
An Effective Hybrid and Adaptive Caching Network
Framework Approach In Time-to–Live (TTL) Based
Data Item for Peripatetic Computing Environment
Srimanchari P  (  srimancharieasc@gmail.com )

Erode Arts and Science College https://orcid.org/0000-0002-2271-8254
Anandharaj G 

Adhiparasakthi College of Arts and Science

Research Article

Keywords: Hybrid and adaptive caching, storage systems, data availability, cache replacement technique,
cache invalidation technique.

Posted Date: June 15th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-521325/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-521325/v1
mailto:srimancharieasc@gmail.com
https://orcid.org/0000-0002-2271-8254
https://doi.org/10.21203/rs.3.rs-521325/v1
https://creativecommons.org/licenses/by/4.0/


An Effective Hybrid and Adaptive Caching Network 

Framework Approach In Time-to –Live (TTL) Based Data Item 

for Peripatetic Computing Environment 
 

1Dr. P. Srimanchari and 2Dr. G. Anandharaj  
1Assistant Professor, Department of Computer Science 

Erode Arts and Science College, Erode – 638009 

srimanchari@gmail.com 

 
2Associate Professor, Department of Computer Science 

Adhiparasakthi College of Arts and Science, Kalavai – 632506, Vellore (Dt) 

younganand@gmail.com 

 

 

Abstract 

Caching is a well established technique to improve the efficiency of data access. This 
research paper introduces a Hybrid and Adaptive Caching (HAC) approach to cache the 
data item based on the varying size, and, Time-to-Live (TTL) based invalidation of the 
data item in a mobile computing environment. Mobile nodes establish single-hop 
communication with the base station and ad-hoc peer to peer communication with other 
neighbor nodes in the network to access data items. The proposed work adjusts the caching 
functionality level based on the size of the data item and stores the cached data item in two 
different storage systems. The cache of each node is separated into Temporary Buffer (TB) 
and Permanent Buffer (PB) to improve the data access efficiency. This approach is based 
on the fact that the smaller size data (e.g. stocks) are updated for shorter Time-to-Live 
(TTL) whereas the larger size data (e.g. video) are updated only for longer TTL. This 
proposed work also suggests an adaptive cache replacement and cache invalidation 
technique to resolve the issues regarding bandwidth utilization and data availability. In 
cache replacement technique, the cached data item is effectively replaced based on the size 
of the data item and TTL value. A timestamp-based cache invalidation strategy where the 
cached data is validated according to the update history of the data items has also been 
introduced in this paper. The threshold values have greater impact on the system 
performance. Therefore, the threshold values are fine tuned such that they do not affect the 
system performance. The proposed approaches significantly improve the query latency, 
cache hit ratio and efficiently utilize the broadcast bandwidth. The simulation result proves 
that the proposed work outperforms the existing caching techniques.    
    
  
Keywords: Hybrid and adaptive caching, storage systems, data availability, cache 

replacement technique, cache invalidation technique.  
 
 
 

1. Introduction 

 

The performance level of the mobile data access can be significantly improved by 
caching frequently accessed data items at each mobile node’s buffer. Designing an 
effective mobile caching, cache replacement, and cache invalidation are the challenging 



task because of dynamic mobility and frequent disconnection of mobile nodes. The mobile 
environment considered is as hybrid, which is a combination of single hop connection with 
the base station and multi hop connection with other nodes using the peer-to-peer 
communication. The caching technique must be adaptive to both these communication 
systems. Nowadays, the mobile computing technology and computing power has improved 
significantly. However, the mobile computing environment includes frequent 
disconnection of mobile nodes, constricted bandwidth, and limited battery resources as a 
serious constraint [28].  

 
The major components of the mobile computing environment are mobile nodes and 

base station (or Mobile Service Stations). Each mobile node is made to communicate with 
one base station. A mobile node may be under the control of more than one base station. A 
disseminated data can be stored on both the mobile nodes and base stations, and they are 
queried and accessed over the wireless network. In such a hybrid environment, limitation 
on bandwidth restricts the amount of data that could be transmitted. Bandwidth utilization 
is the key issue in the mobile computing environment due to the expensive wireless 
medium. The disconnectivity rate and noise level are too high in a mobile computing 
environment when compared to conventional environment. A novel caching policy is 
presented especially for heterogeneous mobile environment in which each node computes 
their own caching policy independently regardless of central authority[24]. The prominent 
way to improve the mobile computing system performance is to adopt a caching technique 
[5]. The query access latency is significantly reduced as the data can be retrieved from the 
cache rather than forwarding the query request to the server. A caching technique must be 
always accompanied with an effective cache consistency [6], cache replacement and cache 
invalidation. Several caching techniques have been proposed for web environment [17] 
[10] and ad hoc networks [1]. 

 
 This work has proposed novel hybrid architecture to resolve the drawbacks in 

existing caching issues (data availability, proper bandwidth consumption, etc). The 
proposed mobile system is constructed through combining the mobile infrastructure based 
architecture with the ad hoc based P2P communication. This communication is being 
referred as an ad hoc based P2P data dissemination model. In order to reduce the 
bandwidth utilization and the access latency, the communication pattern is properly 
selected according to the size of the requested data item. In this approach, caching system 
is designed to use the less storage resources in the mobile communication network. In this 
approach, each mobile node is available with two storage systems, namely, Temporary 
buffer (TB) and Permanent buffer (PB).  Based on the size of the data item, the mobile 
node caches the data item in two different local buffers. The temporary buffer caches 
smaller size data items (stock data) are updated for every short Interval of time (less TTL), 
whereas the permanent buffer with large size data items (video) is updated for large 
interval of time (high TTL).  
  
1.1 Aim and Objectives 

 To design an efficient and adaptive caching mechanism for a hybrid mobile 
computing environment on considering data items of different sizes. 

 To propose a hybrid caching mechanism that optimizes the bandwidth utilization 
effectively. This objective is achieved on caching the data items based on the size 
of the data item and stores appropriately on TB and PB. 

 To suggest an effective and adaptive cache replacement technique and cache 
invalidation technique.   



1.2 Paper Organization 

 

This paper is organized as follows: Section 2 investigates the previous works that 
are related to caching, invalidation and replacement. Section 3 discusses the overview of 
the proposed hybrid and adaptive caching in the mobile environment. Section 4 suggests a 
hybrid and an adaptive caching technique. This technique ensures data availability in the 
hybrid mobile environment and reduces bandwidth consumption. Section 5 explains the 
experimental set up, simulation analysis, and simulation results. Section 6 concludes the 
paper.     

  
2. Previous Work 

 

 This section provides a survey on the previous works based on the adaptive cache 
concepts. It also includes the survey of adaptive cache invalidation and cache replacement 
techniques. 
 
2.1 Adaptive caching techniques 

 

 The cache management in a distributed mobile environment is not an easy task due 
to disconnected architecture, resource and energy constraints. An effective and hybrid 
distributed storage system is discussed in [21]. It is a combination of page cache and object 
cache. It caches page and object adaptively based on the locality. According to the 
application, it regulates the available cache space and decides whether to cache a page or 
an object adaptively. Hybrid adaptive caching considerably reduces the cache misses ratio 
and retaining the locality.   
 
 Semantic caching also supports mobile caching that answers only spatial queries on 
caching the required data items along with query descriptions. The drawback in semantic 
caching is that it can answer only to certain types of queries. It is much difficult to share 
the requested data items between various query types. This issue is resolved in [9] that 
propose a proactive caching scheme. This scheme caches the index addition to the 
requested object. The main idea behind caching the index is that it allows reuse of cached 
objects in order to answer all types of queries. The caching of the index considerably 
reduces the query response time. The demerit of this approach is that it does not support all 
types of queries, and it finds difficult to distribute all these types. 
 
 The cooperative caching in the mobile environment specifies that a mobile node 
can access the data in its neighbor’s cache. The concept of Cooperative Caching (COCA) 
has been well explained in [2]. COCA broadly classifies the mobile nodes into low activity 
and high activity and correspondingly they are known as Low Activity Mobile nodes 
(LAM), and High Activity Mobile nodes (HAM). COCA considerably reduces the system 
complexity and reduces the cache miss ratio. The cooperative caching is efficient only 
when all the cooperative caches the valuable data and thus, improves the cache hit ratio. 
The Group based Cooperative Caching (GroCOCA) [3] meet the requirement of each node 
along with its mobility model. In GroCOCA, a group of nodes that have a common 
mobility model are referred to as a Tightly Coupled Group (TCG).   
 
2.1.1 Other caching techniques 

 An effective cooperative caching was suggested in [16] to enhance system 
performance in wireless P2P networks including ad hoc and mesh networks. The suggested 



cooperative caching is asymmetric that places the data in cache effectively. The data 
queries are broadcasted to the cache layer on all nodes, but the requested data are 
broadcasted only to the cache layer of the nodes that actually require the data. The 
asymmetric cooperative caching reduce the overhead caused by copying data between the 
requester space and kernel space and also reduces average end to end delay.      
 Video data are cached in cellular network through small base stations called 
helpers. Cellular users requests video files and receives them through short range 
transmission i.e. they retrieve video file from helpers. If the helper does not have the 
corresponding file, it receives data from the base station. Femto caching optimizes the 
network architecture such that high rate backhauls are replaced by low rate backhauls [23]. 
It also designs architecture to perform coded and uncoded Femto caching. Uncoded Femto 
caching caches entire video file whereas coded Femto caching caches a segment of the 
video file. Femto caching reduces data access delay on using the helpers.     
 An approach ensuring efficient data access in Disruption Tolerant Networks 
(DTNs) is presented in [25] . It supports sharing and coordination between several nodes 
regarding cached data and hence, reduces data access delay. It deliberately places the 
caches data at a particular location called Network Central Location (NCL). NCL is 
selected appropriately based on the probabilistic selection metric. It ensures optimization 
between data access rate and overhead. 
 
2.2 Cache replacement techniques  

ACME [12] overcomes the drawbacks in distributed caching. ACME stands for 
Adaptive Caching design using Multiple Experts. ACME manages the replacement 
techniques among the distributed caches in order to increase the cache hit ratio. ACME 
assigns ratings to the existing cache replacement techniques on the basis of weight updated 
using machine learning algorithm. The caching node adjusts itself on assigning the weight 
based on the workload. The static cache replacement technique offers superior 
performance when combined with distributed networks.  A target driven cache 
replacement strategy is suggested in [19]. A generalized value function is used for the 
cache replacement technique. Rather than introducing multiple parameters, a generalized 
function or parameter can be used to make the optimization process easier. The generalized 
parameter can be optimized in several ways according to the requirements. For instance, 
the generalized parameter is optimized in accordance to the access cost. Two different 
functions are defined and rated with the set up of two different targets. The targets are 
achieving minimum query access delay and achieving minimum downlink traffic. The 
drawback of this approach is the data items in a queue are re evaluated, and their positions 
are changed frequently.   in-SAUD is used to ensure cache consistency before the cached 
data item is exploited [13]. Min- SAUD is designed on considering the factors like access 
probability, the size of the data item, query latency, and data access cost. The performance 
of the Min- SAUD is better compared to LRU and SAIU. The effectiveness of the optimal 
cache replacement is measured using a parameter called stretch. Stretch is a function of 
query latency, the size of the data item, and bandwidth. The optimal cache replacement 
technique replaces the data item with low gain value. It is difficult to manage the position 
of the data item in the heap. Moreover, it is difficult to estimate the value of the running 
parameters to maintain the updated status of the attributes of the data item.  To overcome 
the disadvantages of local cache replacement, [22] introduces the global cache replacement 
technique. It revisits all the existing cache replacement technique and notices the 
drawbacks in those cache replacement techniques. The global cache replacement policies 
are of two types namely; communication based and centralized. The caches in the 



communication based policy have their own local replacement technique. The 
disadvantage of the centralized cache replacement technique is a lack of scalability. 
 
2.3 Cache invalidation techniques 

 The prominent cache invalidation technique is broadcasting Invalidation Reports 
(IR). The two serious drawbacks of the existing cache invalidation technique are addressed 
in [7]. The first drawback is, the query latency increases between two consequent IRs. The 
second drawback is that, if the server updates a data item, the mobile nodes must send a 
query again to the server increasing the bandwidth utilization. Therefore, [7] suggests a 
cache invalidation technique that substantially overcomes the abovementioned drawbacks. 
It decreases query latency and optimizes bandwidth utilization.     The Bit Sequence (BS) 
[15] is an effective cache invalidation technique aims at reducing the bandwidth 
utilization. BS achieves its aim by optimizing the invalidation report size, and at the same 
time, it maintains the efficiency of the cache invalidation.  
 

The BS algorithm makes use of three factors to optimize the size of the invalidation 
report. These factors include BS naming, update aggregation, and BS hierarchical 
structure. In the BS algorithm, a unique identity to the data items in the database is 
assigned using BS naming procedure.  The UIR based cache invalidation technique is 
extended to reduce the data access latency [8]. It also proposes a counter based cache 
invalidation technique to overcome the issue regarding bandwidth usage. Different 
techniques are proposed to manage failure in server and mobile node, and disconnection 
between the mobile node and server. The data items that are expected to be used in the 
near future are prefetched and can be used when it can be reused. If there is no high 
variation in the traffic pattern, the hot data items remain hot, and the cold data item 
remains cold. The problem arises when the network traffic changes frequently. When the 
main server gets failed, there is no guarantee for the freshness of the data item.  In order to 
reduce the data access latency, a Dynamic Invalidation Report (DIR) especially for the 
mobile computing environment is proposed [27]. DIR holds an early hour’s cache 
validation technique on exploiting the validation texts. It enables the mobile nodes to 
check the cached data very quickly. This decreases the data access latency further by 
proposing a method, DIR-AI to make IR adaptive. DIR considers stateless server, and it 
has knowledge of the number of a request made at any time. A special approach is 
suggested to maintain the freshness of the cache [26]. Each caching node is designed such 
that it is responsible for refreshing a particular set of caching nodes. This design maintains 
the freshness of the cache in both distributed and hierarchical fashion. The freshness of the 
cached data is maintained throughout entire communication using probabilistic replication.     
   
2.4 Prefetching techniques 

A power-aware prefetch scheme is designed to resolve all these issues. This 
scheme proposes Value-based Adaptive Prefetch (VAP) technique specifically for mobile 
computing [20]. There is an issue in selecting the data item that has to be prefetched. The 
VAP suggests the data item for prefetch on the basis of the assigned value of the data item. 
The value is estimated on the basis of remaining power, query latency, the size of the data 
item, and the update rate. In most of the prefetching techniques, “stretch” is used as a 
primary parameter metric to evaluate the performance level of the prefetching technique. 
The VAP considers the stretch as the performance metric along with the power 
consumption.  The Cache-Miss-Initiated Prefetch (CMIP) mechanism assists the mobile 
nodes to determine the appropriate data item for prefetching [11]. CMIP has been 
proposed based on two remarks. Firstly, a mobile node may request a set of data 



repeatedly. In that case, if those data are cached, there is no need for the mobile node to 
make a request repeatedly. Thus, CMIP reduces the uplink traffic and saves the energy 
level of the mobile node. Therefore, the data items that are expected to be accessed 
frequently are prefetched. Secondly, data items requested within an interval of time are 
inter-connected with each other. Two different prefetch sets can be constructed in two 
steps. In the first step, the history of the mobile node is extracted to describe the 
association rule. Consequently, confidence parameter is calculated. In the second step, the 
confidence parameter obtained from the association rule is used for the construction of 
prefetch sets.  The common issues in the IR based cache invalidation technique are 
addressed in [6], and it suggests a prefetching technique. It prefetches the data items that 
are expected to be retrieved in the near future. This technique exploits prefetch access ratio 
to optimize the performance level of the mobile computing environment. This technique 
improves cache hit ratio, system throughput, and the bandwidth consumption addition to 
reducing the query access delay and power utilization. When the query delay is considered 
to be the primary issue, the system should prefetch the data on the basis of the user 
community.  Broadcasting the data on the air seems to be a complete solution to the 
frequently updating environment. The trade off among the power consumption and query 
latency are reduced by several indexing techniques.  

 

3. Hybrid and adaptive caching in the mobile computing environment 

 The proposed hybrid and adaptive caching technique directs a way to use the 
mobile cache memory effectively. It considerably reduces the access time on using a dual 
buffer storage system.    
 

3.1 Overview of hybrid and adaptive caching in the mobile environment 

In this work, a hybrid mobile computing environment is constructed with the base 
station and set of mobile nodes within the transmission range. Therefore, there is a no need 
to maintain fixed infrastructure and somehow manages the network functioning even in the 
presence of greater mobility [4]. The mobile nodes move randomly, and they must operate 
in the limited energy constrained resources. In order to manage the dynamic mobility and 
limited resources of the mobile environment, a hybrid network is constructed through 
combining the conventional infrastructure architecture with the ad hoc communication 
architecture. Here, the communication pattern between the base station and a set of mobile 
nodes is adaptive. It is determined from the size of the requested data item.  

 
It is essential to notice that the mobile nodes could communicate directly with the 

base station through a single hop connection. Therefore, all mobile nodes can access the 
data directly from the base station without any intercommunication between any other 
nodes in the network. In the case of a large data item, request is forwarded to neighbor 
nodes in the network rather than the base station which is in the single hop transmission 
range. This is because; high bandwidth is needed to communicate directly with the base 
station for large size data item.  In order to reduce the bandwidth utilization and the access 
latency, a communication pattern is properly selected according to the size of the requested 
data item.  In order to improve the cache performance, repeatedly accessed data items is 
cached among the mobile nodes in the network. Caching not only ensures data availability, 
but also helps to utilize the bandwidth efficiently. 

 
 
 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

 
 
 
 
 

 

Fig.1. Hybrid Adaptive Caching Mobile Environment 

 The caching technique must be designed in such a way that it must offer the best 
service even in the greater mobility and disconnectivity. An effective hybrid caching 
technique is suggested in [18] that combine the advantages from two different caching 
techniques called cache data and cache path. In the cache data techniques, the data is 
cached while in the cache path technique the path for data location is cached. The hybrid 

Fixed network  

 

Database 

Request small data (single hop access from BS)  

  

 

      

 

   

                                       

                                 

            

  

 

 

 

 

                

                    

     

         

                 

     

       

                   

       

 

         

                          

 

             

                      

                           

   

          

               

                                   

6 

 1 2 

4 

3 

5 



caching technique implements either cache data or cache path based on the size and TTL 
of the data item.      
 

The Fig. 1 demonstrates the hybrid architecture of a mobile cache system. It 
comprises of the main database server, Base Station (BS), and several mobile nodes. The 
mobile nodes are connected to the base station via a wireless link which in turn connected 
to the main database server through a fixed network.  

 
The base station is responsible for broadcasting three key messages, namely, 

broadcasting technique, replacement message, and invalidation report. This approach is 
different from other proposals as it suggests a caching technique with variable data sizes. It 
is much difficult to design a caching system for the data of different sizes. To achieve this, 
each node maintains a local cache into two parts. The first part can be referred as 
temporary buffer and the second part can be referred as permanent buffer. The temporary 
buffer stores the data items of smaller sizes which is accessed frequently (e.g. stock). 
Therefore, buffered data in a temporary buffer is updated for every short interval of time 
(less TTL). The permanent buffer of a cache stores larger data items (e.g. Video file) 

 

 3.2 System design 

 This work has been proposed based on hybrid caching architecture. Depending on 
the size of the requested data item, the proposed work adaptively supports caching on both 
hybrid communication pattern, such as conventional infrastructure (single-hop) and a 
mobile ad hoc environment (multi-hop).  
 
 The mobile node generates the request for small size data item the single hop 
communication scenario is triggered where the Mobile Service Station (MSS) directly 
communicates to all the mobile nodes within its communication range. On the other hand, 
the mobile nodes generate the request for larger data item; they establish a mobile ad hoc 
model using multi hop communication. In this case, there are three possible outcomes of a 
request generated for large data item (video). 
 
 1. Local Cache Hit (LCH). If the requested large data item is available in its own 
mobile local cache, then local cache hit is occurred; otherwise, local cache miss.   
 2. Global Cache Hit (GCH).  In the case of local cache miss, the mobile node 
forwards the request to neighbor peers in network using multi hop communication. If the 
neighbor node contains the requested data item, then constitutes a global cache hit. 
Otherwise, global cache miss will be considered. 
 3. Base Station Hit (BSH): In the case of requested data item is not available in 
both in its local cache and other neighbor nodes, the request is forwarded to the base 
station through single hop communication.  

 
The effectiveness of the proposed work is proved with some assumptions as 

follows: Consider a hybrid network (HN(V,E)) with n number of mobile nodes denoted as 
N1- Nn.  H denotes the hybrid network; V represents the nodes in network, E represents 
the edges of V, and N represents the number of nodes in the network. The combination of 
infrastructure and ad hoc network is called hybrid network. In infrastructure network, the 
nodes are connected with Base station (BS). In ad hoc network, the mobile-to-mobile 
communication is established. The H(V,E) has several data items denoted as Di; i - varied 
from 1-n [H(V,E){D1…….DN}]. The size of Di is DSi. The intermediate node can cache 
multiple data items. The node has limited memory capacity (Mi) to cache the Di.  



 

The access frequency for Di is represented as ADn. The ADn value is measured for 
all data items. Since, if the node memory Mi is overflowed (Mi (DSi) < Mi), the data 
item which has lowest ADn is replaced by a new data item Di. Let ‘Rch’ be the cache hit 
ratio of a mobile node. ‘’ be the total number of bits transmitted during a particular 
interval of time. Let ‘bbr’ be the number of bits forwarded by the broadcast. Let L be the 
broadcast interval between the invalidation reports. The throughput () of the caching 
system can be represented as follows: 
 
 
 
 
The calculation of throughput must be normalized so that it is easy to compare the 
effectiveness of the proposed system with other caching techniques. The effectiveness of 
the proposed caching system (Ceff) can be estimated as:  
 
 
 
 

max is the throughput value that is determined by an unfeasible caching technique in which 
it supports an instant cache invalidation technique.   
 
3.3 Storage system 

 The proposed work is both hybrid and adaptive and hence, the design of a storage 
system of each mobile node is a bit complex process. The cache memory of each node is 
divided into TB, and permanent buffer PB. A cache memory of each node is divided into 
TB and PB. This kind of division in the cache memory is brought to make the caching 
process efficient as it has heterogeneous data items. Whenever a cache receives a data, 
HAC initially checks the Data Size (DS) of the Data Item (Di). If the DS is greater than the 
Threshold value for Data Size (THDS), it is cached in PB. Otherwise, it is cached in TB. 
The data in TB are smaller in size and has less TTL value. These data are updated 
frequently. In contrast, the data in PB are larger in size and has a large TTL value. These 
data are updated less frequently compared to data in TB. The table 1 describes the 
characteristics of the data in TB and PB. 
  

Data in cache Data Size (DS) TTL Update Rate 

TB Small Less High 

PB Comparatively Large High Less 

Table 1: TB and PB Characteristics 

This approach introduces two storage systems for each mobile node. This storage system 
makes easier to retrieve the data items according to the update_interval. It is necessary for 
the server to satisfy the requirements of all the mobile nodes. The time taken to download 
a file also plays a crucial role in the storage system. For instance, a movie takes longer 
time to get download. Therefore, it is stored in the PB as it will not expire shortly. The data 
items that are expected to remain valid for a longer period is stored in PB. On the other 
hand, the data items that are expected to lose its validity already are stored in TB. The 
proposed work helps the server to perform the required data before their validity get 
expires.  

                        - bbr 

               (br + bu ) (1- Rch) 
 = (1) 

   Ceff   =                      
               max 

 

(2) 



          
3.4 Hybrid and adaptive cache mechanism 

 The hybrid and adaptive cache mechanism is primarily designed to enhance the 
cache performance in the hybrid mobile environment. The proposed work is flexible so as 
to satisfy the application requirements. Since the cache technique is adaptive, both the 
cache invalidation and cache replacement techniques also must be adaptive. Most of the 
existing caching scheme works in the assumption that all the data items are equal in size. 
The proposed work considers the broadcasting of data items according to the size of the 
data item. Here, a data item is cached in the mobile node according to the size of the 
requested data item. The cache of each node is designed to accommodate two storage 
systems. This is because the size of the data item is directly related to the update_interval.  
 

 Due to the limited memory capacity Mi, the Threshold value for Data size (THDS) 
is fixed. The node memory is divided into TB and PB. If the data size DSi is within the 
THDS, the DSi is stored in the TB. Otherwise, the data item is stored in PB. The DTTL (i) is 
varied with respect to the DSi. The DTTL (i) is high when it has large size.  The TB data 
items Di should be within the value of TTL threshold (THTTL). Otherwise, the data item is 
stored in PB. 
        DTTL (i)  DSi ………. (3)  
 

 HAC Cache Policy 

 
   For data item Di, 

{ 
If (DSi < THDS && DTTL < THTTL) 

{ 
   Cache the data items in TB 

} 
  Else 
   Cache the data items in PB  } 

 In existing cache techniques, all data items are stored in server node only. If any 
node requires a data item, it requests the server node via multihop links. This kind of cache 
technique increases the data delay and traffic generation. The existing cache techniques do 
not utilize the node memory properly. Only, it considers a scenario with similar data size. 
Various data size is not considered in the cache technique. In order to make an effective 
cache, consider a real scenario with various data size and cache nodes.  Since, every node 
retains its own information in its memory.  If ADn is high for a particular Di, the Di is 
stored in the intermediate nodes itself. These intermediate nodes are called as cache nodes. 
The main problem associated with this network is that the multiple intermediate nodes 
cache similar data items. It leads to memory constraint. In order to avoid this problem, 
only the small size data items are stored in the cache nodes. It leads to proper memory 
utilization. Consider a scenario with a single small size data item Di is cached in multiple 
cache nodes Cn (Cn is N3, N7, and N9). In Fig 2, shows the ad hoc connectivity of cache 
nodes.   



                    

Consider a scenario with a single small size data item Di is cached in multiple 
cache nodes Cn (Cn is N1, N3, N7, and N9). In Fig 2, the node 1 acts as a destination node. 
The cache node aids to reduce the delay time. In Fig 2, the nodes 4 and 5 request the data 
item via node 3. Hence, the data item Di has the highest AD is stored in the intermediate 
node 3. Thus, the node 3 acts as a cache node Cn. In this network, the node 3, 7, and 9 act 
as a cache node. Hence, the delay is reduced.  

 

The nodes in the resource constraint hybrid mobile environment have high 
mobility. Therefore, cooperative caching mechanisms developed for wired environment is 
not suitable for hybrid mobile environment. Due to high mobility in the hybrid mobile 
environment, the node that caches a data item may move somewhere in the network. The 
node that has changed its position should send query to the server after it recognizes the 
problem. The cached data may not be consistent and using these data may introduce 
additional overhead. To overcome this problem, a source node caches the data only if the 
caching node is much close to the source node. The distance between source and 
destination must be high compared to that of source and cache node. If the distance 
between the source node and caching node is less, it can resolve the problem quickly in the 
case of route failure due to mobility. Therefore, HAC can ensure data availability in the 
environment with tolerable high mobility. 
3.4.1 Delay Analysis 

  [QRY+ DATA]  Forwarding Time of Query and Data between two hops 
Total Query Delay (DQRY) between two nodes (N1-N2) is calculated as follows:  

   DQRY(N1-N2) = [QRY + DATA] (N1-N2) .......... (4) 
 

Total Query Delay (DQRY) for a path between Source (Ns) and Destination (ND): 
Total Delay without cache node (DQRY (NS-ND)) = HC * [QRY+ DATA] (NS-ND) …. . (5) 
 
Total Delay with cache node (DQRY (NS-ND)) = (HC -n) * [QRY+ DATA] (NS-ND) …. (6) 
 

 n Number of hops conserved due to the cache node  
   n = HC (ND-NS) - HC (ND-Cn)   ……….. (7) 
 

The equation (5) makes it clear that the reduction of query delay due to the cache node.  
 
In Fig 2, the node 5 queries Di to ND. The query packet is forwarded via N5-N3 - N2 - ND. 
The node 4 also queries the same Di to ND. It uses the path of N4-N3 - N2 - ND. The node 3 

Nn 

N4 

N11 

 N10 

N9 

N8 

N12 

N1 
N2 

N3 

N6 

N7 

     Figure 2: Ad hoc network 

N5 



is linked with two paths. Hence, the node 3 acts as a cache node for that particular Di. 
Thus, the hop count is reduced.  
 
Total Delay without cache node (DQRY (N5- ND)) = HC * [QRY+ DATA] (N5- ND)  

The two hop count is conserved due to the cache node. Hence, the value of n is 2.  
Total Delay with cache node (DQRY (N5- ND)) = (HC -2) * [QRY+ DATA] (N5- ND) 

 

3.5 Adaptive cache replacement strategy 

 The cache replacement is a vital task to achieve a good cache management, 
especially in the on-demand communication system. In normal cache replacement 
strategies, access frequency is the parameter that decides the data items for replacement. In 
this hybrid communication architecture, the cache replacement parameter considered is 
update_interval (TTL) and the size of the data item in addition to access frequency. The 
server or the base station generates data updates in which the update interval is distributed 
exponentially. It is necessary to design an effective cache replacement strategy to achieve a 
high cache hit ratio. This work planned to design a cache replacement strategy that is 
adaptive to a hybrid mobile environment. The cache replacement strategy works on the 
basis of update_interval, DS and Access Frequency (AD) of the data item. 
 
3.5.1 HAC Cache Replacement Strategy  

The TB contains only the data items with smaller sizes. TTL and AD is calculated 
for all data items in a cache. If a data item is found with minimum TTL ([DTTL (i)] (MIN)) or 
minimum AD (ADi (MIN)), it is replaced with new data item (Dnew) in TB. If a data item is 
found with maximum TTL ([DTTL (i)] (MAX)) or minimum AD (ADi (MIN)), it is replaced with 
new data item (Dnew) in PB. 

 
 

3.5.1.1 Access Frequency (AD) Calculation for Di 

 The access rate of Di is called Access Frequency (AD). The number of nodes 
requires a particular Di is denoted as NDi. The AD of a Di is calculated as,  
             ADi = NDi / N- NDi............. (8) 
 
3.5.1.2 Algorithm to Identify the Lowest Access Frequency Node 

if (i=N1, i<N, i++) 
{ 

    if (j=N1, j >N, j++) { 
   if {v (i)> v (j)} { 
   Puts "L = N1” 

}} 
} 

Step 1: The first data item N1 is assigned as i and j  
Step 2: The values of i and j are compared with each other 
Step 3: The values are sorted as the highest value and the lowest value and the sorted 

values are stored in “L”  
Step 4: The j value is incremented to the next data item of NB2 

Step 5: Then, i and j values are compared and sorted  
Step 6: The process is continued until it reaches the Nn 
Step 7: The value of i is incremented to the N2 
Step 8: Step 2 to Step 5 is performed until i reaches the Nn. 



From the list L, the cache node can identify the data item which has the lowest access 
frequency.  
    
3.5.1.3 Algorithm for Cache Replacement 

 

                                 Adaptive cache replacement strategy 

If there is no enough memory space { 
Go  
For a data item in TB,  

 { 
   {N  Di} 
   Find (N  [(DTTL (i)) && ADi]) 

  If [DTTL (i)] (MIN) || ADi (MIN) < {N  [Di-(DTTL (i))] MIN || ADi (MIN)} 
    Replace the data item 
     Dnew  (DTTL) MIN  

For a data item in PB, 
   Find (N  [(DTTL (i)) || ADi]) 

  If [DTTL (i)] (MAX) || ADi (MIN) > {N  [Di-(DTTL (i))] MAX && ADi (MIN)} 
    Replace [(DTTL)(i)] MAX  the data item with Dnew 
        Dnew  (DTTL) MAX  

Else  
   Cache the data item 
             }} 

 If the node has no enough memory to store an arrived data item, the cache 
replacement algorithm is followed.  
Step 1: In TB cache replacement, find TTL and AD for all data items Di 
Step 2: Select a data item which has minimum TTL and AD value 
Step 3: If any one of the condition is satisfied, the new Data Item (Di) replaces the  

selected Data item (DTTL (MIN)) 
Step 4: In PB cache replacement, find TTL and AD for all data items Di 
Step 5: Select a data item which has maximum TTL and minimum AD value 
Step 6:  If both the conditions are satisfied, the new Data Item (Di) replaces the selected 

data item (DTTL (MAX)) 
Step 7: Else continue caching 
 

3.6 Adaptive cache invalidation technique 

 Cache invalidation technique must be used to verify the freshness of the cached 
data. To prevent bandwidth usage in downlink broadcasting, and save uplink broadcasting 
bandwidth, we propose an adaptive cache invalidation technique that adjusts the 
broadcasting invalidation report (IR) based on the system workload [14]. The invalidation 
is an important factor for cache process. It validates the freshness of retained data items Di. 
Every node has Time Stamp (TS) which retains the time related history of all Di. The time 
related to history of a data item Di is called Update History ‘U’. From the equation (8) 
makes it clear that the TS of a data item Di retain the, ‘U(Di)’. The difference between 
current (CURRENT) and previous (PREV) update time of a Di is denoted as ‘’. The 
difference between pre-previous (PREPREV) and previous update time of a Di is denoted as 
‘ ’.    
            TSi  U(Di)   ….. (9) 
        CURRENT - PREV =   ………. (10) 



       PREV - PREPREV =    ……… (11) 
  -  = WAIT   ………..  (12) 

  The equations (9) and (10) are denotes the update time of current and previous 
data item. If   with waiting period (WAIT)) is greater than the  value, the Di is a valid 
data item, otherwise the Di is an invalid data item. The equation (12) denotes the condition 
for valid data item, DV and the equation (13) denotes the condition for invalid data item, 
DIV.  
   DV =   <    + WAIT ………… (13)   
 DIV =   >    + WAIT ………… (14)   
3.7 Tuning of Parameters 

3.7.1 TTL tuning 

The TTL value has great impact on the network performance in terms of query 
delay. TTL is the factor that determines the update rate of the data. Smaller value of TTL 
indicates the higher data update rate. The data item, Di with higher update rate is 
invalidated sooner resulting in increasing the average query delay. Smaller TTL value of 
Di decreases the cache hit ratio. If the cache has data with less TTL value, most of the data 
are invalidated and hence, cache hit ratio is reduced. The delay in HAC scheme gradually 
decreases with the increase in TTL value. The cooperativeness of all nodes in the network 
is increased to attain the maximum benefits of high TTL value (low data update rate). The 
cache memory of the TB is much effectively used if it caches Di with small TTL. PB is 
effectively utilized if it caches Di with a large TTL value. Therefore, it is important to fine 
tune the threshold value to categorize and cache the data effectively. The threshold value 
of the TTL is denoted as THTTL. The value of THTTL should be neither low nor high. The 
THTTL is selected such that it achieves the least query delay.  
 
3.7.2 Data item size tuning 

 Data size is an important criterion for caching. In HAC, if Di is small, it is cached 
in TB using cache nodes. Similarly, if Di is large, it is cached in PB. The threshold value 
for data item size is denoted as “THDS”. If THDS is too small, HAC may fail to cache some 
small important data. If THDS is too large, HAC caches all the data including the data with 
least importance. As the destination holds data with heterogeneous data sizes, it is much 
important to derive an optimal value for THDS. The value of THDS should be neither low 
nor high. The size of the data item varies from DSMin and DSMax. THDS is a measure of 
percentage of summation of DSMin and DSMax. THDS can also be considered as the function 
of DQRY. 
 

3.8 Pseudo code of HAC mechanism 

Any node (N1, ……., Nn) in the network: 
BEGIN 

 When a Dnew arrives: 
  if the Mi space is available 
   Check DS and TTL of Dnew 
   If (DSnew<THDS && DTTL < THTTL)  
   then cache Dnew in TB 
   else cache Dnew in PB 
  else there is no space available 
 when there is a set of data items Di such that (|Di|> (DTTL (i))] MAX || ADi (MIN))) 
  replace Di with Dnew 
  else if check the freshness of the set of cached data items Di 
  find the update period of Di  



  if there is cached Di such that (  <    + WAIT) 
                     validate Di 
  else invalidate Di and replace Di with Dnew 

END  

4. Simulation set up 

 The proposed work is simulated in the network simulator NS-2. The number of 
nodes considered in the proposed work is ‘n’. The internet system or LAN is connected to 
the base station via wired link.  The mobile nodes are connected to the base station via 
wireless links. During simulation, some of the mobile nodes are set one hop away from the 
base station and the remaining nodes are set to be multi hop away from the base station.  
The proposed work is mainly based on the parameter called update_interval, and it ranges 
from 10 to 1000 seconds. It depends on the accessibility rate of data items. The size of TB 
is smaller than the PB. The simulation runs for 3000 seconds. In a mobile node, ¼ th of 
memory is allocated to TB and the remaining memory is allocated to PB.    

  Destination Node Cache Memory = MD 
          Node Memory = 0.002 * MD = Mi  
  Size of TB for node N1 = 0.25 * Mi 
  Size of PB for node N1 = 0.75 * Mi 

The table 2 explains the data structure of each mobile node’s information. 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Simulation Parameters 

 

5. Performance Evaluation 

The proposed work is simulated in NS-2. The effectiveness of the proposed HAC is 
evaluated in this section.  

 
 
 
 
 
 
 

Software for simulation Network simulator 2. 

Channel    Wireless 
Simulation run time            100 seconds 

Node density Area 600 X 600 

Packet size of small data  50bytes 

Packet size of large data 5000bytes 

Speed   50m/s  

Routing Protocol                AODV 

Propagation model             TwoRayGround 

Mobility Model Random Waypoint Model  

Network Interface Type     Wireless Physical 

MAC Type                        Mac/802.11 

Antenna Type                    Omni Antenna 

Number of mobile nodes  Any number of nodes 

bbr 7000bps 

BW 100Mbps 



5.1 Effect of update_interval on cache hit ratio 
 

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Update interval (sec)

C
ac

he
 H

it
 R

at
io

 

 

Hybrid and adaptive

APRO

IAVI

BS

 
Figure 3: Update_interval Vs Cache hit ratio 

           The Fig. 3 shows the comparison performed based on the Cache Hit Ratio 
(CHR) between the proposed Hybrid and Adaptive Caching (HAC) scheme with the 
already existing scheme called as Adaptive Proactive Caching (APC). It is clearly 
depicted that the proposed approach achieves high cache hit ratio than existing 
approaches.  The reason is the proposed scheme adaptively caches the data item in two 
separate buffers according to the size of the data item among the mobile nodes in the 
network. The cache is updated for two different TTL (longer and shorter) update 
interval, where the frequently accessed data are most likely to be updated in short TTL. 
This is because; small data item in a temporary buffer is updated for a short interval 
time whereas the large data item in permanent buffer is updated for a long interval of 
time.  As the update interval for data item is increases, most of the request is satisfied 
in cache with less access latency. Due to the proper updation of cached data item 
adaptively, reduces the cache misses that conventionally improves the cache hit ratio in 
the proposed approach.  

 

5.2 Effect of Update_interval on query latency 

100 200 300 400 500
0

10

20

30

40

Update interval (sec)

Q
u

er
y

 l
at

en
cy

 (
se

c)

 

 

Hybrid and adaptive

APRO

IAVI

BS

 
 
 

Figure 4: Update_interval Vs Query Latency  



 The Fig.4 shows the relationship between update interval and the system 
performance metric in terms of query latency for existing adaptive proactive caching and 
the proposed hybrid and adaptive caching scheme. In the case of a small data item, query 
latency decreases according to the increasing update interval. If the update interval for data 
item is increases, then most of the request is satisfied with less access latency. 
 
 The proposed scheme takes only 5 seconds for accessing the data objects for the requested 
data object which is much less than Adaptive Proactive Caching (APC) scheme that takes 
greater than 15 seconds. This indicates that caching data objects in two different buffers 
according to the size of the data item is an effective method to increase system 
performance. 
 

 The performance of proposed scheme is always better than that of APC based 
schemes for update interval in the range of 100 to 1000secs. The proposed approach 
schemes have more than 50% performance gain in terms of cache hit ratio and query 
latency over existing APC based schemes, thus demonstrating their superiority in a mobile 
environment.  

 
5.3 Effect of database 

         

1 2 3 4 5 6 7

0.8

1

1.2

1.4

1.6

1.8

2

Size of the data base (data items)

N
u
m

b
e
r 

o
f 

q
u
e
ry

 r
e
s
p
o
n
s
e

 

 

Hybrid and adaptive

APRO

IAVI

BS

X 104

X 104

 
 

Figure 5: Database size Vs Number of Query response 

 The Fig.5 shows that the relation between the size of the database and number of 
queries satisfied. In Existing Bit sequence [15], cache invalidation technique is performed 
based on the update aggregation technique for the group of data items either a large data 
item (video) or small data item (stock) and also only one timestamp is associated for all 
data item in the same report. Therefore, the number of query response is ultimately 
decreased according to the size of the data item. In the proposed approach, the mobile node 
adaptively caches the data item in two separate buffers depending upon the size of the data 
object.  Therefore, it certainly improves the number of query response according to the 
increasing number of data item better than the already existing approaches.  
 
 
 
 



5.4 Effect of disconnection probability 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Disconnection probability Vs Number of query response 

 

 Finally, the effect of client disconnection is studied by varying the disconnection 
probability from 0 to 8 as shown in the Fig.6. The network throughput in terms of the 
number of queries responded decreases when the network disconnectivity rate increases. 
Due to the random mobility of the mobile nodes, the network gets disconnected frequently. 
The performance of the proposed hybrid and adaptive cache mechanism is compared with 
the bit sequence cache invalidation technique. The existing scheme uses the bit sequences 
to identify the disconnected mobile nodes in a particular time stamp. In the proposed 
approach, client disconnection handling protocol is newly developed to manage the 
performance of the system under the increasing rate of disconnection probability. 
Therefore, the proposed approach improves query responses according to the varying 
disconnection probability.  
 
5.5 Effect of buffer size 

Increment of buffer size in both temporary buffer and permanent buffer on the 
system performance is evaluated using the graph depicted in figure 7. Increment of buffer 
size results in high cache hit ratio. When the percentage of buffer size increases, the 
number of cached data items in the local buffer also increases correspondingly. Therefore 
increment in buffer size facilitates the high probability of availability of required data item 
in local buffer which results in high cache hit ratio. Large number of storage of data items 
with smaller TTL in temporary buffer do not affect the cache hit ratio since the data items 
are updated with appropriate update interval corresponding to the TTL value of smaller 
data item. Obviously the increment of buffer size in permanent buffer increases the cache 
hit ratio due to the availability of data item in the local cache is high. 

 

 

 

 

 

 



10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Buffer size (% of database size)

C
ac

h
e 

h
it

 r
at

io

 

 

Hybrid and adaptive

APRO

IAVI

BS

 

Figure 7: Percentage of increment in Buffer Size Vs Cache hit ratio 

 
CONCLUSION 

 This paper presents an effective hybrid and adaptive caching technique for the 
hybrid mobile computing environment. This paper ensures data availability and effective 
bandwidth  utilization. This proposal varies from existing proposals in two ways: i) hybrid 
architecture is constructed using both the conventional fixed infrastructure and ad hoc 
communication model.  ii) Adaptive caching is performed in two storage systems such as 
Temporary Buffer (TB) and Permanent Buffer (PB) based on the size of the data item. The 
mobile node generates the query for the requested data item and decides whether to 
forward query to the base station or neighbor peers based on the size of the data item. The 
proposed work uses the cache memory effectively on placing the data on appropriate 
buffer. The proposed approach effectively uses the bandwidth through adaptive request 
forwarding in hybrid network architecture. The proposed work ensures data availability. 
The cache replacement technique is also adaptive and replaces the data effectively based 
on the TTL value. The proposed work invalidates the cache effectively using the 
timestamp values of the cached data. The threshold values used in the proposed work are 
fine tuned. The analytical and  simulation result proves that the proposed work 
outperforms the existing systems.     
 
 

REFERENCE 

 
[1] Bin Tang, Himanshu Gupta, and Samir R. Das. 2020, “Benefit-based Data Caching in 

Ad Hoc Networks”, IEEE transaction on mobile computing, Volume 7, Issue 3, pp. 
289- 304.  Digital Object Identifier :  10.1109/TMC.2007.70770 

 
[2] Chi-Yin Chow, Hong Va Leong, and Alvin Chan. 2019, “Peer-to-Peer Cooperative 

Caching in Mobile Environments” IEEE computer society Proceedings of the 24th 
International Conference on Distributed Computing Systems Workshops. 

 
[3] Chi-Yin Chow, Hong Va Leong, Member, and Alvin T. S. Chan. 2017, “GroCOCA: 

Group-based Peer-to-Peer Cooperative Caching in Mobile Environment” IEEE 
journal on selected areas in communications, Volume 25, Issue 1, pp. 179- 191. 

 



[4] Daniel Barbari and Tomasz Imieliriski. 1995, “Sleepers and Caching Strategies in 
Workaholics: Mobile Environments”, The VLDB Journal — The International Journal 
on Very Large Data Bases, Volume 4, Issue 4, pp. 567- 602. 

 

[5] Evaggelia Pitoura and Bharat Bhargava, 1995, “Maintaining Consistency of data in 
Mobile Distributed Environments”, IEEE proceedings of the 15th international 
conference on distributed computing system, pp. 404- 413. Digital Object Identifier :  
10.1109/ICDCS.1995.500045 

 

[6] Guohong Cao. 2002, “Proactive Power-Aware Cache Management for Mobile 
Computing Systems”, IEEE transactions on computers, Volume 51, Issue 6, pp. 608- 
62.  Digital Object Identifier :  10.1109/TC.2002.1009147 

 

[7] Guohong Cao 2003, “A Scalable Low-Latency Cache Invalidation Strategy for Mobile 
Environments”, IEEE transactions on knowledge and data engineering, Volume 15, 
Issue 5, pp. 1251- 1265. 

 

[8] Guohong Cao and Chita Das. 2001, “On the Effectiveness of a Counter-Based Cache 
Invalidation Scheme and its Resiliency to Failures in Mobile Environments”, 
proceedings of the 20th IEEE symposium on reliable distributed systems, pp. 247- 256 

 

[9] Haibo Hu, Jianliang Xu, Wing Sing Wong, Baihua Zheng, Dik Lun Lee, and Wang 
Chien Lee. 2005, “Proactive Caching for Spatial Queries in Mobile Environments”, 
ACM proceedings of the 21st international conference on data engineering, pp. 403- 
414. 

 

[10] Hao Che, Ye Tung, and Zhijun Wang. 2002, “Hierarchical Web Caching Systems: 
Modeling, Design and Experimental Results”, IEEE journal on selected areas in 
communications, Volume 20, Issue 7, pp. 1305- 1314, 2002. Digital Object Identifier :  
10.1109/JSAC.2002.801752 

 

[11] Hui Song, and Guohong Cao. 2005, “Cache-Miss-Initiated Prefetch in Mobile 
Environments”, Elsevier transaction on computer communications, Volume 28, pp. 
741- 753. 

 
[12] Ismail Ari, Ahmed Amer, Robert Gramacy, Ethan L. Miller, Scott A. Brandt, and 

Darrell D. E. Long. 2002, “ACME: Adaptive Caching Using Multiple Experts”, 
proceedings in informatics, Volume 14, Carleton Scientific.  

 

[13] Jianliang Xu, Qinglong Hu, Wang-Chien Lee, and Dik Lun Lee. 2004, “Performance 
Evaluation of an Optimal Cache Replacement Policy for Wireless Data 
Dissemination”, IEEE transactions on knowledge and data engineering, Volume 16, 
Issue 1, pp. 125- 139. 

 

[14]  Jiannong Cao, Yang Zhang and Guohong Cao, and Li Xie. 2007, “Data Consistency 
for Cooperative Caching in Mobile Environments”, IEEE transaction on computer, 
Volume 40, Issue 4, pp. 60- 66. 

 

[15] Jin Jing, Ahmed Elmagarmid, Abdelsalam (Sumi) Helal and Rafael Alonso. 1997, 
“Bit-Sequences: An Adaptive Cache Invalidation Method in Mobile Client/Server 
Environments”, Mobile Networks and Applications, Volume 2, pp. 115–127. 

 
[16] Jing Zhao, Ping Zhang, Guohong Cao, Chita R. Das. 2010, “Cooperative Caching in 

Wireless P2P Networks: Design, Implementation, and Evaluation", IEEE 
Transactions on Parallel and Distributed Systems, Volume 21, No 2, pp 229-241. 



 
[17] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. 2000, “Summary Cache: A 

Scalable Wide-Area Web Cache Sharing Protocol”, IEEE/ACM transactions on 
networking, Volume 8, Issue 3, pp. 281- 293. doi>10.1109/90.851975  

 
[18] Liangzhong Yin, Guohong Cao. 2006,  "Supporting Cooperative Caching in Ad Hoc 

Networks" , IEEE Transactions on Mobile Computing, Volume 5, No 2, pp 77-89. 
 
[19] Liangzhong Yin, Guohong Cao, and Ying Cai. 2005, “A Generalized Target-Driven 

Cache Replacement Policy for Mobile Environments”, Elsevier Transaction on Parallel 

Distributing Computing, Volume 65, pp. 583- 594. 
 
[20] Liangzhong Yin, Guohong Cao, Chita Das, and Ajeesh Ashraf. 2002,  “Power-Aware 

Prefetch in Mobile Environments”, ACM proceedings of the 22nd international 
conference on distributed computing systems, page 571, 2002 

 
[21] Miguel Castro, Atul Adya, Barbara Liskov, and Andrew C. Myers. 1997, “HAC: 

Hybrid Adaptive Caching for Distributed Storage Systems” Proceedings of the 16th 
ACM Symposium on Operating Systems Principles, pp. 102-115, Volume 31, Issue 5.  

 
[22] Mohamed Zahran. 2004, “Cache Replacement Policy Revisited”, IEEE international 

symposium on cluster computing and the grid, pp. 182- 189. 
 
[23] Negin Golrezaei, Karthikeyan Shanmugam, Alexandros G. Dimakis,Andreas F. 

Molisch, Giuseppe Caire. 2012, "FemtoCaching: Wireless Video Content Delivery 
through Distributed Caching Helpers", Proceedings IEEE INFOCOM, pp 1107-1115. 

 
[24] Stratis Ioannidis, Laurent Massoulie, Augustin Chaintreau. 2010, "Distributed 

Caching over Heterogeneous Mobile Networks",Proceedings of the ACM 
SIGMETRICS international conference on Measurement and modeling of computer 
systems, pp 311-322. doi>10.1145/1811039.1811075 

 
 [25] Wei Gao, Guohong Cao, Arun Iyengar, Mudhakar Srivatsa. 2011, "Supporting 

Cooperative Caching in Disruption Tolerant Networks", 1st International Conference 
on Distributed Computing Systems, pp 151-161. 

 
[26] Wei Gao, Guohong Cao, Mudhakar Srivatsa, Arun Iyengar. 2012, "Distributed 

Maintenance of Cache Freshness in Opportunistic Mobile Networks",  32nd  IEEE 
International Conference on Distributed Computing Systems,  pp 132-141. 

 
[27] Yeim-Kuan Chang, I-Wei Ting and Tai-Hong Lin.  2008, “Dynamic Cache 

Invalidation Scheme in IR-based Wireless Environments”, 22nd International 
Conference on Advanced Information Networking and Applications, pp. 697- 704. 

 

[28] Zhijun Wang, Mohan Kumar, Sajal K Das, and Huaping Shen.  2006, “Dynamic 
Cache Consistency Schemes for Wireless Cellular Networks” IEEE transactions on 
wireless communications, Volume 5, Issue 1. Digital Object Identifier :  
10.1109/TWC.2006.1611060 



Figures

Figure 1

Hybrid Adaptive Caching Mobile Environment



Figure 2

Ad hoc network

Figure 3

Update_interval Vs Cache hit ratio



Figure 4

Update_interval Vs Query Latency



Figure 5

Database size Vs Number of Query response



Figure 6

Disconnection probability Vs Number of query response



Figure 7

Percentage of increment in Buffer Size Vs Cache hit ratio


