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An e	ective hybrid cuckoo search algorithm (CS) with improved shu
ed frog-leaping algorithm (ISFLA) is put forward for solving
0-1 knapsack problem. First of all, with the framework of SFLA, an improved frog-leap operator is designed with the e	ect of
the global optimal information on the frog leaping and information exchange between frog individuals combined with genetic
mutation with a small probability. Subsequently, in order to improve the convergence speed and enhance the exploitation ability,
a novel CS model is proposed with considering the speci�c advantages of Lévy �ights and frog-leap operator. Furthermore, the
greedy transformmethod is used to repair the infeasible solution and optimize the feasible solution. Finally, numerical simulations
are carried out on six di	erent types of 0-1 knapsack instances, and the comparative results have shown the e	ectiveness of the
proposed algorithm and its ability to achieve good quality solutions, which outperforms the binary cuckoo search, the binary
di	erential evolution, and the genetic algorithm.

1. Introduction

�e application of nature-inspired metaheuristic algorithms
to computational optimization is a growing trend [1]. Many
hugely popular algorithms, including di	erential evolution
(DE) [2, 3], harmony search (HS) [4, 5], krill herd algo-
rithm (KH) [6–13], animal migration optimization (AMO)
[14], grey wolf optimizer (GWO) [15], biogeography-based
optimization (BBO) [16, 17], gravitational search algorithm
(GSA) [18], and bat algorithm (BA) [19, 20], perform power-
fully and e�ciently in solving diverse optimization problems.
Many metaheuristic algorithms have been applied to solve
knapsack problems, such as evolutionary algorithms (EA)
[21], HS [22], chemical reaction optimization (CRO) [23],
cuckoo search (CS) [24–26], and shu
ed frog-leaping algo-
rithm (SFLA) [27]. To better understand swarm intelligence
please refer to [28].

In 2003, Eusu	 and Lansey �rstly proposed a novel
metaheuristic optimization method: SFLA, which mimics

a group of frogs to search for the location that has the
maximum amount of available food. Due to the distinguished
bene�t of its fast convergence speed, SFLA has been suc-
cessfully applied to handle many complicated optimization
problems, such as water resource distribution [29], function
optimization [30], and resource-constrained project schedul-
ing problem [31].

CS, a nature-inspired metaheuristic algorithm, is origi-
nally proposed by Yang and Deb in 2009 [32], which showed
some promising e�ciency for global optimization. Owing
to the outstanding characteristics such as fewer parameters,
easy implementation, and rapid convergence, it is becoming
a new research hotspot in swarm intelligence. Gandomi
et al. [33] �rst veri�ed structural engineering optimization
problems with CS algorithm. Walton et al. [34] proposed an
improved cuckoo search algorithm which involved the addi-
tion of information exchange between the best solutions and
tested their performance with a set of benchmark functions.
Recently, the hybrid algorithms that combined CS with other

Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2014, Article ID 857254, 17 pages
http://dx.doi.org/10.1155/2014/857254



2 Computational Intelligence and Neuroscience

methods have been proposed and have become a hot topic
studied by people, such as CS combined with a fuzzy system
[35], a DE [36], wind driven optimization (WDO) [37],
arti�cial neural network (ANN) [38], and genetic algorithm
(GA) [39]. For details, see [40].

In 2011, Layeb [25] developed a variant of cuckoo search
in combination with quantum-based approach to solve knap-
sack problems e�ciently. Subsequently, Gherboudj et al. [24]
utilized purely binary cuckoo search to tackle knapsack
problems. A few scholars consider binary-coded CS and
its performance need to further improve so as to further
expand its �elds of application. In addition, despite successful
application to the solution of 0-1 knapsack problem by many
methods, in fact, it is still a very active research area, because
many existing algorithmsdonot copewell with somenewand
more intractable 0-1 knapsack problems hidden in the real
world. Further, most of recently proposed algorithms focused
on solving 0-1 knapsack problems with low dimension and
medium dimension, but 0-1 knapsack problems with high
dimension are involved little and the results are not highly
satisfactory.What ismore, the correlation between theweight
and the value of the items may not be more concerned. �is
necessitates new techniques to be developed.

�erefore, in this work, we propose a hybridCS algorithm
with improved SFLA (CSISFLA) for solving 0-1 knapsack
problem. To verify e	ectiveness of our proposed method, a
large number of experiments on 0-1 knapsack problem are
conducted and the experimental results show that the pro-
posed hybrid metaheuristic method can reach the required
optima more e	ectively than CS, DE, and GA even in some
cases when the problem to be solved is too complicated and
complex.

�e rest of the paper is organized as follows. Section 2
introduces the preliminary knowledge of CS, SFLA algo-
rithm, and the mathematical model of 0-1 KP problem.�en,
our proposed CSISFLA for 0-1 KP problems is presented in
Section 3. A series of simulation experiments are conducted
in Section 4. Some conclusions and comments are made for
further research in Section 5.

2. Review of the Related Work

In this section, the model of 0-1 knapsack problem and the
basic CS and SFLA are introduced brie�y.

2.1. 0-1 Knapsack Problem. �e 0-1 knapsack problem,
denoted by KP, is a classical optimization problem and it
has high theoretical and practical value. Many practical
applications can be formulated as a KP, such as cutting stock
problems, portfolio optimization, scheduling problems, and
cryptography.�is problem has been proven to be a NP-hard
problem; hence, it cannot be solved in a polynomial time
unless � = �� [44].

�e 0-1 knapsack problem can be stated as follows:

Maximize � (�) = �∑
�=1
����

subject to
�∑
�=1
���� ≤ 
,

�� = 0 or 1, � = 1, . . . , �,
(1)

where � is the number of items; �� and �� represent the
weight and pro�t of item j, respectively. �e objective is to
select some items so that the total weight does not exceed
a given capacity c, while the total pro�t is maximized. �e
binary decision variable ��, with �� = 1 if item  is selected,
and �� = 0 otherwise is used.
2.2. Cuckoo Search. CS is a relatively new metaheuristic
algorithm for solving global optimization problems, which
is based on the obligate brood parasitic behavior of some
cuckoo species. In addition, this algorithm is enhanced by the
so-called Lévy �ights rather than by simple isotropic random
walks.

For simplicity, Yang and Deb used the following three
approximate rules [32, 45]:

(1) each cuckoo lays only one egg at a time and dumps its
egg in a randomly chosen nest;

(2) the best nests with high-quality eggs will be carried
over to the next generations;

(3) the number of available host nests is �xed, and the egg
laid by the host bird with a probability �� ∈ [0, 1]. In
this case, the host bird can either throw the egg away
or simply abandon the nest and build a completely
new nest.

�e last assumption can be approximated by a fraction ��
of the � host nests which are replaced by new nests (with new
random solutions).

New solution X(�+1)� is generated as (2) by using a Lévy
�ight [32]. Lévy �ights essentially provide a random walk
while their random steps followed a Lévy distribution for
large steps which has an in�nite variance with an in�nite
mean. Here the steps essentially form a random walk process
with a power-law step-length distribution with a heavy tail as
(3):

X
(�+1)
� = X

(�)
� + � ⊕ Levy (�) , (2)

Levy (�) ∼ � = �−�, (3)

where � > 0 is the step size scaling factor. Generally, we take� = � (1). �e product ⊕means entry-wise multiplications.

2.3. Shu�ed Frog-Leaping Algorithm. �e SFLA is a meta-
heuristic optimizationmethod that imitates thememetic evo-
lution of a group of frogs while casting about for the location
that has the maximum amount of available food [46]. SFLA,
originally developed by Eusu	 and Lansey in 2003, can be
applied to handle many complicated optimization problems.
In virtue of the bene�cial combination of the genetic-based
memetic algorithm (MA) and the social behavior-based PSO
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algorithm, the SFLAhas the advantages of global information
exchange and local �ne search. In SFLA, all virtual frogs
are assigned to disjoint subsets of the whole population
called memeplex. �e di	erent memeplexes are regarded as
di	erent cultures of frogs and independently perform local
search.�e individual frogs in eachmemeplex have ideas that
can be e	ected by the ideas of other frogs and evolve bymeans
of memetic evolution. A�er a de�ned number of memetic
evolution steps, ideas are transferred amongmemeplexes in a
shu
ing process.�e local search and the shu
ing processes
continue until de�ned convergence criteria are satis�ed [47].

In the SFLA, the initial population� is partitioned into�
memeplexes, each containing � frogs (� = � × �). In this
process, the th goes to the jth memeplex where � = modM
(memeplex numbered from 0). �e procedure of evolution
of individual frogs contains three frog leapings. �e position
update is as follows.

Firstly, the new position of the frog individual is calcu-
lated by

� = � + �1 × (�� −��) . (4)

If the new position � is better than the original position�, replace � with �; else, another new position of this
frog will perform in which the global optimal individual �	
replaces the best individual of kth memeplex �� with the
following leaping step size:

� = � + �2 × (�	 −��) . (5)

If nonimprovement becomes possible in this case, the new
frog is replaced by a randomly generated frog; else replace �
with Y :

� =  + �3 × (! −  ) . (6)

Here, Y is an update of frog’s position in one leap. �1, �2,
and �3 are random numbers uniformly distributed in [0, 1].�� and �� are the best and the worst individual of the kth
memeplex, respectively. �	 is the best individual in the whole
population. U, L is the maximum and minimum allowed
change of frog’s position in one leap.

3. Hybrid CS with ISFLA for
0-1 Knapsack Problems

In this section, we will propose a hybrid metaheuristic
algorithm integrating cuckoo search and improved shu
ed
frog-leaping algorithm (CSISFLA) for solving 0-1 knapsack
problem. First, the hybrid encoding scheme and repair
operator will be introduced. And then improved frog-leaping
algorithm along with the framework of proposed CSISFLA
will be presented.

3.1. Encoding Scheme. As far as we know, the standard CS
algorithm can solve the optimization problems in continuous
space. Additionally, the operation of the original CS algo-
rithm is closed to the set of real number, but it does not
have the closure property in the binary set {0, 1}. Based on

Table 1: Representation of population in CSISFLA.

⟨X1,B1⟩ ⟨X2,B2⟩ ⋅ ⋅ ⋅ ⟨X�,B�⟩ ⋅ ⋅ ⋅ ⟨X�,B�⟩

above analysis, we utilize hybrid encoding scheme [26] and
each cuckoo individual is represented by two tuples ⟨��, &�⟩
(� = 1, 2, . . . , *), where �� works in the auxiliary search
space and &� performs in the solution space accordingly
and * is the dimensionality of solution. Further, Sigmoid
function is adopted to transform a real-coded vector X� =(�1, �2, . . . , �
)T ∈ [−3.0, 3.0]
 to binary vector B� =
(&1, &2, . . . , &
)T ∈ {0, 1}
. �e procedure works as follows:

&� = {1, if Sig (��) ≥ 0.5,
0, else, (7)

where Sig(�) = 1/(1 + 6−�) is Sigmoid function.
�e encoding scheme of the population is depicted in

Table 1.

3.2. RepairOperator. A�er evolving a generation, the feasibil-
ity of all the generated solutions is taken into consideration.
�at is, to say, the individuals could be illegal because
of violating the constraint conditions. �erefore, a repair
procedure is essential to construct illegal individuals. In
this paper, an e	ective greedy transform method (GTM) is
introduced to solve this problem [26, 48]. It cannot only
e	ectively repair the infeasible solution but also can optimize
the feasible solution.

�is GTM consists of two phases. �e �rst phase, called
repairing phase (RP), checks each solution in order of
decreasing ��/�� and con�rms the variable value of one as
long as feasibility is not violated. �e second phase, called
optimizing phase (OP), changes the remaining variable from
zero to one until the feasibility is violated. �e primary aim
of the OP is to transform an abnormal chromosome coding
into a normal chromosome,while the RP is to achieve the best
chromosome coding.

3.3. Improved Shu�ed Frog-Leaping Algorithm. In the evo-
lution of SFLA, new individual is only a	ected by local
optimal individual and the global optimal during the �rst two
frog leapings, respectively. �at is to say, there is a lack of
information exchange between individuals and memeplexes.
In addition, the use of theworst individual is not conducive to
quickly obtain the better individuals and quick convergence.
When the quality of the solution has not been improved a�er
the �rst two frog leapings, the SFLA randomly generates a
new individual without restriction to replace original individ-
ual, which will result in the loss of some valuable information
of the superior individual to some extent. �erefore, in order
to make up for the defect of the SFLA, an improved shu
ed
frog-leaping algorithm (ISFLA) is carefully designed and
then embedded in the CSISFLA. Compared with SFLA, there
are three main improvements.
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�e �rst slight improvement is that we get rid of sorting
of the items according to the �tness value which will decrease
in time cost.

�e second improvement is that we adopt a new frog
individual position update formula instead of the �rst two
frog leapings.�e idea is inspired by the DE/Best/1/Bin in DE
algorithm. Similarly, each frog individual  is represented as a
solution X� and then the new solution � is given by

� = �	 ± �2 × (�� − ��1) , (8)

where �	 is the current global best solution found so far. ��
is the best solution of the kth memeplex.��1 is an individual
of random selection with index of �1 ̸=  and �2 is random
number uniformly distributed in [0, 1]. In particular the plus
or minus signs are selected with certain probability.�emain
purpose of improvement in (8) is to quicken convergence
rate.

�e third improvement is to randomly generate new
individuals with certain probability instead of unconditional
generating new individuals, which takes into consideration
the retention of the better individuals in the population.

�e main step of ISFLA is given in Algorithm 1. In
Algorithm 1, P is the size of the population.M is the number
of memeplex. D is the dimension of decision variables. And�1 is a random real number uniformly distributed in (0, 1).
And �2, �3, �4, and � are all D-dimensional random vectors
and each dimension is uniformly distributed in (0, 1). In
particular,� is called probability ofmutationwhich controls
the probability of individual random initialization.

3.4. 
e Frame of CSISFLA. In this section, we will demon-
strate how we combine the well-designed ISFLA with Lévy
�ights to form an e	ective CSISFLA.�e proposed algorithm
does not change the main search mechanism of CS and
SFLA. In the iterative process of the whole population, Lévy
�ights are �rstly performed and then frog-leaping operator is
adopted in each memeplex.�erefore, the strong exploration
abilities in global area of the original CS and the exploitation
abilities in local region of ISFLA can be fully developed. �e
CSISFLA architecture is explained in Figure 1.

3.5. CSISFLA Algorithm for 0-1 Knapsack Problems. �rough
the design above carefully, the pseudocode ofCSISFLA for 0-1
knapsack problems is described as follows (see Algorithm 2).
It can be analyzed that there are essentially three main
processes besides the initialization process. Firstly, Lévy
�ights are executed to get a cuckoo randomly or generate
a solution. �e random walk via Lévy �ights is much more
e�cient in exploring the search space owing to its longer
step length. In addition, some of the new solutions are
generated by Lévy �ights around the best solution, which
can speed up the local search. �en ISFLA is performed in
order to exploit the local area e�ciently. Here, we regard
the frog-leaping process as the process of cuckoo laying egg
in a nest. �e new nest generated with a probability � is
far enough from the current best solution, which enables
CSISFLA to avoid being trapped into local optimum. Finally,
when an infeasible solution is generated, a repair procedure

is adopted to keep feasibility and, moreover, optimize the
feasible solution. Since the algorithm can well balance the
exploitation and exploration, it expects to obtain solutions
with satisfactory quality.

3.6. Algorithm Complexity. CSISFLA is composed of three
stages: the sorting by value-to-weight ratio, the initialization,
and the iterative search.�e quick sorting has time complex-
ity� (� log (�)).�e generation of the initial cuckoonests has
time complexity� (�×8).�e iterative search consists of four
steps (comment statements in Algorithm 2), and so forth,
the Lévy �ight, the �rst frog leaping, generate new individual
and random selection which costs the same time � (8). In
summary, the overall complexity of the proposed CSISFLA is� (� log (�))+� (�×8)+� (8) = � (� log (�))+� (�×8).
It does not change compared with the original CS algorithm.

4. Simulation Experiments

4.1. Experimental Data Set. In existent researching �les,
cases studies and research of knapsack problems are about
small-scale to moderate-scale problems. However, in real-
world applications, problems are typically large-scale with
thousands or even millions of design variables. In addition,
the complexity of KP problem is greatly a	ected by the
correlation between pro�ts and weights [49–51]. However,
few scholars pay close attention to the correlation between
the weight and the value of the items. To test the validity
of the algorithm for di	erent types of instances, we adopt
uncorrelated, weakly correlated, strongly correlated, multiple
strongly correlated, pro�t ceiling, and circle data sets with
di	erent dimension. �e problems are described as follows:

(i) uncorrelated instances: the weights�� and the pro�ts�� are random integers uniformly distributed in[10, 100];
(ii) weakly correlated instances: the weights �� are ran-

dom integers uniformly distributed in [10, 100], and
the pro�ts �� are random integer uniformly dis-
tributed in [�� − 10, �� + 10];

(iii) strongly correlated instances: the weights �� are
random integers uniformly distributed in [10, 100]
and the pro�ts �� are set to �� + 10;

(iv) multiple strongly correlated instances: the weights��
are randomly distributed in [10, 100]. If the weight��
is divisible by 6, thenwe set the�� = ��+30 otherwise
set it to �� = �� + 20;

(v) pro�t ceiling instances: the weights �� are randomly
distributed in [10, 100] and the pro�ts �� are set to�� = 3⌈��/3⌉;

(vi) circle instances: the weights �� are randomly dis-
tributed in [10, 100] and the pro�ts �� are set to �� =
*√4?2 − (�� − 2?)2. Choosing * = 2/3, ? = 10.

For each data set, we set the value of the capacity.
Consider 
 = 0.75∑��=1 ��.
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Begin
For  = 1 to � doB = mod�
select uniform randomly �1 ̸= 
For� = 1 to8 do

If �1 ≥ 0.5 then

� = �	(�) + �2 × (�� (�) − ��1 (�))
Else

� = �	(�) − �2 × (�� (�) − ��1 (�))
End if

End for
If�(�) > �(��) then�� = �
Else If �3 ≤ � then�� =  + �4 × (! −  )

End if
End if

End for
End

Algorithm 1: Improved shu
ed frog-leaping algorithm.

Begin
Step 1. Sorting. According to value-to-weight ratio ��/��( = 1, 2, 3, . . . , �) in descending
order, a queue {C1, C2, . . . , C�} of length � is formed.
Step 2. Initialization. Set the generation counter D = 1; Set probability of mutation � = 0.15.
Generate � cuckoo nests randomly {⟨X1,Y1⟩ , ⟨X2,Y2⟩ , . . . , ⟨Xp,Yp⟩}. Divide the whole
population into�memeplexes, and each memeplex contains� (i.e.P/M) cuckoos; Calculate
the �tness for each individual, �(Yi), 1 ≤  ≤ �, determine the global optimal individual

< Xg
best,Yg

best > and the best individual of each memeplex ⟨Xk
best,Yk

best⟩, 1 ≤ B ≤ �.

Step 3. While the stopping criterionis not satis�ed do
For  = 1 to �B = mod�

select uniform randomly �1 ̸= 
For� = 1 to8

Xi(j) = Xi(j) + � ⊕ Levy(�) //Levy �ight
If �1 ≥ 0.5 then // 
e �rst frog leaping

Temp = �	(�) + �2 × (�� (�) − ��1 (�))
Else

Temp = �	(�) − �2 × (�� (�) − ��1 (�))
End if

End for
If�(����) > �(��) then // Generate new individual�� = Temp
Else If �3 ≤ HI then // Random selection�� =  + �4 × (! −  )

End if
End if where �1, �2, �3, �4 ∼ !(0, 1)

Repair the illegal individuals and optimize the legal individuals by performing GTM method
End for

Keep best solutions.

Rank the solutions in descending order and �nd the current best (Ybest, �(Ybest)).D = D + 1
Step 4. Shu�e all the memeplexes
Step 5. End while
End.

Algorithm 2: �e main procedure of CSISFLA algorithm.
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Table 2: Knapsack problem instances.

Problem Correlation Dimension Target weight Total weight Total values

KP1 Uncorrelated 150 6471 8628 8111

KP2 Uncorrelated 200 8328 11104 10865

KP3 Uncorrelated 300 12383 16511 16630

KP4 Uncorrelated 500 20363 27150 28705

KP5 Uncorrelated 800 33367 44489 44005

KP6 Uncorrelated 1000 41948 55930 54764

KP7 Uncorrelated 1200 49485 65980 66816

KP8 Weakly correlated 150 6403 8538 8504

KP9 Weakly correlated 200 8358 11144 11051

KP10 Weakly correlated 300 12554 16739 16778

KP11 Weakly correlated 500 20758 27677 27821

KP12 Weakly correlated 800 33367 44489 44491

KP13 Weakly correlated 1000 41849 55799 55683

KP14 Weakly correlated 1200 49808 66411 56811

KP15 Strongly correlated 300 12247 16329 19329

KP16 Strongly correlated 500 21305 28407 33406

KP17 Strongly correlated 800 33367 44489 52489

KP18 Strongly correlated 1000 40883 54511 64510

KP19 Strongly correlated 1200 50430 67240 79240

KP20 Multiple strongly correlated 300 12908 17211 23651

KP21 Multiple strongly correlated 500 20259 27012 37903

KP22 Multiple strongly correlated 800 32767 43689 61140

KP23 Multiple strongly correlated 1000 42442 56589 77940

KP24 Multiple strongly correlated 1200 50222 66963 92653

KP25 Pro�t ceiling 300 12666 16888 17181

KP26 Pro�t ceiling 500 19811 26415 26913

KP27 Pro�t ceiling 800 32011 42681 43497

KP28 Pro�t ceiling 1000 42253 56337 57381

KP29 Pro�t ceiling 1200 50208 66944 68157

KP30 Circle 300 12554 16739 26448

KP31 Circle 500 20812 27749 43880

KP32 Circle 800 32581 43441 69527

KP33 Circle 1000 42107 56143 88220

KP34 Circle 1200 49220 65627 104287

Table 3: �e e	ect ofM and N on the performance of the CSISFLA.

Instance � � = 2 � � = 10
Best Worst Mean STD Best Worst Mean STD

KP9

10 8727 8704 8711 5.5 2 8727 8704 8711 5.5

15 8728 8701 8715 6.8 3 8725 8701 8713 7.0

20 8730 8702 8718 6.5 4 8726 8708 8717 6.3

KP10

10 13152 13124 13140 8.7 2 13152 13124 13140 8.7

15 13168 13120 13144 12.6 3 13167 13131 13146 8.2

20 13174 13126 13148 13.3 4 13168 13128 13148 9.4

KP11

10 21820 21737 21773 22.1 2 21820 21737 21773 22.1

15 21827 21756 21786 17.3 3 21840 21735 21783 24.6

20 21814 21757 21778 15.4 4 21848 21742 21788 23.5
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Table 4: �e e	ect of � on the performance of the CSISFLA.

Instance 0 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

KP1

Best 7474 7475 7475 7475 7475 7474 7475 7474 7474 7474 7473 7474 7459

Worst 7430 7469 7468 7471 7471 7463 7457 7451 7451 7446 7437 7427 7407

Mean 7461 7473 7474 7474 7473 7471 7470 7468 7468 7461 7455 7448 7436

STD 12.60 1.50 1.57 0.93 1.27 3.57 4.96 6.03 5.87 8.83 10.11 11.17 13.88

KP2

Best 9865 9865 9865 9865 9863 9864 9860 9859 9850 9847 9844 9843 9842

Worst 9821 9847 9845 9844 9839 9823 9830 9818 9804 9778 9775 9768 9757

Mean 9847 9858 9856 9857 9852 9848 9847 9841 9833 9830 9812 9810 9783

STD 11.96 5.75 6.12 5.32 6.84 10.60 7.99 11.89 12.35 16.86 21.92 21.12 20.24

KP8

Best 6676 6674 6673 6672 6671 6672 6672 6671 6678 6666 6666 6662 6654

Worst 6658 6662 6663 6665 6662 6663 6662 6657 6655 6650 6652 6645 6642

Mean 6668 6671 6669 6669 6668 6668 6668 6664 6664 6659 6658 6652 6647

STD 4.59 2.95 2.59 2.04 2.44 2.79 2.39 4.17 4.45 4.06 3.88 4.27 3.17

KP9

Best 8730 8734 8734 8728 8731 8720 8723 8716 8712 8710 8707 8701 8688

Worst 8707 8703 8705 8701 8700 8702 8695 8684 8682 8675 8677 8664 8655

Mean 8716 8718 8718 8715 8714 8711 8707 8702 8697 8693 8690 8682 8676

STD 6.23 8.79 6.66 6.85 7.45 4.59 7.20 7.97 7.50 9.75 7.27 10.06 7.76

Table 5: Parameter settings of GA, DE, CS, and CSISFLA on 0-1
knapsack problems.

Algorithm Parameter Value

GA [41]

Population size 100

Crossover probability 0.6

Mutation probability 0.001

DE [42, 43]

Population size 100

Crossover probability 0.9

Ampli�cation factor 0.3

CS [24]
Population size 40

�� 0.25

CSISFLA

� 4

� 10

� 0.15

Figures 2, 3, 4, 5, 6, and 7 illustrate six types of instances
of 200 items, respectively.

�e KP instances in this study are described in Table 2.

4.2. 
e Selection on the Value of � and N. �e CSISFLA
has some control parameters that a	ect its performance. In
our experiments, we investigate thoroughly the number of
subgroups� and the number of individuals in each subgroup�. �e below three test instances are used to study the e	ect
of� and � on the performance of the proposed algorithm.
Firstly,M is set to 2, and then three levels of 10, 15, and 20 are
considered for N (accordingly, the size of population is 2 ×
10, 2 × 15, and 2 × 20). Secondly, a �xed individual number

of each subgroup is 10, and the value of � is 2, 3, and 4,
respectively. Results are summarized in Table 3.

As expected, with the increase of the individual number
in the population, it is an inevitable consequence that there
are more opportunities to obtain the optimal solution. �is
issue can be indicated by bold data in Table 3. In order to
get a reasonable quality under the condition of inexpensive
computational costs, we use � = 10 and � = 4 in the rest
experiments.

4.3. 
e Selection on the Value of �. In this subsection, the
e	ect of � on the performance of the CSISFLA is carefully
investigated.We select two uncorrelated instances (KP1, KP2)
and two weakly correlated instances (KP8, KP9) as the test
instances for parameter setting experiment of �. For each
instance, every test is run 30 times. We use � = 10, � =4, and the maximum time of iterations is set to 5 seconds.
Table 4 gives the optimization results of the CSISFLA using
di	erent values for �.

From the results of Table 4, it is not di�cult to observe
that the probability of mutation with 0.05 ≤ � ≤ 0.4 is
more suitable for all test instances which can be seen from
data in bold in Table 3. In addition, the optimal solution
dwindles steadily with the change of � from 0.5 to 1.0 and
the worst results of four evaluation criteria are obtained when� = 1. Similarly, the performance of the CSISFLA is also
poor when � is 0. As we have expected, 0 means that the
position update in memeplex is completed entirely by the
�rst Leapfrog, which cannot e	ectively ensure the diversity
of the entire population, leading to the CSISFLA more easily
fall into the local optimum, and 1 means that new individuals
randomly generated without any restrictions which results in
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Table 6: Experimental results of four algorithms with uncorrelated KP instances.

Instance Algorithm Best Worst Mean Median STD

KP1

GA 7316 6978 7200 7208 75.78

DE 7475 7433 7471 7473 7.68

CS 7472 7358 7403 7405 27.82

CSISFLA 7475 7467 7473 7474 1.56

KP2

GA 9673 9227 9503 9507 97.39

DE 9865 9751 9854 9865 22.52

CS 9848 9678 9737 9734 33.22

CSISFLA 9865 9837 9856 9858 7.23

KP3

GA 15022 14275 14756 14795 158.91

DE 15334 15088 15287 15301 54.45

CS 15224 15024 15092 15081 51.37

CSISFLA 15327 15248 15297 15302 18.48

KP4

GA 25882 25212 25498 25493 150.68

DE 26333 25751 26099 26096 135.88

CS 26208 25786 25936 25911 103.4

CSISFLA 26360 26193 26284 26277 38.54

KP5

GA 39528 38462 38976 39014 243.62

DE 39652 39215 39410 39399 113.28

CS 40223 39416 39565 39514 179.98

CSISFLA 40290 39885 40072 40081 91.97

KP6

GA 49072 47835 48483 48570 316.62

DE 49246 48835 48989 48979 101.11

CS 49767 49024 49164 49142 143.08

CSISFLA 49893 49567 49744 49737 97.52

KP7

GA 59793 58351 59135 59225 370.86

DE 59932 59488 59707 59727 110.39

CS 60629 59708 59939 59884 166.43

CSISFLA 60779 60264 60443 60420 130.56

slow convergence. Generally speaking, using a small value
of � is bene�cial to strengthen the convergence ability and
stability of the CSISFLA. �e performance of the algorithm
is the best when � = 0.15, so we will set � = 0.15 for the
following experiments.

4.4. Experimental Setup andParameters Setting. In this paper,
in order to test the optimization ability of CSISFLA and
further investigate e	ectiveness of the algorithms for di	erent
types of instance, we adopt a set of 34 knapsack problems
(KP1–KP34).We compared the performance ofCSISFLAwith
(a) GA, (b) DE, and (c) classical CS. In the experiments, the
parameters setting are shown in Table 5.

In order to make a fair comparison, all computational
experiments are conducted with Visual C++ 6.0. �e test
environment is set up on a PC with AMD Athlon(tm) II X2
250 Processor 3.01 GHz, 1.75 G RAM, running on Windows
XP. �e experiment on each instance was repeated 30 times
independently. Further, best solution, worst solution, mean,
median, and standard deviation (STD) for all the solutions
are given in related tables. In addition, the maximum run-
time was set to 5 seconds for the instances with dimension
less than 500, and it was set to 8 seconds for other instances.

4.5. 
e Experimental Results and Analysis. We do exper-
iment on 7 uncorrelated instances, 7 weakly correlated
instances, and 5 other types of instances, respectively. �e
numerical results are given in Tables 6–11. �e best values
are emphasized in boldface. In addition, comparisons of the
best pro�ts obtained from the CSISFLA with those obtained
from GA, DE, and CS for six KP instances with 1200 items
are shown in Figures 8, 9, 10, 11, 12, and 13. Speci�cally, the

convergence curves of four algorithms on six KP instances
with 1200 items are also drawn in Figures 14, 15, 16, 17, 18,
and 19. �rough our careful observation, it can be analyzed
as follows.

(a) Table 6 shows that CSISFLA outperforms GA, DE,
and CS on almost all the uncorrelated knapsack
instances in terms of computation accuracy and
robustness. In particular, the best solution found by
CSISFLA is slightly inferior to that obtained by DE
on KP3. On closer inspection, “STD” is much smaller
than that of the other algorithms except for KP7,
which indicates the good stability of the CSISFLA and
superior approximation ability.
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Table 7: Experimental results of four algorithms with weakly correlated KP instances.

Instance Algorithm Best Worst Mean Median STD

KP8

GA 6627 6531 6593 6593 20.63

DE 6676 6657 6674 6676 4.80

CS 6660 6637 6648 6646 6.79

CSISFLA 6673 6663 6668 6668 2.23

KP9

GA 8658 8501 8588 8590 33.38

DE 8743 8743 8743 8743 0.00

CS 8717 8644 8676 8671 18.23

CSISFLA 8728 8701 8714 8714 6.87

KP10

GA 13062 12939 12997 12991 30.64

DE 13202 13158 13186 13186 9.76

CS 13157 13069 13094 13087 21.91

CSISFLA 13168 13120 13145 13145 11.90

KP11

GA 21671 21470 21571 21576 48.85

DE 21951 21745 21858 21859 37.61

CS 21935 21670 21746 21722 76.53

CSISFLA 21827 21756 21788 21787 16.66

KP12

GA 34587 34314 34488 34499 63.23

DE 34814 34578 34721 34718 64.50

CS 34987 34621 34697 34654 100.38

CSISFLA 34818 34721 34760 34758 22.87

KP13

GA 43241 42938 43082 43073 75.51

DE 43327 43162 43217 43211 43.64

CS 43737 43216 43340 43264 166.53

CSISFLA 43409 43312 43367 43368 27.23

KP14

GA 51472 50414 51058 51135 265.56

DE 51947 51444 51600 51569 108.83

CS 53333 51601 51831 51788 299.35

CSISFLA 52403 52077 52267 52264 86.19

(b) FromTable 7, it can be seen that DE obtained the best,
mean, and median results for the �rst four cases, and
CS attained the best results for the last three cases.
Although the optimal solutions obtained by the CSIS-
FLA are worse than DE or CS, the CSISFLA obtained
the worst, median, and STD results in KP12–KP14,
which still can indicate that the CSISFLA has better
stability. Above all, the well-knownNFL theorem [52]
has stated clearly that there is no heuristic algorithm
best suited for solving all optimization problems.
Unfortunately, although weakly correlated knapsack
problems are closer to the real world situations [49],
the CSISFLA does not appear clearly superior to
the other two algorithms in solving such knapsack
problems.

(c) Obviously, in point of search accuracy and conver-
gence speed, it can be seen fromTable 8 that CSISFLA
outperforms GA, DE, and CS on all �ve strongly
correlated knapsack problems. If anything, the STD
values tell us that CSISFLA is only inferior to CS.

(d) Similar results were found from Tables 9, 10, and 11
and it can be inferred that CSISFLA can easily yield
superior results compared with GA, DE, and CS. �e

series of experimental results con�rm convincingly
the superiority and e	ectiveness of CSISFLA.

(e) Figures 8–13 show a comparison of the best pro�ts
obtained by the four algorithms for six types of 1200
items.

(f) Figures 14–19 illustrate the average convergence
curves of all the algorithms in 30 runs where we can
observe thatCS andCSISFLAusually show the almost
same starting point. However, CSISFLA surpasses CS
in point of the accuracy and convergence speed. CS
performs the second best in hitting the optimum. DE
shows premature phenomenon in the evolution and
does not o	er satisfactory performance alongwith the
extending of the problem.

Based onprevious analyses, we can draw a conclusion that
the superiority of CSISFLA over GA, DE, and CS in solving
six types of KP instances is quite indubitable. In general, CS
is slightly inferior to CSISFLA, so the next best is CS. DE and
GA perform the third-best and the fourth-best, respectively.
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Table 8: Experimental results of four algorithms with strongly correlated KP instances.

Instance Algorithm Best Worst Mean Median STD

KP15

GA 14785 14692 14754 14762 25.93

DE 14797 14781 14789 14787 4.90

CS 14804 14791 14797 14797 2.43

CSISFLA 14807 14795 14798 14797 3.46

KP16

GA 25486 25402 25458 25465 21.61

DE 25502 25481 25492 25493 4.21

CS 25514 25502 25506 25505 3.49

CSISFLA 25515 25505 25510 25512 3.94

KP17

GA 40087 39975 40039 40041 28.33

DE 40111 40068 40089 40088 8.66

CS 40107 40096 40103 40105 3.88

CSISFLA 40117 40098 40111 40113 5.12

KP18

GA 49332 49225 49300 49309 27.26

DE 49363 49333 49346 49345 7.50

CS 49380 49350 49364 49363 7.04

CSISFLA 49393 49362 49373 49373 7.90

KP19

GA 60520 60418 60482 60489 26.62

DE 60540 60501 60519 60519 8.55

CS 60558 60530 60542 60540 6.77

CSISFLA 60562 60539 60549 60550 5.70

Table 9: Experimental results of four algorithms with multiple strongly correlated KP instances.

Instance Algorithm Best Worst Mean Median STD

KP20

GA 18346 18172 18284 18288 38.39

DE 18387 18335 18354 18348 15.25

CS 18386 18355 18368 18368 4.73

CSISFLA 18388 18368 18381 18386 8.03

KP21

GA 29525 29387 29461 29462 31.97

DE 29548 29488 29519 29520 14.10

CS 29589 29527 29555 29549 13.94

CSISFLA 29609 29562 29581 29585 12.38

KP22

GA 47645 47494 47568 47575 39.72

DE 47704 47620 47659 47657 20.68

CS 47727 47673 47696 47695 15.09

CSISFLA 47757 47697 47732 47736 13.02

KP23

GA 60529 60312 60455 60463 47.39

DE 60572 60508 60534 60530 13.98

CS 60607 60540 60576 60574 16.96

CSISFLA 60650 60579 60615 60612 15.75

KP24

GA 72063 71725 71914 71917 64.42

DE 72072 71973 72018 72018 19.38

CS 72094 72031 72058 72057 15.93

CSISFLA 72151 72070 72112 72111 21.20

5. Conclusions

In this paper, we proposed a novel hybrid cuckoo search
algorithm with improved shu
ed frog-leaping algorithm,
called CSISFLA, for solving 0-1 knapsack problems. Com-
pared with the basic CS algorithm, the improvement of

CSISFLA has several advantages. First, we specially designed
an improved frog-leap operator, which not only retains
the e	ect of the global optimal information on the frog
leaping but also strengthens information exchange between
frog individuals. Additionally, new individuals randomly
generated with mutation rate. Second, we presented a novel
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Table 10: Experimental results of four algorithms with pro�t ceiling KP instances.

Instance Algorithm Best Worst Mean Median STD

KP25

GA 12957 12948 12955 12957 2.53

DE 12957 12951 12953 12954 1.83

CS 12957 12954 12957 12957 0.76

CSISFLA 12957 12957 12957 12957 0.00

KP26

GA 20295 20268 20285 20286 7.37

DE 20301 20292 20294 20294 2.17

CS 20304 20295 20299 20298 1.86

CSISFLA 20307 20298 20304 20304 2.28

KP27

GA 32796 32769 32785 32787 6.99

DE 32802 32793 32797 32796 2.63

CS 32811 32799 32803 32802 3.12

CSISFLA 32820 32808 32812 32811 3.34

KP28

GA 43248 43215 43234 43236 8.76

DE 43257 43245 43249 43248 3.57

CS 43269 43251 43257 43254 4.41

CSISFLA 43272 43260 43266 43266 2.88

KP29

GA 51378 51348 51364 51366 7.25

DE 51384 51372 51378 51378 3.04

CS 51399 51378 51385 51384 4.32

CSISFLA 51399 51390 51396 51396 3.10

Table 11: Experimental results of four algorithms with circle KP instances.

Instance Algorithm Best Worst Mean Median STD

KP30

GA 21194 20899 21086 21096 71.44

DE 21333 21192 21264 21277 32.46

CS 21333 21194 21261 21261 18.57

CSISFLA 21333 21263 21300 21295 34.04

KP31

GA 35262 34982 35112 35124 82.25

DE 35343 35184 35247 35267 38.08

CS 35345 35271 35297 35277 31.29

CSISFLA 35414 35342 35354 35345 23.23

KP32

GA 55976 55451 55746 55771 116.83

DE 56063 55914 55964 55954 44.95

CS 56280 55988 56057 56061 55.01

CSISFLA 56273 56130 56185 56201 38.65

KP33

GA 70739 70247 70487 70456 113.53

DE 70806 70641 70696 70684 38.21

CS 70915 70729 70789 70797 42.50

CSISFLA 71008 70867 70924 70939 41.17

KP34

GA 83969 83339 83723 83757 142.75

DE 84040 83820 83912 83899 56.64

CS 84645 83954 84055 84033 121.94

CSISFLA 84244 84099 84175 84181 38.36

CS model which is in an excellent combination with the
rapid exploration of the global search space by Lévy �ight
and the �ne exploitation of the local region by frog-leap
operator. �ird, CSISFLA employs hybrid encoding scheme;
that is, to say, it conducts active searches in continuous

real space, while the consequences are used to constitute
the new solution in the binary space. Fourth, CSISFLA
uses an e	ective GTM to assure the feasibility of solu-
tions. �e computational results show that CSISFLA out-
performs the GA, DE, and CS in solution quality. Further,
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Figure 1: �e architecture of CSISFLA algorithm.
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Figure 6: Pro�t ceiling items.
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Figure 7: Circle items.
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Figure 8: �e best pro�ts obtained in 30 runs for KP7.
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Figure 9: �e best pro�ts obtained in 30 runs for KP14.
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Figure 10: �e best pro�ts obtained in 30 runs for KP19.
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Figure 11: �e best pro�ts obtained in 30 runs for KP24.
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Figure 12: �e best pro�ts obtained in 30 runs for KP29.
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Figure 13: �e best pro�ts obtained in 30 runs for KP34.
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Figure 14: �e convergence graphs of KP7.
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Figure 15: �e convergence graphs of KP14.
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Figure 16: �e convergence graphs of KP19.
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Figure 17: �e convergence graphs of KP24.
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Figure 18: �e convergence graphs of KP29.
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Figure 19: �e convergence graphs of KP34.

compared with ICS [26], the CSISFLA can be regarded
as a combination of several algorithms and secondly the
KP instances are more complex. �e future work is to
design more e	ective CS method for solving complex 0-
1 KP and to apply the hybrid CS for solving other kinds
of combinatorial optimization problems, multidimensional
knapsack problem (MKP), and traveling salesman problem
(TSP).
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