid equations resorting to
generalized Robin boundary conditions. The resulting numerical scheme treats
automatically in an implicit way the coupling fluid-structure conditions. On
the other hand, the interface position can be treated explicitely or implicitely
by fixed point iterations. In both cases, we have proven both theoretically and
numerically the stability of the scheme. In particular the explicit Robin scheme
is very attractive since it is stable and only requires one fluid solution per time
step. On the other hand, the implicit Robin scheme seems to be competitive with
other available fully implicit algorithms, since from our preliminary results, it
requires a quite small number of subiterations and does not need any relaxation.
However, a complete comparision in terms of computational costs is still under
development.

Finally, we have proposed a new absorbing boundary condition to reduce
the spurious refelctions induced by the truncation of the computational domain.
These absorbing conditions are related to the geomatrical multiscale approach
proposed in [13], yet avoid the coupling with the reduced 1D model and, in this
respect, are much easier to implement. Our preliminary numerical results show
that they work very well, at least for a cylindrical geometry.

With the proposed numerical scheme and the use of the proposed absorbing
boundary conditions, we were able to show that the Womersley profile (i.e. the
analytical solution in the rigid case) is meaningful also in the compliant case,
provided we properly account for the delay due to the propagation of information
at finite speed. This can be of a particular ineterest in haemodynamics, since the
Womersley profile is always taken as a possible reference solution for pulsatile
flows.
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